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Abstract. We propose a decentralized method for traffic monitoring,
fully distributed over the vehicles. An algorithm is provided, specifying
which information should be tracked to reconstruct an instantaneous
map of traffic flow. We test the accuracy of our method in a simple
cellular automata traffic simulation model, for which the traffic condi-
tion can be controlled and analyzed theoretically. We show how local
communication parameters affect the method accuracy.

1 Introduction

Nowadays in big cities, the need for an overview of the traffic situation is critical
in order to avoid queues, accidents, and establish an efficient routing strategy.
Current solutions often involve a centralized node which collects information
from the drivers within the traffic, and broadcast it to let everyone make reason-
able decisions. While this strategy works well, it raises the question of privacy:
the central node knows everything about everyone in the network, and this cen-
tralization of the information may hit back if the knowledge is in the wrong
hands.

In this paper, we extend the fully decentralized communication method de-
scribed in [1, 2]. This method allows drivers to gather information and share
it anonymously with the neighboring drivers throughout their journey, letting
everyone have a good view of the status of the traffic. Due to this type of informa-
tion distribution, the disadvantages of centralization and the privacy violation
can be avoided. However, the problem is not trivial because the system must
converge quickly to an accurate and stable representation of the current traffic
conditions, and it must be able to detect rapid changes due to accidents or rush
hours.

Early experiments have tested the capability of our method to build an ac-
curate traffic map, using a simple traffic model in which the cars accumulate
information as they move, through mutual exchanges. Using a simple circuit
(fully described below), our method was able to predict the traffic condition,
expressed as the rate of cars able to cross an intersection. Moreover, our method
was able to adjust the prediction when the actual value was suddently modified



(for instance due to an accident). For instance, results for traffic increase and
decrease are shown in Fig. 1 taken from [2].

In all preceding simulations, we did assume that cars communicate only with
immediate neighbors at a pace corresponding to the car movement itself. We
can estimate what those restrictions mean in terms of real units, by deriving
the model time step and the cell size. Assuming that street cells are 10 meters
long, and that cars have a speed allowing them to fully stop in a street cell, we
can compute the simulation time step (∆t) given the car braking deceleration.
Using a deceleration value of 8ms−2 (in the range of current car models), we
find that ∆t ≈ 1.12 and a maximum car speed of 8.9ms−1 ≈ 32 kmh−1. The
communication radius is then equal to 10m and the bandwith needed for a map
of 200 cells and 128 temporal iterations is 22.3 kb/s. This is however very conser-
vative compared to the currently available technology. For instance, Bluetooth 3
devices can communicate with an effective radius of 100 meters at a theoretical
speed of 24 Mbits/s.

In this paper, we investigate how our method can be improved by increasing
the communication radius and the communication frequency. The paper is or-
ganized as follows. We first propose a cellular automata model, from which the
traffic flow can be predicted with the knowledge of only a few quantities. Then
we define how the cars communicate and how they combine the information to
progressively build a global traffic map. Finally we provide some results about
the effect of the communication parameter on the prediction accuray.

2 Traffic Model and Theoretical Framework

In order to produce simple traffic conditions suitable to test our communication
method, we consider a Cellular Automata (CA) model. This approach has been
widely used in traffic simulations, with excellent results (see for instance [3–7]).

2.1 Basic model

Here we consider several road segments, interconnected through simple junc-
tions. A road segment is a 1D vector of length L, where each component (cell)
represents a possible location for a car.

In order to describe the motion of the cars on a road, we modified Wolfram’s
rule 184 [8] such as to be able to track individual cars. At initialization, an
identifier IDj is assigned to each car j. Identifiers are positive integers ranging
from 1 to N where N is the total number of cars. Let si(t) be the state of road
cell i at time t, and ni(t) is the occupation of cell i at time t. Both values are
defined as:

si(t) =

{
0 if cell i is empty,

IDj if car j is in cell i at time t.

ni(t) =

{
0 if si(t) = 0,

1 otherwise.
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(a) Case with π = 0.9 when t <= 1320 and pi = 0.1 for t > 1320
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(b) Case with π = 0.1 when t <= 1320 and π = 0.9 for t > 1320

Fig. 1. Estimated value of traffic flow (π) in a two-road traffic circuit. The local es-
timation is shown with a continuous curve and the real value with a dashed curve.
We can see that the estimation matches the real value 200 iterations after the event
causing the traffic flow modification.



The car traffic can then be described by the update function:

si(t+ 1) = ni−1(t)(1− ni(t))si−1(t) + ni(t)ni+1(t)si(t) for 1 < i < L. (1)

This means that a car moves to the next cell if and only if this next cell is free;
otherwise it stays still. Roads are considered as one-way lanes. The two special
locations are the beginning and the end of a road. These cells obey other rules
that implement the chosen boundary conditions, for instance the junction that
interconnects two segments.

Circuits A simple example of interconnection between two roads is the circuit
shown in Fig. 2. It is composed of two side by side roads of length L1 = L2 = L.
A car reaching the end of one of the roads may cross to the other road with
probability π (as if there was a stop sign, or a traffic light), and given that the
beginning of the other road is free.

Let si and s′i be the states of each cell in road-one and road-two respectively.
Accordingly, the rule for cells 1 and L in each road can be expressed as:

s1(t+ 1) = n′L(t)(1− n1(t))s′L(t) ·X(t) + n1(t)n2(t)s1(t),

s′L(t+ 1) = n′L−1(t)(1− n′L(t))s′L−1(t) + n′L(t)(1− n1(t))s′L(t) ·X ′(t).

The quantities X(t) and X ′(t) are Boolean random variables which are 1
with probability π. The equations for s′1 and sL are obtained by symmetry.

Occupation density of a cell On a road segment, the car density ρi (t) on
cell i is defined as 〈ni (t)〉, the average of ni (over time or space). We can write
an evolution equation for ρi (t) by taking the average of eq. (1):

ρi (t+ 1) = ρi−1 (t)− 〈ni−1 (t)ni (t)〉+ 〈ni (t)ni+1 (t)〉 . (2)

Note that 〈ni (t)ni+1 (t)〉 6= ρi (t) ρi+1 (t) in general, because ni (t) and ni+1 (t)
are highly correlated.

Fig. 2. Diagram of a two-road circuit, with an initial number M1 and M2 of cars on
each road.
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Fig. 3. Traffic density, computed over the last 128 iterations. The solid curve is the
density estimated from the local map of a single car drawn at random at the end of a
simulation with a car density of 0.5 and π = 0.3. The dotted curve is the real density
obtained from the global map. Horizontal lines represent the values of p (bottom) and
q (top). Solid, dotted and dashed lines corresponds respectively to the local estimates,
the real estimates and the imposed values.

2.2 Theoretical framework

When running a two-road circuit simulation with the update rules defined above,
the traffic in each road segment will start with a free traffic region followed by
a congested traffic region when cars form a queue. A typical traffic situation is
illustrated in Fig. 3. This structure will always happen at steady state but the
actual length of the queues will fluctuate during the simulation.

Let p be the occupation density at the beginning of the road and q the
occupation density at the end of the road, we have shown that both quantities
form the following relation with π [2]:

J = qπ = p = 1− q, (3)

from which we concluded that π = p/q and p = π
1+π = 1− q.

3 Decentralized flow estimation

Using eq. (3) we can reconstruct the value of π knowing the value of p and q.
Thus, we can estimate the flow of each road segment, if we can estimate the
values of p and q. In this section, we present a way to estimate those quantities
by a decentralized exchange of information between neighboring cars.



3.1 Global map

We call global map, the real traffic map that each car will try to estimate. Ac-
cording to our discussion, we can restrict this map to a few cells in the network,
those which are enough to predict the traffic flow in each road segment. Here,
the map is composed of the measured densities at each road end, ρ̂2 and ρ̂L−1.
Those densities are computed as the average occupation of the cell during the
last 128 iterations:

ρ̂i(t) =
1

128

t∑
k=t−127

si(k). (4)

The use of a “sliding time window” (of size 128 in our case) to compute the
density of a cell, allows us to forget the remote past and to get a dynamic view
at traffic evolutions. The size of 128 was chosen for practical implementation
reasons, and provides good results as shown in the next section. If the window
size is too small, fluctuations will dominate time-stable structures. If it is too
large, temporary (but relevant) structures will become undetectable.

3.2 Local Map

Every car in the model maintains an estimated map of traffic density, termed
local map. This map is updated at each iteration by direct observations and com-
munications with other cars. Cars can exchange information with neighboring
cars. Here, during a single iteration, each car can communicate with at most 5
other cars, the leading and trailing ones, and the three cars in the opposite lane.

For a street map with 2L-cell road segments, the local map mc of a car c at
iteration t is a matrix with 128 rows and 2L columns. The elements of the map
defined as

mc(i, j) =

{
1 if a car was recorded by c at location j at time t− i+ 1,

0 else.
(5)

An estimate of the density of each location can be computed by averaging the
corresponding column. We chose to track position along each road in order to
study the dynamic of the whole local maps. However, the method presented
here is able to reconstruct the traffic condition with just two density values at
beginning (i = 2) and at the end of (i = L− 1) of each road segment. The local
map could then be restricted to two columns per road segment.

Local map update All cars start with a local map filled with zeroes. At each
iteration, they update the map according to the following steps: (1) The local
map matrix rows are shifted down, eliminating the oldest row. The first row is
filled with zeroes. (2) Each car adds 1 to the element of the first row correspond-
ing to its current location. (3) Each car sends its map to each neighboring car
and receives maps from them, merging the information into its own local map
with an element-wise logical OR.



It is easy to see that the logical OR of the first 128 lines of the local maps
of all the cars in our circuit will produce the global map. Indeed, as all cars only
put their own position at each step of the simulation in their local maps, the
logical OR of all the local maps will give the occupation of each of the cars in
the last 128 iterations. The question is whether our car to car communications
will be fast enough to provide an accurate OR of all the local maps, and thus
the global map.

4 Simulation Results

To investigate how a better communication scheme could improve our method,
we have performed several simulations by varying the communication radius
and the communication frequency. Each trial parameter is represented by the
notation NnXx where n is the neighborhood radius (in cell units) and x is the
communication frequency in number of communications per traffic iteration. For
instance, N3X2 means that we use a three-cell wide neighborhood (corresponding
to a communication radius of 30 meters) and we perform two communication
iterations per traffic update (corresponding to a frequency of 1.7 updates per
second).

In this study, both parameters were varied from 1 to 5, using a two-road
system of 200 cells (L = 100) with a car density of 0.5 and π = 0.3. Maps were
limited to the last 128 iterations. To quantify the impact of the communication
radius and frequency, we measured the estimation error average among all cars.
The estimation density error was computed as:

errρ =
1

2nL

n∑
i=1

2L∑
j=i

|ρ̂i(j)− ρG(j)| , (6)

where n is the number of cars, ρ̂i(j) the density estimation of car i at location j
and ρG(j) the value computed from the global map for the same location (exact
value). Results are presented in Fig. 4 (left). We can see that both communication
parameters reduce the error when increased, although the communication radius
has a more important effect. An increase of the latter will also strongly reduce
the error standard deviation, meaning that local maps reach a strong consensus.

We repeated the same experiment by measuring the π estimation error:

errπ =
1

nπG

n∑
i=1

|π̂i − πG| , (7)

where n is the number of cars, π̂i the estimation of car i and πG the value
computed from the global map (exact value). Results shown in Fig. 4 (right) are
fully consistent with the plots of density estimation error discussed above.

To provide a closer view on the effects of both communication parameters, we
did focus on a car picked at random. Using a record of all cars time/position dur-
ing a single simulation, we replayed exactly the same traffic evolution, changing
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Fig. 4. Relative error averaged over all the cars for 25 traffic simulations in a two-road
circuit with L = 100. Left: Relative density error; Right: Relative π error. The error
bars represent the standard deviation.

only the communication scheme (this is possible because in our toy circuit cars
behave independently of the map content). The π estimation by the reference car
is shown in Fig. 5 for the N1X1, N1X5, N5X1, N5X5 and N2X2 communication
settings. Again, increasing the communication parameters clearly improves the
π estimations. Moreover, we can note that when the communication radius is
low, the reference car is prone to two kinds of errors: (i) the low density area
(p) is often underestimated leading to an infinite value of π when the estima-
tions reach zero. This effect could be easily reduced by adding a pseudocount
to each map column. (ii) Temporarily good estimates of π tend to “drift down”
until they suddenly improve again. This means that a car tends to forget good
estimations because of a lack of interactions with other cars. The sudden rises
observed can be explained by encouters with a car on the opposite lane which
carries the missing information.

Finally, we present how errors are distributed in the local map of the reference
car at the end of each simulation. Since a map time/space location is consid-
ered empty until a car records its presence, a local map can only underestimate
street density but never overestimate it. We show how the underestimates are
distributed by taking the logical XOR operation between the global map and a
local map. Every resulting dot will be a missed car occupancy in a given posi-
tion at a given time. Local map error diagrams of the reference car are displayed
in Fig. 6 for several communication settings. Since the information travels at a
constant maximum speed depending directly on the communications parame-
ters, “light-cones” appear on the error diagrams. They encompass a space-time
zone where the local information had time to be exchanged with neighbors and
thus corresponds perfectly to the global map. In each diagram the cones appear
to originate from the location of the reference car at the end of the simulation.
Further analysis of the diagram is required, but we can clearly see that increas-
ing the communication parameters increases the cones aperture. In the case of
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Fig. 5. Estimation of π according to a reference car picked at random. A single traffic
simulation took place and was used to build five different simulations of map updates
with different settings. The solid black curves show the estimation of π from the refer-
ence car local map, the dotted curves are the estimated π using the global map (correct
empirical value), and the horizontal dashed lines are the imposed value of π.



N5X5, the cone is wide enough to reach the system boundaries after a couple of
iterations. Even with N2X2, the local map is perfect after less than 28 iterations.

5 Discussion

We have proposed a decentralized method allowing the cars traversing a road
network to build an estimate of the traffic situation, by exchanging local and
anonymous information. We shown the traffic conditions in a simple circuit can
be described with only the knowledge of the car densities at the extremities of
the road segments. Within this framework, we have tested the capability of the
cars to predict the global traffic condition.1 The method is robust enough to
detect flow variations caused by traffic accidentss [2].

We have also shown that the traffic estimation errors can be strongly reduced
by allowing a larger communication radius and a higher frequency of exchange.
In particular increasing the radius allows cars in free flow traffic to exchange
information. Indeed, in this traffic regime found in low density areas, cars are
always separated by at least a blank cell. In roads with a density of ρ = 0.5
and evenly spaced cars, no car will be able to exchange information with a
N1Xx communication scheme. The estimated density will then be very small
(equal to 1 over the map temporal size). By taking at least N2Xx, cars will be
able to exchange information and merge their maps to get a good estimate. We
should note that increasing only the communication frequency will not help in
this particular situation because although the map exchanges will happen faster,
they will not be able to communicate across gaps between cars.

The method is very economic in terms of used memory, since only 2×128 bits
per road segment are stored. A local map for the whole Borough of Manhattan
in New-York city could then be stored in less than 150 kB (11 avenues, 220
streets, and two lanes per road segment give us 11 × 220 × 2 × 2 × 128 bits).
The computational cost is also very low: (i) most of the operations are element-
wise and thus may run in parallel; (ii) bitwise OR operations are executed as
a single instruction in all current processors. If we use a communication scheme
of N2X2, we need to exchange information at a rate of 0.45 updates per second
which corresponds for the whole Manhattan map to a bandwith of 334 kB/s.

We have also tested the method using a more realistic street map and promis-
ing results are described in [1].
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Fig. 6. Errors in the local map of a single car at the end of a simulation. Each diagram
corresponds to the five settings presented in Fig. 5. For each case, the local map of
the reference car at the end of the simulation was compared to the global map using a
logical XOR operation. Every black pixel corresponds to an error of the map for a given
location at a given time. Since only underestimate errors are possible, they represent
a missing car observation.
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