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Abstract

We consider a collection of N homogeneous interact-

ing Brownian agents evolving on the plane. The time

continuous individual dynamics are jointly driven by

mixed canonical-dissipative (MCD) type dynamics and

White Gaussian noise sources. Each agent is perma-

nently at the center of a finite size observation disk

Dρ. Steadily with time, agents count the number of

their fellows located in Dρ. This information is then

used to re-actualize control parameters entering into the

MCD. Dissipation mechanisms together with the noise

sources ultimately drive the dynamics towards a con-

sensual stationary regime characterized by an invariant

measure Ps on an appropriate probability space. As-

suming propagation of chaos, a mean field approach

enables to analytically calculate Ps. For each agent,

our dynamics naturally implement: i) a trend to not be

isolated, ii) a trend to avoid strong promiscuity, and iii)

an overall trend to be attracted to a polar point. The

MCD drift is derived from a Hamiltonian function H
and incites the agents to follow one consensual orbit

coinciding with a level curve of H. When H is the

harmonic oscillator, we are able to analytically derive

the consensual orbit as a function of the size of Dρ.

Generalizations involving more complex H are explic-

itly worked out. Among these illustrations, we study a

Hamiltonian whose level curves are the Cassini’s ovals.

A selection of simulations experiments corroborating

the theoretical findings are presented.
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1 Introduction

The emergence of structured collective dynamical pat-

terns from simple agent level behaviors as observed in

nature for fishes, birds, insects and the like inspires

a sustained research activity in management and con-

trol of complex systems, and particularly in the do-

main of swarm robotics. The capability of agents

to act asynchronously to determine specific trajecto-

ries by relying only on local sensing is definitely at-

tractive when a centralized control becomes unfeasi-

ble - for example to coordinate large assemblies of au-

tonomous robots or other agents. One possibility to

address these difficult global control issues is by imple-

menting dynamic strategies where identical robots are

programmed with elementary features requiring lim-

ited on-board real time sensing and computational re-

sources. This general and truly simple idea triggers a

strong interdisciplinary research activity which, as em-

phasized in the recent review (Gazi and Fidan, 2007),

encompasses a relatively wide spectrum of perspec-

tives ranging from ethology to swarm robotics. Focus-

ing here on the dynamic system and control perspec-

tives, we study a collection of asynchronously interact-

ing point Brownian agents obeying elementary coordi-

nation algorithms. The basic ingredients of our model-

ing are: i) a Hamiltonian function H which provides

a parametric family of non-intersecting level curves

defining closed orbits, ii) a mixed conservative and gra-

dient vector field constructed from H involving one

(or several) control parameters, iii) a stochastic driv-

ing stylized by WGN’s sources and iv) for each agent,

a circular observation range Dρ with radius ρ, cen-

tered at each agent location. The agents mutual in-

teractions directly depend on the size of Dρ. Inter-

actions produce an adaptive mechanism which drives

the agents to ultimately adopt one (or several) consen-

sual value(s) of the control parameter(s). The emerg-

ing consensual parameter(s) value selects one specific

orbit among the Hamiltonian parametric family. For

such mixed canonical-dissipative stochastic dynamics,

connected with models discussed in (Hongler and Ry-

ter, 1978), we are able to explicitly write the result-

ing invariant probability measure solving the associ-
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ated time-independent non-linear Fokker-Planck equa-

tion (NLFP). We can therefore analytically investigate

the influence of the radius ρ of the observation range

Dρ on the emerging consensual dynamics achieved by

the agents. While our class of dynamics presents sim-

ilarities with potential-ruled algorithms as those used

for example in (Gazi and Passino, 2004; Gazi and

Fidan, 2007; Hsieh, Kumar and Chaimowicz, 2008;

Sepulchre, Paley and Leonard, 2008), it however keeps

a decentralized mechanism stylized in the basic agents

models pioneered by (Reynolds, 1987; Vicsek, Czirk,

Ben-Jacob, Cohen and Shochet, 1995) and more re-

cently by (Cucker and Smale, 2007).

Mathematically speaking, our modeling relies on a set

of N continuous time, coupled nonlinear stochastic

differential equations (SDE) driven by White Gaus-

sian noise (WGN). In this context, the basic formal

question, first raised first by H. McKean (McKean Jr.,

1966), is to calculate the limit of the probability dis-

tribution which describes a large agent collection (i.e.

formally the thermodynamic limit N → ∞) and then

fluctuations around this limit for finite N . Considering

that all agents have random identical independent ini-

tial conditions, one mathematically expects (this can be

rigorously proved under somehow restricting technical

hypothesis) that in the thermodynamic limit, all finite

number of agents behaves independently of the others

and they can all be described by the same probability

distribution (this is known as propagation of chaos).

The common probability distribution solves a Marko-

vian evolution described by a nonlinear Chapman-

Kolmogorov type partial differential equation. Accord-

ingly, when propagation of chaos holds, we may char-

acterize the dynamic behavior of the global population

by only studying the dynamics of a single, randomly

chosen, agent subject to an effective external mean-

field generated by its surrounding fellows. In presence

of WGN’s sources, the single representative agent fol-

lows a diffusion process and its probability measure

obeys to a NLFP, (Frank, 2005).

2 Interacting Brownian Agents Driven by

Canonical-Dissipative Dynamics and White

Gaussian Noise

We consider a swarm of N mutually interacting

dynamical agents ak for k = 1, 2, · · · , N evolv-

ing on the plane R
2 with state variables ~X(t) =

(X1(t), X2(t), · · · , XN (t)). In this section, we as-

sume the homogeneous situation in which all indi-

vidual isolated agents ak are dynamically identical.

The collective dynamics is assumed to obey an N -

dimensional diffusion process on R
2 given by a set of

stochastic differential equations (SDE):







dXk(t) = Ak(t)Xk(t) dt+

Ck(Xk(t))
︷ ︸︸ ︷

γ
[
L2
k,ρ(t)− ‖Xk(t)‖22

]
Xk(t)

dt+ σ dWk(t), k = 1, 2, · · · , N,

Xk(0) = X0,k, and Xk(t) ∈ R
2.

(1)

In Eq.(1), the following notations are used: Xk(t) =
(xk,1(t), xk,2(t)) ∈ R

2, the usual norm ‖Xk(t)‖22 :=
(

x2
k,1(t) + x2

k,2(t)
)

, γ and σ are positive constants

common to all ak (i.e. homogeneity assumption) and

Wk(t) = (Wk,1, Wk,2)t≥0 are independent standard

Brownian Motions (BM) and hence the formal differ-

entials dWk(t) are White Gaussian Noise (WGN) pro-

cesses. The agents interactions will be defined via the

scalars L2
k,ρ(t) and the matrices Ak(t) which both will

depend on Dk,ρ(t) the set of instantaneous neighbor-

ing fellows surrounding agent ak at time t. For a given

observation range ρ, the ak-instantaneous observation

neighborhood Dk,ρ(t) is the disk:

Dk,ρ(t) =
{
X ∈ R

2 | ‖X−Xk(t)‖2 ≤ ρ
}

(2)

and we define the indices set

Vk,ρ(t) = {i | Xi(t) ∈ Dk,ρ(t)} . (3)

which identifies the ak-neighboring agents present in

the disk Dk,ρ(t). We shall write Nk,ρ(t) := |Vk,ρ(t)|
the cardinality of the set Vk,ρ(t). The dynamic ele-

ments contained in Eq.(2) and Eq.(3) are now used to

characterize the agents’ mutual interactions via a cou-

ple of contributions:

i) Canonical-dissipative matrix Ak(t). The dy-

namic matrix Ak(t) associated with agent ak can

be defined as:

Ak(t) :=






Nk,ρ(t)
N − 1

M
Nk,ρ(t)

N

−Nk,ρ(t)
N

Nk,ρ(t)
N − 1

M




 , (4)

with 1 ≤ M ≤ N and Nk,ρ(t)/N is the fraction

of the total swarm that agent ak detects in Dk,ρ(t)
(we shall adopt the convention that agent ak sys-

tematically detects itself, implying that Nk,ρ (t) ≥
1, ∀ t). As Xk = 0 is a singular point of the de-

terministic dynamics (i.e. obtained for σ = 0 in

Eq.(1)) the matrix Ak(t) formally stands for the

linear mapping of the dynamics in the neighbor-

hood of the origin. The associated couple of eigen-

values of Ak(t) read:

λk,±(t) =

[
Nk,ρ(t)

N
− 1

M

]

︸ ︷︷ ︸

:=Rk,ρ(t)

± (
√
−1)

[
Nk,ρ(t)

N

]

︸ ︷︷ ︸

:=Ik,ρ(t)

.

(5)
Hence, at a given time t, the real part in Eq.(5) ex-

presses the non-conservative type of the dynamics

(i.e. the divergence part of the vector field (VF)).
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The singular point 0 ∈ R
2 is an attractive (respec-

tively repulsive) node when Rk,ρ(t) < 0 (resp.

Rk,ρ(t) > 0). Moreover, the component Ik,ρ(t)
expresses the rotational nature of the VF. In partic-

ular, when Rk,ρ(t) = 0, the dynamics are conser-

vative; it expresses the Hamiltonian component of

the ak-VF.

ii) Adaptive limit cycle radius. The scalar quan-

tity L2
k,ρ(t) :=

1

|Vk,ρ(t)|
∑

j∈Vk,ρ(t)

‖Xj(t)‖22 (6)

defines the (square) of the radial position of the

barycenter of the agents belonging to Dk,ρ.

Proposition 1. Consider the mixed-canonical dissi-

pative diffusive dynamics Eq.(1). Asymptotically with

times, the dynamics propagates chaos and the MF rep-

resentative agent obeys to the couple of diffusion equa-

tions :






dX1(t) = + 1
MX2(t) + γ

[
L2
s,ρ − (X2

1 (t) +X2
2 (t))

]

·X1(t) dt+ σdW1(t),

dX2(t) = − 1
MX1(t) + γ

[
L2
s,ρ − (X2

1 (t) +X2
2 (t))

]

X2(t) dt+ σdW2(t).
(7)

For weak noise (i.e. large values of γ/σ2), the radius

approximately reads Ls,ρ ≃ ρ√
2(1−cos(π/M))

and the

associated stationary probability density Ps(x) reads:

Ps(x)dx1dx2 =
exp

{
2γ
σ2

[
L2
s,ρ − (x2

1 + x2
2)
]}

dx1dx2

Z ,

(8)

with x = (x1, x2) ∈ R
2, and Z being the probability

normalization factor.

Proof of Proposition 1.

The Fokker-Planck equation associated with the diffu-

sion process of Eq.(1) can be written in the form:

∂tP (~x, t| ~x0) = −▽ ·
{

1
2

[
Aa(t)▽ ‖~x‖2 −▽Vρ (t, ~x)

]

P (~x, t| ~x0) +
σ2

2 ▽ P (~x, t| ~x0)
}

,

(9)
where Aa is the (2N × 2N) block-simplectic matrix:

Aa(t) :=






B1(t) 0
. . .

0 BN (t)




 ,

with Bk(t) =

(

0
Nk,ρ(t)

N

−Nk,ρ(t)
N 0

)

and the time-dependent generalized potential Vρ (t, ~x)
from which the dissipative component of the drift is

derived, can be written as:

Vρ (t, ~x) =
∑N

k=1

{

1
2

:=Rk,ρ(t)
︷ ︸︸ ︷
[
Nk,ρ(t)

N
− 1

M

]

‖~x‖2+

γ
2

[

L2
k,ρ(t)− ‖~x‖2

]2
}

.

(10)

The potential parameterization Rk,ρ(t) and L2
k,ρ(t) in

Eq.(10) explicitly depends on the agents’ configura-

tions implying that Eq.(9) is effectively a NLFP. The

potential Vρ (t, ~x) is globally attractive on R
2N , (i.e

Vρ (t, ~x) → ∞ for ‖~x‖ → ∞). Global attraction to-

gether with the WGN driving sources imply that the

diffusive dynamic Eq.(1) is ergodic on R
2N . Accord-

ingly, it exists a unique invariant measure Ps(~x) and

therefore both Rk,ρ(t) and L2
k,ρ(t) asymptotically con-

verge to stationary (i.e time-independent) values L2
k,s,ρ

and Rk,s,ρ. Eqs.(9) and (10) being explicitly invari-

ant under permutations in the agents labeling, we shall

also have L2
k,s,ρ = L2

s,ρ and Rk,s,ρ = Rs,ρ. Finally, in

the stationary regime, the system is driven to its mini-

mal energy configuration implying here that Rs,ρ ≡ 0.

This in turn yields that limt→∞ Aa(t) = Aa,s with:

Aa,s :=






As 0
. . .

0 As




 , As =

(
0 1

M
− 1

M 0

)

.

The gradient ▽Vρ (t, ~x) is systematically orthogonal to

the antisymmetric component 1
2Aa(t)▽ ‖x‖2 (this re-

mains true for the stationary regime Aa,s). It enables to

write the stationary solution of Fokker-Planck Eq.(9) in

the product-form Ps(~x):

Ps(~x) = [Ps(x)]
N

=
[
N−1e{Vs,ρ(x)}

]N
,

Vs,ρ(x) = +γ
2

[
L2
s,ρ − ‖x‖2

]2 (11)

with the notation ~x = (x1,x2, · · · ,xN ) ∈ R
2N ,

xk ∈ R
2 and x ∈ R

2 stands for one representative

agents among the collection of the xk’s. The product

form of the invariant measure explicitly shows that our

dynamics propagates chaos, validating the use of a MF

approach where a single agent behavior effectively re-

flects the global dynamics.

Taking the MF approach, and focusing on the station-

ary regime, from the point of view of a single represen-

tative planar agent X(t) = (x1(t), x2(t)), we have:

0 = ▽
{

1
2

[
As ▽ ‖x‖2 −▽Vs,ρ (x)

]
·

Ps(x)
}
− σ2

2 △Ps(x),
(12)

where Ps(x) is the invariant probability density.

Within the stationary regime, auto-consistency implies

Ns,ρ

N
=

∫

(x)∈Dρ

Ps(x) dx1 dx2

(

=
1

M

)

(13)

and

L2
s,ρ =

∫
(
x2
1 + x2

2

)

(x1,x2)∈Dρ

Ps(x) dx1 dx2, (14)

where Dρ is the representative agent’s neighborhood.

From a uniformly rotating coordinates’ frame with an-

gular velocity M−1, the stationary regime dynamics

becomes purely gradient and the resulting probability

density Ps(x) solving Eq.(12) enjoys microscopic re-

versibility (i.e. detailed balance). It explicitly reads,

(Hongler and Ryter, 1978):

Ps(x)dx1dx2 = Ps(r)dr dθ =

= N (Ls,ρ) e
[− γ

σ2
(r2−L2

s,ρ)
2]d(r2) dθ.

(15)
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with N−1(Ls,ρ) =
√

π3σ2/γ Erfc
(

−
√
γ (L2

s,ρ)

σ )
)

be-

ing the normalization factor.

In this stationary regime, the stationary observation

neighborhood of each agent exactly encompasses a cir-

cular sector with aperture ϕ(M) and radius L2
s,ρ(M).

Both ϕ(M) and Ls,ρ(M) are adjusted to ensure that

N/M agents are located in Ds,ρ. For large ratio γ
σ2

(i.e. essentially a large signal-to-noise ratio), Eq.(15)

exhibits a sharply peaked ”Mexican hat” shape with its

maximum on the circle r = Ls,ρ (i.e. almost all agents

stay confined in the direct neighborhood of the circle

r = Ls,ρ).

As detailed in Figure 1’s caption, an elementary

trigonometric argument enables to derive the compact

relation:
Ls,ρ =

ρ
√

2− 2 cos(π/M)
. (16)

Figure 1: The cylindrical symmetry characterizing the station-

ary regime implies that the agents probability distribution is rota-

tionally invariant with respect to O. Accordingly, there will be

on average N/M agents located in a sector with an opening angle

2π/M . For large γ/σ2, these agents will be confined in the di-

rect proximity of the circle of radius Ls,ρ. Let us consider an arbi-

trary agent located at A with a stationary observation range of radius

ρ = AC. This range exactly encompasses the circular arc with

aperture 2π/M thus ensuring that the agent at A has M/N neigh-

boring fellows. The cosine theorem in the triangle OAC implies

that L2
s,ρ

= 2ρ2/ [1− cos(π/M)]2L2
s,ρ

= ρ2/ [1− cos(π/M)].

�

Additional remarks. Observe that besides γ and σ
which define an overall time scale, there are two addi-

tional control parameters in the dynamics Eq.(1):

a) Hamiltonian parameter M . The sector angle

M into the canonical-dissipative matrix A(t). This

parameter fixes the angular velocity ω = M−1 of

the swarm and adjusts the size of the consensual

limit cycle radius Ls,ρ. For a given size of the ob-

servation disk with radius ρ and for large M , we

have Ls,ρ ≃ ρM/π and the angular velocity tends

to vanish.

b) Interaction range parameter ρ. The radius of

the observation disk ρ which directly determines

the consensual size of the limit cycle radius Ls,ρ.

3 Numerical Experiments

In all numerical experiments performed, we observe a

truly remarkable agreement with the theoretical predic-

tions (see Figure 2 for a specific illustration). Accord-

ing to Eq.(16), by reducing the sector opening angle (i.e

by increasing the values of the M ), the resulting limit

cycle radius Ls,ρ increases and the number of agents

present in Ds,ρ is reduced thus somehow invalidating

the large population required for MF to be used. Even

when M = 50, the couple of orbits realizations shown

in Figure 3 show that analytical results, in particular

Eq.(16), remain valid in this large M limit.

Figure 2: For a collection of N = 100 agents with M = 4 and

ρ = 1. The observation range of the considered agent encompasses

exactly the sector of aperture π/4 to determine the size of the self-

generated limit cycle (see the construction given in Figure 1). We

explicitly draw the trajectory of a randomly chosen agent and observe

that this agent indeed follows the consensual limit cycling orbit with

analytically predicted radius Ls,ρ =
√
2ρ =

√
2.

Figure 3: For a collection of N = 100 agents with M = 50 and

ρ = 1. The observation range of the considered agent encompasses

exactly the narrow sector of aperture π/50 to determine the size of

the self-generated limit cycle (see the construction given in Figure 1).

We explicitly draw the trajectory of a randomly chosen agent and ob-

serve that this agent indeed follows the consensual limit cycling orbit

with analytically predicted radius L2
s,ρ

= 2/ [1− cos(π/50)] ≃
(50/π)2 ≃ (17)2. The High value M = 50 is responsible for the

sometimes erratic behavior of the agent, as its observation range only

encompasses a very small sector of the consensual circle.
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4 Generalization

By using the class of mixed-canonical dissipative dy-

namics (Hongler and Ryter, 1978) and following the

same lines as those given in Proposition 1, we now can

relax the cylindrical symmetry and write:

Proposition 2. Consider the class of functions

H(x1, x2) : R
2 7→ R

+ for which the family of pla-

nar curves defined by [H(x1, x2)−R] = 0 are closed

∀ R > 0 and do not intersect for different values of

R’s. Introduce the functional V(H) : R+ 7→ R with

limH→∞ V(H) = ∞. Assume in addition that the val-

ues of the H-derivatives V ′(0) < 0 and V ′(H) |H=C=
0 and C is the unique value for which it holds. Then

Eqs.(1) and (7) can be respectively generalized as:







dXk(t) = Ak(~X) dt− γ {V ′(H(X))∂Xk
H(Xk)} dt

+σ dWk(t), k = 1, 2, · · · , N,

Xk(0) = X0,k, and Xk(t) ∈ R
2,

(17)
where

Ak(~X) =





Nk(t)
N − 1

M
Nk(t)
N

−Nk(t)
N

Nk(t)
N − 1

M



·





∂X1,k
H(Xk)

∂X2.k
H(Xk)





(18)
and






dX1(t) =
[
+ 1

M ∂X2
H(X)− γ

{
[V ′(H(X)]

·∂X1
H(X)

}]
dt+ σdW1(t),

dX2(t) =
[
− 1

M ∂X1
H(X)− γ

{
[V ′(H(X)]

·∂X2
H(X)

}]
dt+ σdW2(t).

(19)

The stationary measure Eq.(8) here reads:

Ps(H) dH = Z−1 exp

{
2γ

σ2
[V(H)]

}

dH, (20)

where Z is the normalization constant.

�

Additional remarks.

a) Observe that Proposition 1 follows from the

Proposition 2 in the rotationally symmetric case

resulting when H(X) = (1/2)
[
X2

1 +X2
2

]
.

b) Contrary to Proposition 1, in Proposition 2,

neither the limit cycle nor the invariant mea-

sure Ps(H) generally have a cylindrical symmetry.

This precludes the possibility to analytically deter-

mine the selected consensual limit cycle (i.e we do

not have in the general case a simple expression

like the one given by Eq.(16)).

c) As an illustration of Proposition 2, we may con-

sider the Cassini Hamiltonian function given by

H(X) =
[
(x1 − 1)2 + x2

2

] [
(x1 + 1)2 + x2

2

]
= b4,
(21)

Figure 4: Typical shapes of the Cassini’s ovals determined by the

equation H(x1, x2) =
[

(x1 − 1)2 + x2

2

] [

(x1 + 1)2 + x2

2

]

= b4

for b-values ranging from b = 0.1 to 1.5.

Figure 5: Top: Selection of a couple of limit cycling orbits ob-

tained from the Cassini Hamiltonian Eq.(21) when the control pa-

rameters are set to M = 4 and ρ = 0.4.

Bottom: Single limit cycling trajectory for the Cassini Hamiltonian

Eq.(21) but here with the control parameters set to M = 4 and

ρ = 0.8.

with the level orbits sketched in Figure 4. Accord-

ing to the values of M and ρ which ultimately will

fix the size of the parameter b, we are in this case

able to generate two different regimes. For large

b a single closed consensual limit cycle is gen-

erated. Alternatively, for small b, the agents are

shared into two clusters and evolve on two sepa-

rated consensual limit cycles (see Figure 5).

d) Generalizing the previous Cassini ovals con-

struction, one may construct Hamiltonian gener-

ating agents circulation on even more complex or-

bits. We provide an additional example in Figure

6.

5 Conclusions and Perspectives

While agents with behavior-based interactions are rela-

tively easy to implement, it is widely recognized that

the underlying mathematical analysis of such mod-

els is generally difficult and often even impossible to

perform completely. It is therefore quite remarkable

that very simple analytical results can be derived for

a whole class of dynamics which, due to its simplic-

ity, offers potential for applications. Despite that for
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limited number of agents, typically one hundred in our

present study, the mean-field approach can only be ap-

proximative, we nevertheless emphasize that all our nu-

merical investigations still closely match the theoretical

predictions. The resilience of our modeling approach

opens several perspectives for implementations on ac-

tual agents. Several further research directions are nat-

urally suggested by this contribution, among them:

a) Extended MCD dynamics to higher dimensional

spaces. The role played here by the Hamiltonian

function leading to a canonical motion on the plane

can be extended. In particular one may consider,

along the lines explained in (Schweitzer, Ebeling

and Tilch, 2001), integrable canonical systems ex-

hibiting additional constants of the motions. Us-

ing these extra constants of the motion, one will

be able to stabilize the swarm motion along orbits

in higher dimensions.

b) Heterogeneity in agents and soft control of

swarms. Instead of focusing on homogeneous

agents and by following the work (Han, Li and

Guo, 2006), we intend to use the context of MCD

to study the possibility to influence (i.e. soft con-

trol) the behavior by introducing into the society a

single ”fake” agent (i.e. a shill), playing the role of

a leader, and which can be externally controlled.

c) Resilience of the modeling. In Eq.(2), we used

the Euclidean norm to define Dk,ρ(t), the instan-

taneous neighboring agents in Eq.(3). To match

specific applications, other type of norms could be

used to redefine the interactions.

Figure 6: Top: Orbit generated by the
(

2π

3

)

-symmetric

Hamiltonian function: H(x1, x2) =
[

(x1 − 1)2 + (x2)2
]

·
[

(x1 + 1

2
)2 + (x2 −

√

3

2
)2
] [

(x1 + 1

2
)2 + (x2 +

√

3

2
)2
]

. Here

we have N = 100 and the control parameters are set to M = 4 and

ρ = 0.5.

Bottom: Here, all parameters are identical, except for the interaction

range which is ρ = 1.
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