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Abstract. This contribution is addressed to the dynamics of heteroge-
neous interacting agents evolving on the plane. Heterogeneity is due to
the presence of an unfiltered externally controllable fellow, a shill, which
via mutual interactions ultimately drives (i.e. soft controls) the whole
society towards a given goal. We are able to calculate relevant dynamic
characteristics of this controllable agent. This opens the possibility to
optimize the soft controlling of a whole society by infiltrating it with a
properly designed shill. Numerical results fully corroborate our theoret-
ical findings.

Keywords: homogeneous and heterogeneous Brownian agents - limited-
range mutual interactions - soft control - mixed canonical-dissipative
dynamics - mean-field description - analytical results.

1 Introduction

The Soft Control of a swarm of interacting agents consists in introducing an ex-
ternally controllable agent into an homogeneous swarm of autonomous agents.
By suitably chose the externally controllable fellow, one ultimately can (softly)
control the whole swarm. While her dynamics differs, the controllable infiltrated
agent, often referred to as the Shill (SH), is detected by the other fellows as
being an ordinary member of the society. The SH’s influence can be used to
stimulate specific positive features to the whole group (optimal driving to tar-
gets, enhancement of flocking capability, extra energy scavenging, etc. [1–3]).
Alternatively the SH’s presence may destroy the overall swarm’s coherence [1].
Soft control is also commonly used in ethology, by introducing robotic shills in
societies of animals, see for instance [4–6].
In the sequel, we consider an homogeneous swarm of Brownian agents following a
planar mixed canonical-dissipative dynamics as introduced in [7]. After showing
how the agents asymptotically converge to (and circulate on) a self-selected
closed annular orbits on R2, we then introduce a SH agent into the swarm. We
then use the SH’s presence to soft control the angular speed of the whole society.
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2 Interacting Diffusion Processes on R2

For X(t) = (X1(t),X2(t), · · · ,XN (t)) ∈ R2N with Xk(t) = (x1,k(t), x2,k(t)) ∈
R2, our class of dynamics is given by a collection of N mutually interacting
planar Brownian agents evolving according to a set of Stochastic Differential
Equations (SDE) on R2N :dXk(t) = dt [Ak(t)− Λ (Lk,ρ(t)−H(Xk))]5H(Xk) + σ dWk(t),

Xk(0) = X0,k,
(1)

where σ,Λ ∈ R+ are control parameters, and the definitions of the dynamical
inputs are:

i) the Hamiltonian function H(x1, x2) : R2 7→ R+ are used to define
a family of closed, non-intersecting, planar curves with equations given by

[H(x1, x2)−R] = 0, ∀ R > 0. We note 5H(Xk) =

(
∂
∂x1
H(x1, x2)

∂
∂x2
H(x1, x2)

)∣∣∣∣∣
Xk

ii) the tangent dynamical map at the origin. In absence of noise source
(σ ≡ 0), the origin is a singular point of Eq.(1) and its associated linear map
Ak(t):

Ak(t) =

Nk,ρ(t)
N − 1

M
Nk,ρ(t)
N

−Nk,ρ(t)N
Nk,ρ(t)
N − 1

M

 (2)

where M ∈ [1, N ] ⊆ R+ is a control parameter and (Nk,ρ(t)/N) is the
fraction of the total swarm detected by agent ak in the neighborhood Dk,ρ(t)
defined as:

Dk,ρ(t) =
{
X ∈ R2 | ‖X−Xk(t)‖2 ≤ ρ

}
(3)

iii) the self-adaptive Hamiltonian level. The scalar quantity:

Lk,ρ(t) :=
1

Nk,ρ(t)

∑
i∈Vk,ρ(t)

H(Xi)

where Nk,ρ(t) has been defined in ii). The summation extends over the
agents’ set Vk,ρ(t) := {i |Xi ∈ Dk,ρ(t)}

iv) the noise sources. dWk(t) = (dW1,k(t), dW2,k(t)) are 2N independent
standard White Gaussian Noise (WGN) processes

Proposition 1. For t→∞, the dissipative dynamics Eq.(1) reaches a stationary
regime characterized by the time-invariant probability product measure:

Ps(x) dx = [Ps(x) dx]
N

with Ps(x) dx = Z−1 exp

{
− Λ

σ2
[Ls,ρ −H(x)]

2

}
dx.

(4)

where Z is the normalization factor, and Ls,ρ is the stationary Hamiltonian level
curve statistically reached by the agents.
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Proof of Proposition 1.
We first write the Fokker-Planck equation (FPE) associated with the diffusion
process of Eq.(1):

∂tP (x, t|x0) = −5·
{

[A(t)5H(x)−5Vρ (x, t)] ·P (x, t|x0)+
σ2

2
5P (x, t|x0)

}
,

(5)
with A(t) the (2N × 2N) block-simplectic matrix

A(t) :=

A1(t) 0
. . .

0 AN (t)

 , with Ak(t) =

(
0

Nk,ρ(t)
N

−Nk,ρ(t)N 0

)

The dissipative component of the drift is derived from the time-dependent gen-
eralized potential Vρ (x, t), which reads as:

Vρ (x, t) =

N∑
k=1

{ :=Rk,ρ(t)︷ ︸︸ ︷[
Nk,ρ(t)

N
− 1

M

]
+
Λ

2
[Lk,ρ(t)−H(Xk)]

2

}
5H(x). (6)

The parameters Rk,ρ(t) and Lk,ρ(t) in Eq.(6) implicitly depend on the agents’
configurations, implying that Eq.(5) is effectively a nonlinear FPE. The potential
Vρ (x, t) is globally attractive on R2N (i.e Vρ (x, t) → ∞ for ‖x‖ → ∞). Global
attraction on R2N in Eq.(1) together with the WGN driving forces imply that
the diffusive dynamics is ergodic. Hence, it exists an unique invariant measure
Ps(x) implying that both Rk,ρ(t) and Lk,ρ(t) asymptotically converge towards
stationary (time-independent) values Rk,s,ρ and Lk,s,ρ. Moreover, as Eqs.(5)
and (6) are invariant under permutations of the agents labeling, we shall have
Rk,s,ρ =: Rs,ρ and Lk,s,ρ =: Ls,ρ (∀ k). Dissipation drives the system to its
minimal energy configuration, leading to the specific values Rs,ρ ≡ 0 and to
limt→∞A(t) = As with:

As :=

As 0
. . .

0 As

 , As =

(
0 1

M
− 1
M 0

)
.

Observe that the gradient5Vρ (x, t) is systematically orthogonal to the antisym-
metric component A(t)5H(x). This remains true in the stationary regime As,
allowing us to write the stationary solution of the FPE Eq.(5) in the product-form
Ps(x):

Ps(x) = [Ps(x)]
N

=
[
N−1e{Vs,ρ(x)}

]N
,

Vs,ρ(x) = +γ
2 [Ls,ρ −H(x)]

2 (7)

with x = (x1,x2, · · · ,xN ) ∈ R2N , xk ∈ R2. In Eq.(7), x ∈ R2 stands for one
representative agent in the swarm. The product form of Ps(x) explicitly shows
that our dynamics propagates chaos, validating the use of a Mean Field (MF)
approach, where the behavior of a single agent of the swarm effectively reflects
the global dynamics.
Here the stationary regime of the single representative agent X(t) = (x1(t), x2(t))
is characterized by the invariant probability density Ps(x):

0 = −5
{

[As 5H(x)−5Vs,ρ (x)] · Ps(x)
}

+
σ2

2
4Ps(x), (8)
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Auto-consistency of the nonlinear FPE here implies:

Ns,ρ
N

=

∫
x∈Ds,ρ

Ps(x) dx1 dx2

(
=

1

M

)
(9)

where here Ds,ρ is the stationary representative agent’s neighborhood.
�

Corollary 1. For the harmonic oscillator’s Hamiltonian function

H(x1, x2) = 1/2 (x21 + x22), (10)

and with Λ→∞, the stationary probability measure converges to a uniform dis-
tribution of the agents on the limit cycle. Following the argument in the caption
of Figure 1, the radius of the limit cycle can be in this case explicitly written as

Ls,ρ =
ρ√

2− 2 cos( πM )
. (11)

Fig. 1: Left: An example run with N = 100 agents, and a range ρ = 1. In black, the
theoretic limit cycle, and in blue the positions through time of one agent.
Right: Geometric explanation of the computation of Ls,ρ: In the stationary regime,
each agent has in average N

M
agent in her neighborhood. As the agents are uniformly

distributed on the limit cycle, the number of neighbors is directly correlated with the
arc length contained within the neighborhood of each agent. Thus each agent’s range
exactly encompasses an arc of 2π

M
, and the rule of cosine in the triangle OAC leads to

the result of Eq.(11).

3 Swarm Soft Controlling - Harmonic oscillator
Hamiltonian

Now we focus on cylindrically symmetric configurations involving the Hamilto-
nian Eq.(10), and for these cases we generalize Eq.(1) by allowing the agents
to self-adapt their circulation velocities. This can be achieved by replacing the
nominal matrix Ak(t) in Eq.(2) by Ak:

Ak =

 Nk,ρ(t)
N − 1

M ωk(t)
Nk,ρ(t)
N

−ωk(t)
Nk,ρ(t)
N

Nk,ρ(t)
N − 1

M

 , (12)
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where the now adaptive angular velocity ωk(t) of agent ak obeys to the relaxation
dynamics:

ω̇k(t) = γ1 · [〈ω〉k,ρ(t)− ωk(t)] + γ2 · [Ω − ωk(t)] , ωk(0) = ω0,k,

〈ω〉k,ρ(t) := 1
Nk,ρ(t)

∑
j∈Vk,ρ(t) ωj(t),

(13)

with γi > 0 (i = 1, 2).

Remark. The set of ODE’s in Eq.(13) describes an autonomous, systematically
dissipative linear dynamical system. Accordingly, the unique resulting attractor
is here given by lim

t→∞
ωk(t) = Ω, ∀k.

3.1 Inhomogeneous swarm - Shill soft controlling mode

Let us now introduce an externally controllable agent, to be called the shill
(SH) agent, into the swarm. Agent SH is, without loss of generality, taken as
a1 and we assume that we can fix ω1(t) ≡ ωs. Regarding the radial dynamics,
we assume that SH behaves as an ordinary agent. In presence of SH, the swarm
is heterogeneous, thus precluding analytical approaches for general parameter
ranges. Nevertheless, for limiting regimes, we will now see that our dynamics
still lend itself to an approximate analytical treatment.

We assume in Eq.(1) that the signal to noise ratio (SNR) (Λ/σ2) << 1. In
absence of SH, the stationary regime of the homogeneous swarm uniformly dis-
tributes the agents along the arcs of a narrow annular ring with radius Ls,ρ. The
agents circulate with a common angular velocity ωk ≡ Ω. Let us now introduce
SH into the swarm.
We shall consider the cases where ωs > Ω (the other possibilities can be discussed
along the same lines). Taking into account the presence of SH in the swarm, our
goal is to first show that for 〈ω〉k,ρ(t) in Eq.(13), we can approximately write:

〈ω〉k,ρ(t) '


ωs+( NM−1)ωk(t)

N/M when SH ∈ Vk,ρ(t),

ωk(t) otherwise.

(14)

To heuristically derive Eq.(14), we assume that at initial time t = −∞, we have
an homogeneous population involving N agents. At time t = 0−, this homoge-
neous swarm has reached its stationary regime, i.e. the agents are confined in a
ring close to the cycle Ls,ρ and their stationary circulation has the common an-
gular velocity ωk ≡ Ω. For times t ≥ 0+, we switch on SH’s action by imposing
ω1(t) ≡ ωs > Ω. Via mutual interactions, SH is able to enhance the ak’s angular
velocities for k = 2, . . . , N . Therefore, besides the intrinsic dissipation mecha-
nism given in Eqs.(1) together with Eqs.(12) and (13), the ak’s (k = 2, . . . , N) do
effectively scavenge rotational energy from SH and ultimately an energy balance
will be reached.

For large populations N , we assume SH’s influence to be quasi-adiabatic. That
is to say, we assume that the ak’s distribution on the limit cycle Ls,ρ remains
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essentially unaltered. Since we choose SH’s angular speed ωs ≡ ω1 > Ω and
because SH itself circulates with high probability inside the thin annulus Ls,ρ,
SH periodically crosses the Vk,ρ(t) for k = 2, 3, . . . , N . During the SH’s transit
time inside Vk,ρ(t), interaction with SH enhances ωk. Conversely, when SH lies
outside Vk,ρ(t), then ωk freely relaxes towards Ω. To be consistent with the
adiabatic energy exchange assumption, the SH’s influence on ωk during one
Vk,ρ(t) over-crossing has to remain small. At a given time t, and for a tagged
ak (k = 2, 3, . . . , N), two configurations are alternatively realized depending on
whether SH belongs to Vk,ρ(t) or not:

i) SH /∈ Vk,ρ(t): only regular neighbors surround ak. Their individual speed
very slightly differs from ωk(t). These differences are due to SH leaving the
neighboring ak’s Vk,ρ(t) at different successive times. Some of the neighbors
of ak will have an angular velocity slightly higher than ωk(t) (the rapids),
while others will have a slightly lower angular velocities (i.e. the slows). SH’s
constant rotation, always leaves a wake of agents with a slight angular veloc-
ity enhancement in SH’s trail. Constant rotation implies that the rapids and
slows are approximatively spatially distributed symmetrically with respect
to ak and close to the cycle Ls,ρ. As the ak’s neighbors present in Vk,ρ(t) are
approximately uniformly distributed on the cycle Ls,ρ, on average the num-
bers of rapids and slows are identical. Hence, the average speed of the agents
in Vk,ρ(t) is approximately ωk(t) (i.e. the rapids approximately compensate
for the slows).

ii) SH ∈ Vk,ρ(t): here we invoke the fact that ak has in average N
M neighbors.

Using i) for the N
M − 1 regular neighbors of ak and taking into account SH’s

presence, the weighted average of the angular velocities leads to the first line
in Eq.(14).

Using Eq.(14) into Eq.(13) enables to write:

ω̇k(t) =


(
γ1

M
N + γ2

)
·

[ ν1︷ ︸︸ ︷
γ1

M
N ωs + γ2Ω

γ1
M
N + γ2

−ωk(t)

]
,

γ2 ·
[
Ω︸︷︷︸
ν2

−ωk(t)
]
.

(15)

For an ultra-fast relaxation regime γk →∞ (k = 1, 2), Eq.(15) implies:

ωk(t) '
{
ν1 when SH in Vk,ρ(t),
ν2 otherwise.

(16)

Now, we can calculate the time spend into the alternative states of Eq.(16). To
this aim consider Figure 2, where we sketch the approximative resulting behavior
for an arbitrary agent k together with SH.
In view of Figure 2, we now can write:{

2π
M + T1 · ν1 = T1 · ωs ⇒ T1 = 2π

M(ωs−ν1) ,
pi
M + T2 · ωs = T2 · ν2 + 2M−1

M π ⇒ T2 = (2M−2)π
M(ωs−ν2) .

(17)
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Fig. 2: Computation of the time intervals T1 and T2 spent by the agents in each of the
states of Eq.(16). The state 1 starts when SH enters the agent’s range (that is when
their phase differs by π

M
in one direction), and lasts until they differ by π

M
in the other

direction. Then, the time interval T2 lasts until SH re-enters the agent’s range, that is
when their phases differ of 2M−1

M
π.

Hence, on a single time period T = T1 + T2, the resulting weighted average
angular velocity yields:

ωave =
T1 · ν1 + T2 · ν2

T1 + T2
=

γ2N

γ1 + γ2N︸ ︷︷ ︸
α(N,γ1,γ2)

·Ω +
γ1

γ1 + γ2N︸ ︷︷ ︸
β(N,γ1,γ2)

·ωs.

Note that α(N, γ1, γ2)+β(N, γ1, γ2) = 1 and [α(N, γ1, γ2)/β(N, γ1, γ2)] = N(γ2/γ1).
Hence, we consistently observe that limN→∞ α(N, γ1, γ2) = 1, showing that the
SH’s relative influence is reduced with the population size N .

Figure 3 shows numerical results for a swarm of N = 2000 agents for time
t ∈ [0; 100] with M = 4. Input parameters are

σ = 0.5 ρ = 1 Ω = −0.2
γ1 = 40 γ2 = 1 ωs = 31.4

}
⇒ ωave = 0.4.

Note that some agents end up in the vicinity of the origin. These agents will
asymptotically with time converge to the limit cycle Lsρ, and to the theoretic
consensual angular speed ωave, but that can not be seen in the small time window
of these simulations. Despite these agents, the average values for the radius and
the angular speed of the swarm exactly match the theoretical values.

4 Conclusion

The intrinsic swarm’s heterogeneity due to the presence of a shill fellow into
an otherwise homogeneous swarm agents offers, in general, little hope for ana-
lytically deriving the dynamical features of the global population. However for
the present mixed canonical-dissipative dynamics with agent-dependent angu-
lar speed, we are able to show how reliable analytical approximations can be



8 Soft Control of Self-Organized Locally Interacting Brownian Planar Agents

Fig. 3: Top left: In blue, the average angular speed of the regular agents, with in red
its average over the period t ∈ [50; 100]. In black, the expected value ωave = 0.4. right:
Individual angular speeds of each agent as a function of time. Bottom left: In blue the
average radius of the regular agents, and in red the radius of SH. In black, the expected
value Ls,ρ ' 1.31. right: Individual radii of each agent as a function of time.

derived. Being able to quantitatively appreciate the shills presence, it then of-
fers the possibility to select the optimal shills characteristics. Our analytical
approach is fully corroborated by a set of numerical simulations involving large
populations of magnitude order of 103 individuals.
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