Distributed Planar Manipulation in Fluidic Environments

Guillaume Sartoretti1, Samuel Shaw2 and M. Ani Hsieh3

Abstract—We present a distributed control strategy that enables a swarm of autonomous surface vehicles (ASVs) to cooperatively grasp and manipulate a large floating object from an initial position and orientation to a desired final position and orientation. Given an initial set of random robot positions, our control strategy enables the team to synchronize their arrival times around the object. Analytical motion trajectories are then computed to enable the swarm to transport the object to the final desired position. We validate the proposed strategy in simulation and present experimental results to demonstrate the feasibility of the proposed strategy.

I. INTRODUCTION

As robotic swarm sizes can vary over time, we are interested in developing scalable control strategies that can adapt to changing team sizes and that are resistant to single robot failures. These properties can often be achieved via a distributed control framework with the added benefit of robustness due to the inherent redundancy resulting from having a large number of similar robots. In this paper, we consider the problem of collective transport of an object in a fluidic environment by a team of autonomous robots. We build upon [1] to devise a distributed Braitenberg-inspired control mechanism, allowing the autonomous surface vehicles (ASVs) to move along smooth trajectories as they approach, grasp and manipulate a larger object in a fluid environment.

Previous works on cooperative manipulation of large objects by teams of ground robots include [2]. In this work, the collective transport of convex and non-convex objects is achieved by enabling the team to first surround and cage the object of interest and then transport through the synthesis and composition of appropriate artificial potential functions. More recently, a decentralized control strategy for manipulation of a general-shaped object by a swarm of ground vehicles equipped with grippers was presented in [3]. However, these strategies do not directly translate to the fluid environment due to the unique challenges associated with the near frictionless environment, e.g., objects floating on the surface, and non-negligible inertial effects. Existing work in autonomous collective transport in marine and littoral environments include [4]. In [4], the authors devised a decentralized control strategy for a swarm of tugboats to cooperatively rotate a larger object. Similar work on cooperative manipulation by a team of tugboats to transport a larger vessel is described in [5], [6].

Different from [4], [5], [6], our main contribution is the construction of a set of acceptable trajectories, allowing a swarm of ASVs to transport an object from any given initial pose to any desired final pose under Conditional Closure (CC). Rather than rely on towing cables, collective manipulation and transport is achieved by enabling the swarm to “grasp” the larger object and achieve CC through coordinated pushes. Specifically, we leverage the structure-fluid interaction between the transported object and the fluid environment in our formulation of “conditional forced caging” and leverage the vehicle’s and object’s inertial effects to achieve synchronized arrival times to achieve CC of the object. We validate our strategy in simulation and show the feasibility and validity of the strategy through experiments.

The paper is organized as follows: in Section II, we briefly present the considered problem. In Section III, we define the two main phases of our control mechanism, and present numerical results. Section IV is devoted to our experimental results, while Section V discusses the future perspectives.

II. PROBLEM STATEMENT

We consider a swarm of \(N\) autonomous ASVs operating in a still body of water. We model the \(i^{th}\) ASV as a two-dimensional (2D) differential vehicle whose kinematics in discrete time are given by

\[
\begin{align*}
V_{L,i}(t+1) &= S_{x,i} + \beta \cdot \cos \left[h_i(t) - \alpha_i(t) \right] + \left(\frac{\pi}{2} - \phi_i(t) \right), \\
V_{R,i}(t+1) &= S_{x,i} - \beta \cdot \cos \left[h_i(t) - \alpha_i(t) \right] + \left(\frac{\pi}{2} - \phi_i(t) \right),
\end{align*}
\]

(1)

where \(V_{L,i}\) and \(V_{R,i}\) denotes the left and right propeller speeds, \((x_i, y_i)\) the current position, \(S_{1,i}\) the speed, and \(\alpha_i\) the angle of the vector \([x_i - Tx, y_i - Ty]^T\) in the global coordinate frame. In this work, we assume \(S_{1,i}\) to be constant. We note that the vehicle kinematics given by (1) define a general Braitenberg control mechanism [7] allowing an ASV to move at a constant speed, keeping a given point \(T = [Tx, Ty]^T\) at a given angle \(\phi\) from its heading. The angle \(\phi\) defines the desired difference between the angular position of a robot, and its heading \(h\). For example, when \(\phi = \frac{\pi}{2}\), the ASV simply revolves around the point \(T\) (i.e., \(T\) is the instantaneous center of rotation for the ASV, remaining at an angle of \(\frac{\pi}{2}\) from the ASV’s heading). Fig. 1 illustrates...
the situation at a given time and depicts the various relevant quantities.

Given a large object, which we will represent as a rectangle in 2D, that is initially centered at the origin, $O = (0,0)$, of the global frame, we assume that the object is positioned such that its length lies along the global X-axis. The objective is to devise a collective transport strategy such that the swarm encloses or “grasps” the object and transports it to a final pose $[x_f, y_f, h_f]^T$ where h_f denotes the orientation of the object. To achieve this, we decompose the problem into two separate phases: the “grasping” and transport phases. We describe our methodology in the following section.

III. PLANAR MANIPULATIONS UNDER CONDITIONAL FORCED CAGING

A. Distributed Approach and Grasp

We assume vehicles are initially randomly positioned within the workspace. “Grasping” is achieved by aligning the vehicles on one side of the object, facing the object (namely, on the side where $y > 0$). This will enable the team to transport the object by cooperatively pushing the object towards its pose. To achieve this, we assign each robot a target point T_i ($1 \leq i \leq N$) to aim for as it approaches the object. We choose $T_2, ..., T_{N-1}$ such that they are uniformly distributed along the central axis of the object, while T_1 and T_N are placed at each end of the object. This allows the swarm to hold the object under Conditional Closure (CC) once the object is “grasped” (see Fig. 2(a) [8].

To achieve this, we set $S_{i,i} = S_{1,i}$ in (1) where $S_{1,i}$ is the constant approach speed and $\alpha = \arctan \left(\frac{y_i - y_{T_i}}{x_i - x_{T_i}} \right)$. The kinematics given by (1) allows a robot to rotate around the origin point in a clockwise direction for $\phi = \frac{\pi}{2}$, and in a counter-clockwise direction for $\phi = 3\frac{\pi}{2}$. For robots starting in the half-plane $x > 0$, we want them to rotate in the counter-clockwise direction to reach their destination faster. To achieve this, we let $D \in \{0, 1\}$ denote each robot’s direction of rotation (clockwise (0) or counter-clockwise (1)).

An ASV starting in the half-plane $x < T_i$ is assigned $D = 0$, and an ASV starting at initial position $x_{0,i} \geq T_i$ receives $D = 1$. A correction is then made to (1) to encompass this rotation direction, by changing $\phi_i(t) \rightarrow \phi_i(t) + D\pi$.

To achieve this, we let $D \in \{0, 1\}$ denote each robot’s direction of rotation (clockwise (0) or counter-clockwise (1)).

A correction is then made to (1) to encompass this rotation direction, by changing $\phi_i(t) \rightarrow \phi_i(t) + D\pi$. The ASV’s heading h_i is illustrated in red and its angular position α in black. A desired angle ϕ, defining the desired difference between α and h, is shown in blue.

To obtain a spiral-shaped motion from the initial position of the robot until its perpendicular approach to the object’s side, we now let ϕ depend on the angular position of each robot. We want $\phi \approx \frac{\pi}{2}$ when the robot is in the lower half-plane $\{y < 0\}$ (i.e., pure rotation around the origin point). We then want ϕ to gradually decrease toward $\phi = 0$, as α approaches $\frac{\pi}{2}$ (i.e., pure attraction to the origin point). We let ϕ exponentially decrease, as α approaches $\frac{\pi}{2}$:

$$
\phi_\sigma(\alpha) = \frac{\pi}{2} \left(1 - \exp \left(- \frac{\arccos(\alpha) - \frac{\pi}{2}}{\sigma} \right) \right),
$$

where $\sigma^2 \in \mathbb{R}^+$ controls the rate of exponential decay. We write $\arccos(\theta_1, \theta_2)$ as the minimal angle difference between θ_1 and θ_2.

$$
\arccos(\theta_1, \theta_2) := \min \left(\frac{\left| \arctan(\theta_1) - \arctan(\theta_2) \right|}{\pi}, \frac{\pi}{2} \right).
$$

We finally incorporate $\phi_\sigma(\alpha)$ into Eq. (1) to obtain the final control mechanism for our robotic swarm. Note how $\phi_\sigma(\alpha)$ must also be corrected with regard to D, to obtain suitable dynamics for both turning directions:

$$
\begin{align*}
V_{L,i}(t + 1) &= S_{1,i} + \beta \cdot \cos [h_i(t) - \alpha_i(t) + \frac{\pi}{2}] + D\pi - (2D - 1)\phi_\sigma(\alpha_i(t)), \\
V_{R,i}(t + 1) &= S_{1,i} - \beta \cdot \cos [h_i(t) - \alpha_i(t) + \frac{\pi}{2}] + D\pi - (2D - 1)\phi_\sigma(\alpha_i(t)).
\end{align*}
$$

1) Computation of the Approaching Speeds: Given (3), a robot starting at any given initial position moves along a spiral-shaped trajectory toward its given target point T. We now want all robots to converge to their targets T_i at a desired given time T_{goal}. The correct synchronization of the arrival times allows the robots to start pushing the object all at once. To do this, we estimate the length of the resulting individual robot trajectories resulting from the Braitenberg control mechanism given by (3) as exponential spirals. We express a spiral as a function of the radius of each point on the spiral with respect to its angular position. To simplify the expression, we rotate the frame of reference, and measure the angular position θ of the spiral’s points starting from the angle $\frac{\pi}{2}$. In our case, our spirals are defined for any angular position $\theta \in [0; \pi]$, where, because of symmetries, robots
cannot move more than half a circle around their target point. Using the relation for $\phi_s(\alpha)$, our approximate spiral is:

$$r(\theta) := r_\pi \left(1 - \exp\left(-\frac{\theta}{\sigma}\right)\right). \quad (4)$$

The typical shape of the spiral, with $r_\pi = 1$, is shown in Fig. 2b. In our case, we need to let each robot compute r_π from its initial position (r_0, θ_0), where $\theta_0 = \arccos(\alpha_0, \frac{\pi}{2})$. This is achieved by putting r_0 and θ_0 in (4), and by extracting r_π we get $r_\pi = r_0 / \left(1 - \exp\left(-\frac{\theta_0}{\sigma}\right)\right)$. With the expression of the spiral for the trajectories’ shapes, we can now obtain the trajectories lengths from the initial position of each robot. The initial angular and radial positions of each robot are first computed with respect to their target point:

$$\begin{align*}
\theta_0 &= \arccos(\frac{y_0 - T_{y}}{x_0 - T_{x}}, \frac{\pi}{2}), \\
r_0 &= \sqrt{(x_0 - T_{x})^2 + (y_0 - T_{y})^2},
\end{align*}$$

We then compute the length of the spiral following Eq. 4, from the initial position to the target point, as:

$$L_i(r_0, \theta_0) = \int_{0}^{\theta_0} \sqrt{r(\theta)^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta,$$

which yields a lengthy but exact result, given in Eq. 5.

With this analytical expression for the trajectory length of an ASV starting at any initial position, we are able to adapt the individual speeds $S_{i,t}$ of each ASV. We let the approach speed of each ASV depend on its trajectory length $L_i(r_0, \theta_0)$ in order to let the ASVs meet their target point in the vicinity of a desired time T_{goal}:

$$S_{i,t} = S_{i,t}(r_0, \theta_0) = \frac{L_i(r_0, \theta_0)}{T_{goal}}. \quad (6)$$

2) **Link with Brownian Swarms:** Eq. 3 can be translated into a set of differential equations to model the multi-agent swarm dynamics. We identify the ASVs as Brownian agents in \mathbb{R}^2 with the following dynamics expressed in polar coordinates:

$$\begin{align*}
\dot{r}_i(t) &= -S_{i,t} \cdot \exp\left(-\frac{\arccos(\alpha_i(t), \frac{\pi}{2})}{\sigma}\right), \\
\dot{\alpha}_i(t) &= (2D - 1) S_{i,t} \frac{1}{r_0} \left(1 - \exp\left(-\frac{\arccos(\alpha_i(t), \frac{\pi}{2})}{\sigma}\right)\right).
\end{align*} \quad (7)$$

Noise can be added to (7) in the form of White Gaussian noise to model any actuators and/or sensors uncertainty. This effectively allows us to express the global swarm dynamics as a set of N stochastic differential equations (SDE). Conventional tools of dynamical systems theory can be used on the resulting nonlinear SDEs to study the probability distribution of the swarm’s position during the approach. Note that, similar to the original Braithven control, the norm of the instantaneous speed of each agent remains constant through time $v_i(t) = r(t)\alpha(t)/dt + dr(t)/dt = S_{i,t} \forall t$.

B. Computation of the Manipulation Trajectories

It is important to note that in the absence of an external flow field, by aligning the vehicles along one side of the object as shown in Fig. 2a, is sufficient to achieve CC. Furthermore, in this configuration, the robots can only translate the object towards the half-plane $\{y \geq 0\}$ and any rotation applied to the object under CC cannot have its pivot point within the object. Therefore, the distance between the barycentric position of the object, and the pivot point must be at least $\frac{\pi}{2}$, i.e., half the object’s length. These constraints define a set of allowed translations and rotations, which the swarm can apply to the object under CC. As such, the objective in the second phase is to synthesize a strategy enabling the swarm to maintain CC while transporting the object to the desired final pose $[x_f, y_f, h_f]^T$ given its initial pose of $x_0 = y_0 = h_0 = 0$.

In this second phase, the ASVs are modeled and controlled via (3), however their forward speeds, $S_{i,t}$, will be adapted to translate/rotate the object. To achieve this, we restrict the object’s motion to circular arcs only. In fact, given an initial pose of the object, it is possible to move the object to any desired pose by moving the object along a trajectory composed of two well chosen circular arcs. To show this, we let the object first travel along an arc of length α_1 around the center $[C_{1,x}, C_{1,y}]^T$ of a first circle C_1 followed by a motion along an arc of length α_2 around the center $[C_{2,x}, C_{2,y}]^T$ of a second circle C_2. We first note that $C_{1,y} = 0$, since the vector $[C_{1,x} - x_0, C_{1,y} - y_0]^T$ must be perpendicular to the object’s initial orientation, i.e., the vector initially given by $[1, 0]^T$. This ensures that the $[C_{1,x} - x_0, C_{1,y} - y_0]^T$ is tangent to C_1, since the object’s heading faces the center of C_1. The constraints of our system can then be expressed as follows:

1) We know that after the first arc α_1, the orientation of the object is α_1. After the second arc, the final orientation must therefore verify:

$$h_f = \alpha_1 + \alpha_2. \quad (8)$$

2) Using the 2D rotation matrix M_{α}, we can compute the successive positions of the object after traveling along each of the two arcs. After the first arc, the object ends up at the position (x_1, y_1), with

$$\begin{align*}
\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} &= M_{\alpha_1} \cdot \begin{bmatrix} x_0 - C_{1,x} \\ y_0 - C_{1,y} \end{bmatrix} + \begin{bmatrix} C_{1,x} \\ C_{1,y} \end{bmatrix}, \\
&= \begin{bmatrix} C_{1,x} \cdot (1 - \cos(\alpha_1)) \\ -C_{1,x} \cdot \sin(\alpha_1) \end{bmatrix}. \quad (9)
\end{align*}$$

From this intermediate position, the object then follows an arc length α_2 around the center of C_2. The final position must equal (x_f, y_f), which gives us a second relation:

$$M_{\alpha_2} \cdot \begin{bmatrix} x_1 - C_{2,x} \\ y_1 - C_{2,y} \end{bmatrix} + \begin{bmatrix} C_{2,x} \\ C_{2,y} \end{bmatrix} = \begin{bmatrix} x_f \\ y_f \end{bmatrix}. \quad (10)$$

3) Finally, the vector $[x_1 - C_{2,x}, y_1 - C_{2,y}]^T$ must be perpendicular to the object’s normal vector after the first arc. This condition, similar to $C_{1,y} = 0$, ensures that at (x_1, y_1), the object is simultaneously on both circles C_1 and C_2.

$$\begin{align*}
\begin{bmatrix} x_1 - C_{2,x} \\ y_1 - C_{2,y} \end{bmatrix} \cdot M_{\alpha_1} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} &= (C_{2,x} - C_{1,x}) \cdot \sin(\alpha_1) - C_{2,y} \cdot \cos(\alpha_1) = 0. \quad (11)
\end{align*}$$
\[
\begin{align*}
L_i(r_0, \theta_0) = r_0 \left[\frac{1 - \sigma^2 \log(\sqrt{\sigma^2 + 1})}{\sqrt{\sigma^2 + 1}} \right] - \sigma \sinh^{-1} \left(\frac{\theta_0}{\sigma} \right) + \left[1 - \frac{e^{\frac{\theta_0}{\sigma}}}{\sqrt{\sigma^2 + 1}} \right]^{\frac{3}{2}} + 1 + \frac{\sigma^2 \log \left(e^{\frac{\theta_0}{\sigma}} \right)}{\sqrt{\sigma^2 + 1}} + 1
\end{align*}
\] (5)

With these 4 equations, and 5 variables \(\{\alpha_1, \alpha_2, C_{1,x}, C_{2,x}, C_{2,y}\}\), we are left with one degree of freedom. We choose to fix \(\alpha_1\), and to compute the values of the other variables accordingly. After solving Eqs.(8)-(11), with \(\alpha_1\) fixed, we end up with:

\[
\begin{align*}
\alpha_2 &= h_f - \alpha_1 \\
C_{1,x} &= \frac{1}{2} \csc \left(\frac{\pi}{2} \right) \csc \left(\frac{\alpha_1 + \alpha_2}{2} \right) \left(x_f \cos \left(\frac{\alpha_1 + \alpha_2}{2} \right) + \frac{y_f}{\sin \left(\frac{\alpha_1 + \alpha_2}{2} \right)} \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \right) \\
C_{2,x} &= \frac{1}{2} \csc \left(\frac{\pi}{2} \right) \csc \left(\frac{\alpha_1 + \alpha_2}{2} \right) \left(x_f \cos \left(\frac{\alpha_1 + \alpha_2}{2} \right) + \frac{y_f}{\sin \left(\frac{\alpha_1 + \alpha_2}{2} \right)} \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \right) \\
C_{2,y} &= \cos \left(\frac{\pi}{2} \right) \csc \left(\frac{\alpha_1 + \alpha_2}{2} \right) \left(x_f \cos \left(\frac{\alpha_1 + \alpha_2}{2} \right) + \frac{y_f}{\sin \left(\frac{\alpha_1 + \alpha_2}{2} \right)} \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \sin \left(\frac{\alpha_1 + \alpha_2}{2} \right) \right)
\end{align*}
\] (12)

To avoid sharp corners in the resulting object trajectory, we must check for situations when the resulting trajectory exhibits a kink and correct \(\alpha_1\) accordingly:

\[
\tilde{\alpha}_1 \begin{cases}
\alpha_1 - 2\pi & \text{if sign}(\alpha_1) = \text{sign}(C_{1,x}), \\
\alpha_1 & \text{otherwise}.
\end{cases}
\] (13)

An example is shown in Fig. 3 where an initial motion in the \(y > 0\) direction results in a kinked trajectory. Note that this does not change the final position \((x_1, y_1)\) of the object after the first arc. Similarly, to ensure the trajectory is continuous at \((x_1, y_1)\), must also set \(\alpha_2\) accordingly. By resetting the reference frame of reference at the position \((x_1, y_1)\) to the orientation \(\alpha_1\):

\[
\begin{pmatrix}
\tilde{C}_{2,x} \\
\tilde{C}_{2,y}
\end{pmatrix} = M_{-\alpha_1} \cdot \begin{pmatrix}
C_{2,x} - x_1 \\
C_{2,y} - y_1
\end{pmatrix}
\]

we can check that \(\alpha_2\) and \(\tilde{C}_{2,x}\) have the same sign and set \(\alpha_2\) accordingly:

\[
\tilde{\alpha}_2 \begin{cases}
\alpha_2 - 2\pi & \text{if sign}(\alpha_2) = \text{sign}(\tilde{C}_{2,x}), \\
\alpha_2 & \text{otherwise}.
\end{cases}
\] (14)

Fig. 3 shows an incorrect trajectory corrected using this method, enabling us to obtain a smooth trajectory following only allowed translations/rotations under CC.

1) Computation of the Pushing Speeds: Once we find the centers of the circles \(C_1\) and \(C_2\) for an acceptable trajectory, we let the speed of each robot in the swarm depend on its distance to the center of the circle the object is traveling on. Let \(P(t) = \{P_1(t), P_2(t)\}\) be the instantaneous position of the barycenter of the caged object at time \(t\), we let the speed of the robot \(i\) at time \(t\) be \(V_i(t) = \sqrt{2}\|X_i(t) - C\|/\|P(t) - C\|\) where \(C\) denotes the center of the circle the object is currently traveling on, and \(\overline{C_2}\) is the desired average speed of the object along the trajectory. Robots switch from \(C = C_1\) to \(C = C_2\) when \(P(t) \approx (x_1, y_1)\) as given by \(\Phi\).

Remark 1: We note that the computed object transport trajectories are similar to Dubins paths for general non-holonomic vehicles with unicycle dynamics [9], [10]. Rather than trajectories composed of circular arcs of the same radii, our paths are composed of trajectories composed of two arcs of different radii. Additionally, the circular arc segments in optimal Dubins paths are dictated by the vehicle’s smallest turning radius. In fluidic environments, it may be difficult to manipulate the object to achieve such a tight turning radius since this would require one of the end ASVs, i.e., one of the ASVs caging the plank along its main axis, to serve as the rotational pivot. While this maneuver may be manageable for ground vehicles, it is generally much harder for surface marine vehicles. As such, we opt for computing our suboptimal trajectories rather than employ their optimal Dubins counterpart.

IV. RESULTS

A. Simulation Results

To validate our collective transport strategy, we present two simulation scenarios with \(N = 4\) and \(N = 8\) robots as shown in Fig. 4 and 5. In the simulation, we assume that the sum of the ASVs’ weights is equal to the individual weight of the object being transported. This helps to synchronize the transport phase by preventing early arriving ASVs from being able to rotate the object too fast on their own. The push phase starts when the whole swarm has arrived at their assigned target points around the object. The approach speeds of the ASVs are computed to synchronize their arrival around \(T_{goal} = 30 s\). The arc length around the first circle is selected to be \(\alpha_1 = 1\), and the trajectory is computed in order to position the object at \(\{x_f, y_f, h_f\}\) = \(\{55, -95, 0.1\}\).

In our simulations, white Gaussian noise was added to each robot’s pose at each timestep with a variance of 0.05 for each component. The vehicle speeds are computed using \(\Phi\) and were updated at 50 Hz. Fig. 4b shows the synchronized arrival of the ASVs around the object. Fig. 5 shows the complete trajectories of a swarm of \(N = 8\) ASVs transporting an object for two different initial and final poses.
Once CC is achieved, the desired final state of the object
\([x_f, y_f, h_f]^T\) is computed in the current body fixed frame of
the object and the resulting transport trajectory is computed
to move the object to the desired position under CC. In
the transport phase, two of the pushing mASVs control
the object’s orientation along the computed trajectory
to ensure the object faces the current circle center while the
end vehicles cage the plank along its x axis and correct the
object’s motion if it deviates from its main axis. To account
for the vehicles’ and object’s inertia, the vehicles stop prior
to arriving at the goal position to ensure the object comes to a
stop within range of the final desired pose. Since the object is
held under CC, a stopping maneuver cannot be made by the
vehicles to ensure the plank is stopped precisely on target.
This is a consideration for future work.

C. Experimental Results

Fig. 6 presents snapshots of the vehicles’ trajectories
for an experimental run with \(N = 4 \) ASVs. During this
experimental run, the following values were used:
\[
\begin{align*}
\sigma &= 1 \\
\alpha_1 &= 1 \\
T_{\text{goal}} &= 80 \text{ s} \\
x_f, y_f, h_f &= \{55, -95, 0.1\}.
\end{align*}
\]

The initial position of the mASVs (black dots) and the
object (black rectangle) is shown in Fig. 6a along with
the targets along the object’s side (colored crosses). Fig. 6b
shows the vehicles arriving at their assigned target positions,
stopping to synchronize and begin the transport phase. The
final position and orientation of the object and its transport
trajectory was computed from its current pose (red rectan-
gle). The mASVs then started transporting the object while
maintaining CC along the computed trajectory (Fig. 6c).
Once the final object position was within range (20 cm),
the vehicles motors were turned off, letting the object drift to its
final position (Fig. 6d).

Fig. 7a-7c present still frames of the experimental results
shown in Fig. 6. We ran a series of experimental runs to test
the repeatability of the considered control mechanism. The
minimal distance from the object’s center to the desired final
position \((x_f, y_f)\) was computed for each run, along with the
angle error. The measured errors are illustrated in Fig. 7d
along with their respective mean over the 12 experiments.
The mean distance error and its standard deviation was

Fig. 4. A swarm of \(N = 4 \) ASVs (black dots) push the large object (black rectangle) towards the final position \(\{x_f, y_f, h_f\} = \{55, -95, 0.1\} \) (red rectangle) at different times during the simulation.

Fig. 5. Complete trajectories of a swarm of \(N = 8 \) ASVs (back dots), moving a object to its final position (red rectangle). The object is initially positioned at \(\{x_0, y_0, h_0\} = \{0, 0, 0\} \). The two circles’ centers, and the intermediate switching point, are depicted as black crosses.
4.88 cm ± 1.8 cm, while the mean orientation error and its standard deviation was −0.26 rad ± 0.44 rad.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a collective transport strategy for a robot swarms manipulating objects in a fluid environment. The strategy enables a team of non-holonomic ASVs to distributively arrange and grasp an object under CC. Despite the fact that this grasping method reduces the set of acceptable translations and rotations of the object, the team can successfully transport it to any position and orientation within the 2D workspace. Simulations and experimental results show the validity of the proposed strategy. Despite the object transport trajectories being sub-optimal, when compared to the corresponding Dubins path, our results suggest the sub-optimal trajectories enable more stable transport by the swarm. Future directions include development of object manipulation strategies for vehicles subject to minimum time, grasp stability, and energy consumption constraints. Lastly, cooperative transport and manipulation by ASV/AUV swarms in a fluid field is another direction for future work.

REFERENCES

