
Distributed Planar Manipulation in Fluidic Environments

Guillaume Sartoretti1, Samuel Shaw2 and M. Ani Hsieh3

Abstract— We present a distributed control strategy that
enables a swarm of autonomous surface vehicles (ASVs) to
cooperatively grasp and manipulate a large floating object from
an initial position and orientation to a desired final position and
orientation. Given an initial set of random robot positions, our
control strategy enables the team to synchronize their arrival
times around the object. Analytical motion trajectories are then
computed to enable the swarm to transport the object to the
final desired position. We validate the proposed strategy in
simulation and present experimental results to demonstrate the
feasibility of the proposed strategy.

I. INTRODUCTION
As robotic swarm sizes can vary over time, we are

interested in developing scalable control strategies that can
adapt to changing team sizes and that are resistant to single
robot failures. These properties can often be achieved via
a distributed control framework with the added benefit of
robustness due to the inherent redundancy resulting from
having a large number of similar robots. In this paper, we
consider the problem of collective transport of an object in
a fluidic environment by a team of autonomous robots. We
build upon [1] to devise a distributed Braitenberg-inspired
control mechanism, allowing the autonomous surface ve-
hicles (ASVs) to move along smooth trajectories as they
approach, grasp and manipulate a larger object in a fluid
environment.

Previous works on cooperative manipulation of large ob-
jects by teams of ground robots include [2]. In this work,
the collective transport of convex and non-convex objects
is achieved by enabling the team to first surround and
cage the object of interest and then transport through the
synthesis and composition of appropriate artificial potential
functions. More recently, a decentralized control strategy
for manipulation of a general-shaped object by a swarm
of ground vehicles equipped with grippers was presented in
[3]. However, these strategies do not directly translate to the
fluid environment due to the unique challenges associated
with the near frictionless environment, e.g., objects floating
on the surface, and non-negligible inertial effects. Existing
work in autonomous collective transport in marine and
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littoral environments include [4]. In [4], the authors devised
a decentralized control strategy for a swarm of tugboats
to cooperatively rotate a larger object. Similar work on
cooperative manipulation by a team of tugboats to transport
a larger vessel is described in [5], [6].

Different from [4], [5], [6], our main contribution is the
construction of a set of acceptable trajectories, allowing
a swarm of ASVs to transport an object from any given
initial pose to any desired final pose under Conditional
Closure (CC). Rather than rely on towing cables, collective
manipulation and transport is achieved by enabling the
swarm to “grasp” the larger object and achieve CC through
coordinated pushes. Specifically, we leverage the structure-
fluid interaction between the transported object and the
fluid environment in our formulation of “conditional forced
caging” and leverage the vehicle’s and object’s inertial effects
to achieve synchronized arrival times to achieve CC of the
object. We validate our strategy in simulation and show the
feasibility and validity of the strategy through experiments.

The paper is organized as follows: in Section II, we briefly
presents the considered problem. In Section III, we define
the two main phases of our control mechanism, and present
numerical results. Section IV is devoted to our experimental
results, while Section V discusses of the future perspectives.

II. PROBLEM STATEMENT

We consider a swarm of N autonomous ASVs operating
in a still body of water. We model the ith ASV as a two-
dimensional (2D) differential vehicle whose kinematics in
discrete time are given by


VL,i(t+ 1) = S∗,i + β · cos

[
hi(t)− αi(t)

+(π2 − φi(t))
]
,

VR,i(t+ 1) = S∗,i − β · cos
[
hi(t)− αi(t)

+(π2 − φi(t))
]
,

(1)

where VL,i and VR,i denotes the left and right propeller
speeds, (xi, yi) the current position, S1,i the speed, and
αi the angle of the vector [xi − Tx, yi − Ty]T in the
global coordinate frame. In this work, we assume S∗,i to be
constant. We note that the vehicle kinematics given by (1)
define a general Braitenberg control mechanism [7] allowing
an ASV to move at a constant speed, keeping a given point
T = [Tx, Ty]T at a given angle φ from its heading. The
angle φ defines the desired difference between the angular
position of a robot, and its heading h. For example, when
φ = π

2 , the ASV simply revolves around the point T (i.e., T
is the instantaneous center of rotation for the ASV, remaining
at an angle of π

2 from the ASV’s heading). Fig. 1 illustrates



the situation at a given time and depicts the various relevant
quantities.
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Fig. 1. (a) Schematic of the relevant quantities for the Braitenberg control
mechanism given by (1). Here, T = O = (0, 0) with the object (blue
rectangle) and an ASV (black dot) located at position (x, y). The ASV’s
heading h is illustrated in red and its angular position α in black. A desired
angle φ, defining the desired difference between α and h, is shown in blue.

Given a large object, which we will represent as a rectan-
gle in 2D, that is initially centered at the origin, O = (0, 0),
of the global frame, we assume that the object is positioned
such that its length lies along the global X-axis. The objec-
tive is to devise a collective transport strategy such that the
swarm encloses or “grasps” the object and transports it to a
final pose [xf , yf , hf ]

T where hf denotes the orientation of
the object. To achieve this, we decompose the problem into
two separate phases: the “grasping” and transport phases. We
describe our methodology in the following section.

III. PLANAR MANIPULATIONS UNDER
CONDITIONAL FORCED CAGING

A. Distributed Approach and Grasp

We assume vehicles are initially randomly positioned
within the workspace. “Grasping” is achieved by aligning
the vehicles on one side of the object, facing the object
(namely, on the side where y > 0). This will enable the team
to transport the object by cooperatively pushing the object
towards its pose. To achieve this, we assign each robot a
target point Ti (1 ≤ i ≤ N ) to aim for as it approaches the
object. We choose T2, ..., TN−1 such that they are uniformly
distributed along the central axis of the object, while T1 and
TN are placed at each end of the object. This allows the
swarm to hold the object under Conditional Closure (CC)
once the object is “grasped” (see Fig.2a) [8].

To achieve this, we set S∗,i = S1,i in (1) where S1,i

is the constant approach speed and α = arctan
(
yi−Tyi
xi−Txi

)
.

The kinematics given by (1) allows a robot to rotate around
the origin point in a clockwise direction for φ = π

2 , and
in a counter-clockwise direction for φ = 3π2 . For robots
starting in the half-plane {x > 0}, we want them to rotate
in the counter-clockwise direction to reach their destination
faster. To achieve this, we let D ∈ {0, 1} denote each robot’s
direction of rotation (clockwise (0) or counter-clockwise (1)).
An ASV starting in the half-plane {x < Ti} is assigned D =
0, and an ASV starting at initial position x0,i ≥ Ti receives
D = 1. A correction is then made to (1) to encompass this
rotation direction, by changing φi(t)→ φi(t) +Dπ.

(a) (b)

Fig. 2. (a) Example of conditional closure (CC), where the pushing ASVs
(black dots) are able to translate and rotate the object, with constraints on the
translation direction and the rotation pivot. The target points are depicted as
blue crosses, and the ASVs’ heading vectors as red segments). (b) Typical
shape of the spiral of Eq.(4), with rπ = 1. Here, θ = arcmin(α, π

2
),

meaning that both axes are simply switched.

To obtain a spiral-shaped motion from the initial position
of the robot until its perpendicular approach to the object’s
side, we now let φ depend on the angular position of each
robot. We want φ ≈ π

2 when the robot is in the lower half-
plane {y < 0} (i.e., pure rotation around the origin point).
We then want φ to gradually decrease toward φ = 0, as α
approaches π

2 (i.e., pure attraction to the origin point). We
let φ exponentially decrease, as α approaches π

2 :

φσ(α) =
π

2

(
1− exp

(
−
arcmin(α, π2 )

σ

))
, (2)

where σ2 ∈ R+ controls the rate of exponential decay.
We write arcmin(θ1, θ2) as the minimal angle difference
between θ1 and θ2:

arcmin(θ1, θ2) := min

(
mod(θ1 − θ2, 2π)
mod(θ2 − θ1, 2π)

)
.

We finally incorporate φσ(α) into Eq.(1) to obtain the final
control mechanism for our robotic swarm. Note how φσ(α)
must also be corrected with regard to D, to obtain suitable
dynamics for both turning directions:


VL,i(t+ 1) = S1,i + β · cos

[
hi(t)− αi(t) + π

2
+Dπ − (2D − 1)φσ(αi(t))

]
,

VR,i(t+ 1) = S1,i − β · cos
[
hi(t)− αi(t) + π

2
+Dπ − (2D − 1)φσ(αi(t))

]
,

(3)

1) Computation of the Approaching Speeds: Given (3),
a robot starting at any given initial position moves along
a spiral-shaped trajectory toward its given target point T .
We now want all robots to converge to their targets Ti at a
desired given time Tgoal. The correct synchronization of the
arrival times allows the robots to start pushing the object all
at once. To do this, we estimate the length of the resulting
individual robot trajectories resulting from the Braitenberg
control mechanism given by (3) as exponential spirals. We
express a spiral as a function of the radius of each point
of the spiral with respect to its angular position. To simplify
the expression, we rotate the frame of reference, and measure
the angular position θ of the spiral’s points starting from the
angle π

2 . In our case, our spirals are defined for any angular
position θ ∈ [0;π], where, because of symmetries, robots



cannot move more than half a circle around their target point.
Using the relation for φσ(α), our approximate spiral is:

r(θ) := rπ

(
1− exp

(
− θ
σ

))
. (4)

The typical shape of the spiral, with rπ = 1, is shown in
Fig. 2b. In our case, we need to let each robot compute rπ ,
from its initial position (r0, θ0), where θ0 = arcmin(α0,

π
2 ).

This is achieved by putting r0 and θ0 in (4), and by extracting
rπ we get rπ = r0/

(
1− exp

(
− θ0σ

))
. With the expression

of the spiral for the trajectories’ shapes, we can now obtain
the trajectories lengths from the initial position of each robot.
The initial angular and radial positions of each robot are first
computed with respect to their target point:{

r0 =
√
(x0 − Tx)2 + (y0 − Ty)2

θ0 = arcmin(arctan
y0−Ty
x0−Tx ,

π
2 ).

We then compute the length of the spiral following Eq.(4),
from the initial position to the target point, as:

Li(r0, θ0) =

∫ θ0

0

√
r(θ)2 +

(
d

dθ
r(θ)

)2

dθ,

which yields a lengthy but exact result, given in Eq.(5).
With this analytical expression for the trajectory length of

an ASV starting at any initial position, we are able to adapt
the individual speeds S1,i of each ASV. We let the approach
speed of each ASV depend on its trajectory length Li(r0, θ0)
in order to let the ASVs meet their target point in the vicinity
of a desired time Tgoal:

S1,i = S1,i(r0, θ0) =
Li(r0, θ0)

Tgoal
. (6)

2) Link with Brownian Swarms: Eq.(3) can be translated
into a set of differential equations to model the multi-
agent swarm dynamics. We identify the ASVs as Brownian
agents in R2 with the following dynamics expressed in polar
coordinates: dri(t) = −S1,i · exp

(
−arcmin(αi(t),

π
2 )

σ

)
,

dαi(t) = (2D − 1)
S1,i

ri(t)

(
1− exp

(
−arcmin(αi(t),

π
2 )

σ

))
.

(7)
Noise can be added to (7) in the form of White Gaussian

noise to model any actuators and/or sensors uncertainty. This
effectively allows us to express the global swarm dynamics as
a set of N stochastic differential equations (SDE). Conven-
tional tools of dynamical systems theory can be used on the
resulting nonlinear SDEs to study the probability distribution
of the swarm’s position during the approach. Note that,
similar to the original Braitenberg control, the norm of the
instantaneous speed of each agent remains constant through
time vi(t) = r(t)dα(t)/dt+ dr(t)/dt = S1,i ∀t.

B. Computation of the Manipulation Trajectories

It is important to note that in the absence of an ex-
ternal flow field, by aligning the vehicles along one side
of the object as shown in Fig. 2a is sufficient to achieve
CC. Furthermore, in this configuration, the robots can only

translate the object towards the half-plane {y ≥ 0} and
any rotation applied to the object under CC cannot have its
pivot point within the object. Therefore, the distance between
the barycentric position of the object, and the pivot point
must be at least Sx

2 , i.e., half the object’s length. These
constraints define a set of allowed translations and rotations,
which the swarm can apply to the object under CC. As such,
the objective in the second phase is to synthesize a strategy
enabling the swarm to maintain CC while transporting the
object to the desired final pose [xf , yf , hf ]

T given its initial
pose of x0 = y0 = h0 = 0.

In this second phase, the ASVs will be modeled and
controlled via (3), however their forward speeds, S∗,i, will
be adapted to translate/rotate the object. To achieve this, we
restrict the object’s motion to circular arcs only. In fact, given
an initial pose of the object, it is possible to move the object
to any desired pose by moving the object along a trajectory
composed of two well chosen circular arcs. To show this, we
let the object first travel along an arc of length α1 around the
center [C1,x, C1,y]

T of a first circle C1 followed by a motion
along an arc of length α2 around the center [C2,x, C2,y]

T of
a second circle C2. We first note that C1,y = 0, since the
vector [C1,x − x0, C1,y − y0]T must be perpendicular to the
object’s initial orientation, i.e., the vector initially given by
[1, 0]T . This ensures that the [C1,x−x0, C1,y−y0]T is tangent
to C1, since the object’s heading faces the center of C1. The
constraints of our system can then be expressed as follows:

1) We know that after the first arc α1, the orientation
of the object is α1. After the second arc, the final
orientation must therefore verify:

hf = α1 + α2. (8)

2) Using the 2D rotation matrix Mα, we can compute the
successive positions of the object after traveling along
each of the two arcs. After the first arc, the object ends
up at the position (x1, y1), with(

x1
y1

)
:=Mα1

·
(
x0 − C1,x

y0 − C1,y

)
+

(
C1,x

C1,y

)
=

(
C1,x · (1− cos(α1))
−C1,x · sin(α1)

)
.

(9)

From this intermediate position, the object then follows
an arc length α2 around the center of C2. The final
position must equal (xf , yf ), which gives us a second
relation:

Mα2
·
(
x1 − C2,x

y1 − C2,y

)
+

(
C2,x

C2,y

)
=

(
xf
yf

)
. (10)

3) Finally, the vector [x1 − C2,x, y1 − C2,y]
T must be

perpendicular to the object’s normal vector after the
first arc. This condition, similar to C1,y = 0, ensures
that at (x1, y1), the object is simultaneously on both
circles C1 and C2.(

x1 − C2,x

y1 − C2,y

)
·Mα1

·
(
1
0

)
=

(C2,x − C1,x) · sin(α1)− C2,y · cos(α1) = 0.
(11)



Li(r0, θ0) = r0

(
1

eθ0/σ−1 + 1
)[(

1− σ2 log(
√
σ2+1+1)√
σ2+1

)
− e−

θ0
σ

√
σ2
(
eθ0/σ − 1

)2
+ 1+

σ2 log

(
e−

θ0
σ

(
σ2(1−eθ0/σ)+

√
σ2+1

√
σ2(eθ0/σ−1)

2
+1+1

))
√
σ2+1

− σ sinh−1
(
σ − σeθ0/σ

) ]
.

(5)

With these 4 equations, and 5 variables
{α1, α2, C1,x, C2,x, C2,y}, we are left with one degree
of freedom. We choose to fix α1, and to compute the values
of the other variables accordingly. After solving Eqs(8)-(11),
with α1 fixed, we end up with:

α2 = hf − α1

C1,x = − 1
2 csc

(
α1

2

)
csc
(
α1+α2

2

) (
xf cos

(
α1 +

α2

2

)
+

yf sin
(
α1 +

α2

2

) )
C2,x = 1

2 csc
(
α2

2

)
csc
(
α1+α2

2

) (
xf cos

(
α1

2

)
+

sin
(
α1

2

)
(yf cos(α1 + α2)− xf sin(α1 + α2))

)
C2,y = cos

(
α1

2

)
csc
(
α2

2

) (
xf cos

(
α1+α2

2

)
+

yf sin
(
α1+α2

2

) )
(12)

To avoid sharp corners in the resulting object trajectory,
we must check for situations when the resulting trajectory
exhibits a kink and correct α1 accordingly:

α̃1 :=

{
α1 − 2π if sign(α1) = sign(C1,x),

α1 otherwise.
(13)

An example is shown in Fig. 3 where an initial motion
in the y > 0 direction results in a kinked trajectory. Note
that this does not change the final position (x1, y1) of the
object after the first arc. Similarly, To ensure the trajectory
is continuous at (x1, y1), must also set α2 accordingly. By
resetting the reference frame of reference at the position
(x1, y1) to the orientation α1:(

C̃2,x

C̃2,y

)
=M−α1

·
(
C2,x − x1
C2,y − y1

)
we can check that α2 and C̃2,x have the same sign and set
α2 accordingly:

α̃2 :=

{
α2 − 2π if sign(α2) = sign(C̃2,x),

α2 otherwise.
(14)

Fig. 3 shows an incorrect trajectory corrected using this
method, enabling us to obtain a smooth trajectory following
only allowed translations/rotations under CC.

Fig. 3. Example trajectory where α1 must be corrected (left), and the
corrected trajectory using Eq.(14) (right). The initial and final states of the
object are shown in black.

1) Computation of the Pushing Speeds: Once we find the
centers of the circles C1 and C2 for an acceptable trajectory,
we let the speed of each robot in the swarm depend on its
distance to the center of the circle the object is traveling on.
Let P (t) = {Px(t), Py(t)} be the instantaneous position of
the barycenter of the caged object at time t, we let the speed
of the robot i at time t be Vi(t) = S2‖Xi(t)−C‖/‖P (t)−
C‖ where C denotes the center of the circle the object is
currently traveling on, and S2 is the desired average speed of
the object along the trajectory. Robots switch from C = C1

to C = C2 when P (t) ≈ (x1, y1) as given by (9).
Remark 1: We note that the computed object transport

trajectories are similar to Dubins paths for general non-
holonomic vehicles with unicycle dynamics [9], [10]. Rather
than trajectories composed of circular arcs of the same radii,
our paths are composed of trajectories composed of two arcs
of different radii. Additionally, the circular arc segments in
optimal Dubins paths are dictated by the vehicle’s smallest
turning radius. In fluidic environments, it may be difficult
to manipulate the object to achieve such a tight turning
radius since this would require one of the end ASVs, i.e.,
one of the ASVs caging the plank along its main axis, to
serve as the rotational pivot. While this maneuver may be
manageable for ground vehicles, it is generally much harder
for surface marine vehicles. As such, we opt for computing
our suboptimal trajectories rather than employ their optimal
Dubins counterpart.

IV. RESULTS

A. Simulation Results

To validate our collective transport strategy, we present
two simulation scenarios with N = 4 and N = 8 robots as
shown in Fig. 4 and 5. In the simulation, we assume that the
sum of the ASVs’ weights is equal to the individual weight
of the object being transported. This helps to synchronize
the transport phase by preventing early arriving ASVs from
being able to rotate the object too fast on their own. The
push phase starts when the whole swarm has arrived at their
assigned target points around the object. The approach speeds
of the ASVs are computed to synchronize their arrival around
Tgoal = 30 s. The arc length around the first circle is selected
to be α1 = 1, and the trajectory is computed in order to
position the object at {xf , yf , hf} = {55,−95, 0.1}.

In our simulations, white Gaussian noise was added to
each robot’s pose at each timestep with a variance of 0.05
for each component. The vehicle speeds are computed using
(3) were updated at 50Hz. Fig. 4b shows the synchronized
arrival of the ASVs around the object. Fig. 5 shows the com-
plete trajectories of a swarm of N = 8 ASVs transporting
an object for two different initial and final poses.
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Fig. 4. A swarm of N = 4 ASVs (black dots) push the large object (black rectangle) towards the final position {xf , yf , hf} = {55,−95, 0.1} (red
rectangle) at different times during the simulation.
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Fig. 5. Complete trajectories of a swarm of N = 8 ASVs (back dots),
moving a object to its final position (red rectangle). The object is initially
positioned at {x0, y0, h0} = {0, 0, 0}. The two circles’ centers, and the
intermediate switching point, are depicted as black crosses.

B. Experimental Setup

To experimentally validate our proposed strategy, we em-
ploy the multirobot Coherent Structure Testbed (mCoSTe).
The mCoSTe is an indoor laboratory experimental testbed
that consists of a 3m × 3m × 1m flow tank and a fleet of
micro-autonomous surface vehicles (mASVs). The mASVs
are differential drive surface vehicles, approximately 12 cm
long, equipped with a micro-controller board, XBee radio
module, and an inertial measurement unit (IMU). Localiza-
tion for the mASVs and the object being manipulated is
provided by an external motion capture system.

The proposed collective transport strategy was validated
using a team of N = 4 mASVs. The object being transported
is a 40 cm×15 cm rectangular foam plank with fins attached
to the short ends to limit its movement along its main
axis. Since the mASV propellers’ rotation speeds cannot
be linearly translated into a forward speed (as opposed
to wheeled mobile robots), Eq.(2) is used to control the
vehicles’ headings during the approach phase. During the
approach and grasping phase, the optimal approach speed
for each boat is updated at each iteration (dt = 0.1 s),
to synchronize the arrival of all the boats. The targets are
re-assigned at each iteration to minimize the likelihood of
collision between the vehicles. Target positions around the
object are assigned to the nearest mASVs to minimize path
crossings between the vehicles. The transport phase only
starts when all the vehicles achieve CC around the plank.

Once CC is achieved, the desired final state of the object
[xf , yf , hf ]

T is computed in the current body fixed frame of
the object and the resulting transport trajectory is computed
to move the object to the desired position under CC. In
the transport phase, two of the pushing mASVs control
the object’s orientation along the computed trajectory to
ensure the object faces the current circle center while the
end vehicles cage the plank along its x axis and correct the
object’s motion if it deviates from its main axis. To account
for the vehicles’ and object’s inertia, the vehicles stop prior
to arriving at the goal position to ensure the object comes to a
stop within range of the final desired pose. Since the object is
held under CC, a stopping maneuver cannot be made by the
vehicles to ensure the plank is stopped precisely on target.
This is a consideration for future work.

C. Experimental Results

Fig. 6 presents snapshots of the vehicles’ trajectories
for an experimental run with N = 4 ASVs. During this
experimental run, the following values were used:{

σ = 1 Tgoal = 80 s
α1 = 1 {xf , yf , hf} = {55,−95, 0.1}.

The initial position of the mASVs (black dots) and the
object (black rectangle) is shown in Fig. 6a, along with
the targets along the object’s side (colored crosses). Fig. 6b
shows the vehicles arriving at their assigned target positions,
stopping to synchronize and begin the transport phase. The
final position and orientation of the object and its transport
trajectory was computed from its current pose (red rectan-
gle). The mASVs then started transporting the object while
maintaining CC along the computed trajectory (Fig. 6c).
Once the final object position was within range (20 cm), the
vehicles motors were turned off, letting the object drift to its
final position (Fig. 6d).

Fig. 7a-7c present still frames of the experimental results
shown in Fig. 6. We ran a series of experimental runs to test
the repeatability of the considered control mechanism. The
minimal distance from the object’s center to the desired final
position (xf , yf ) was computed for each run, along with the
angle error. The measured errors are illustrated in Fig. 7d,
along with their respective mean over the 12 experiments.
The mean distance error and its standard deviation was
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Fig. 6. Snapshots of an experimental run with N = 4 boats. The trajectories (colored lines) of the boats (black dots), are depicted, along with the plank’s
current position (black rectangle) and its final desired state (red rectangle). During the approach phase, the boats’ targets along the plank’s side are plotted
as colored crosses. During the push phases, the circle centers and intermediate switching points are illustrated as black crosses.
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Fig. 7. (a)-(c) Snapshots of an experimental run with N = 4 boats. Initial position of the object is highlighted by the black rectangle and the final desired
pose is highlighted by the red rectangle. The circle centers and intermediate switch points are shown by the blue crosses. (d) Position errors (red) and
corresponding orientation errors (blue) for the 12 experimental trials. The respective mean errors are shown as dotted lines.

4.88 cm ± 1.8 cm, while the mean orientation error and its
standard deviation was −0.26 rad± 0.44 rad.

V. CONCLUSIONS AND PERSPECTIVES

We have presented a collective transport strategy for a
robot swarms manipulating objects in a fluid environment.
The strategy enables a team of non-holonomic ASVs to
distributively arrange and grasp an object under CC. De-
spite the fact that this grasping method reduces the set of
acceptable translations and rotations of the object, the team
can successfully transport it to any position and orientation
within the 2D workspace. Simulations and experimental
results show the validity of the proposed strategy. Despite the
object transport trajectories being sub-optimal, when com-
pared to the corresponding Dubins path, our results suggests
the sub-optimal trajectories enable more stable transport by
the swarm. Future directions include development of object
manipulation strategies for vehicles subject to minimum
time, grasp stability, and energy consumption constraints.
Lastly, cooperative transport and manipulation by ASV/AUV
swarms in a flow field is another direction for future work.
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