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Abstract We focus on the control of heterogeneous

swarms of agents that evolve in a random environment.

Control is achieved by introducing special agents: leader

and infiltrated (shill) agents. A refined distinction is

made between hidden and apparent controlling agents.

For each case, we provide an analytically solvable ex-

ample of swarm dynamics.

Keywords multi-agent swarms · leader-based control ·
soft control · analytical results · numerical simulations

1 INTRODUCTION

Thorough understanding of swarm dynamics ideally re-

quires simultaneous mastery of analytical, simulation-

based and experimental approaches. In recent contri-
butions, this ambitious program has been successfully

fulfilled for homogeneous swarms, where the mean-field

approach can be used [1]. Mean-field theory cannot be

applied to heterogeneous swarms; thus, analytical ap-

proaches are very difficult. Nevertheless, for specific dy-

namics, other approaches can be explored in order to

obtain exact results, and the goal of this paper is to un-

veil such possibilities. Specifically, we focus on swarms

controlled by the use of special agents (leader or in-

filtrated (shill) agents). Leader-controlled swarms are

commonly used in robotics, and recent contributions

presented joint analytical and simulation illustrations

[2]. The study of leadership also plays an important

role in ethology, where recent papers presented experi-

mental validation of theoretical results [3]. In parallel,
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due to numerous applications, the control of a swarm

via shill agents (referred to as ”soft-control” [4]) is be-

coming very popular in robotics and ethology [5,6].

This paper attempts a classification of the different

types of swarm control mechanisms based on special

agents. Table 1 summarizes the four types of swarm

control, depending on whether the shills/leaders can re-

main hidden within the swarm. Our classification is pre-

sented along with analytically tractable illustrations.

Table 1: Classification diagram of the presented swarm

control examples.
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2 LEADER-BASED CONTROL

The first type of swarm control can be achieved by using

a number of leader agents (possibly only one). In this

case, all regular agents must be aware of the presence

of the special agents. Accordingly, the dynamics of the

regular agents must incorporate the role of the leader

agents a priori. The result is a heterogeneous swarm,

where regular agents simultaneously follow their own

nominal dynamics, and feel the influence of the leader

agents. By adequately controlling the leader agents, one

can therefore control the whole group.

Within leader-controlled swarms, we further differen-

tiate between two classes of models. The separation
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lies in whether the special agents can be identified as

such by an external observer of the swarm’s behavior.

This observer would be aware of the presence of special

agents, but would not be allowed access to the under-

lying swarm’s dynamics. The visibility of the leader

agents (i.e., whether they can be externally recognized)

helps us assess their vulnerability. Since a small num-

ber of leader agents control the entire swarm, leaders

are the main liability of the group. Depending on the

application, hiding the leaders’ true nature can there-

fore effectively protect the swarm.

2.1 Apparent Leaders

Apparent leaders usually stand out in the swarm by

their positioning. They act as general landmarks for

the regular agents, either stationary or moving, and can

therefore easily be identified by an external observer.

Swarms of agents controlled by apparent leaders have

been studied extensively in the literature, and are men-

tioned here mostly for completeness.

As a classical illustration, we consider a swarm of mo-

bile robots initially positioned in a single file. Our aim

is to allow the whole swarm to move in formation, with

the first robot acting as the swarm’s leader, while the

others follow in its path. To this aim, we let each regular

mobile robot act as differential-motor, two-sensor light-

attracted Braitenberg vehicle [7]. This vehicle regularly

updates the speed of its left (resp. right) motor propor-

tionally to the intensity of the light read by its right

(resp. left) sensor. In other words, each of our regular

robots consistently adapts its course to drive toward the

brightest light source its sensors can detect. By attach-

ing a light at the rear of each robot, each regular robot

will be attracted toward the robot directly in front of

it in the line. Hence, each agent (except for the last one

in the file) acts as a (local) leader for the agent robot

in the file. Similarly, each regular robot simultaneously

acts as a follower, attracted by the previous robot in

the file. This effectively enables us to build a ”robot

train”, whose path the first agent in line (i.e., the lead-

ing robot) controls (similar to the column formation in

[8]).

Fig. 1(a) illustrate the initial state of the robots, and

1(b)-1(d) the selected consecutive states of a swarm of

10 robots. In this run, the leading robot is scripted in

order to follow a horizontal figure of eight. This path

enables us to test the swarm’s resistance to turns in-

duced by the leader. Each robot reacts to the change

of direction of the robot in front of it in the file with

a little delay. These delays add up, leading to a large

difference of path between the front and rear robots in

the file. If the control parameters of the Braitenberg

dynamics (i.e., forward and rotation speeds) are not

adequately chosen, a turn induced by the leading robot

can break the cohesion of the swarm.
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Fig. 1: (a): Initial state of a swarm of 10 robots (1

leader (in red) and 9 followers), with all robots fac-

ing upwards. (b)-(d): Selected consecutive states of the

swarm through time. During this run, the leader fol-

lows a horizontal scripted figure of eight, while the rest

of the train follows in its path.

2.2 Hidden Leaders

Hidden leader agents are more protected than appar-

ent leaders. Hidden leaders are often encountered in

swarms of social animals; a prime example is swarms of

bees. When swarming, either moving or resting, regular

bees regroup around the queen bee (which acts as the

leader). Even when the swarm is moving (and thus less

tightly packed around the queen), an (untrained) exter-

nal observer will not be able to tell the queen bee from

the regular bees. This allows the swarm to safely move

to a new hive location, led by a leader hidden within

the swarm and following a similar dynamics.

A close illustration of such a swarm led by a hidden

leader can be found within nonlinear filtering (i.e., es-

timation problems). An estimation problem models the

case of an (usually noisy) input signal X(t) from which

noisy measures Z(t) are taken (either continuously or

at discrete timesteps):{
dX(t) = f(X(t)) + σxdWx(t),

dZ(t) = g(X(t)) + σzdWz(t),
(1)

where f and g are arbitrary functions, σx,z the noise

variances of each process, and dWx,z(t) independent

White Gaussian Noise (WGN) sources. After a mea-

sure Z(t) is obtained at time t, one wishes to obtain

the best estimation of X(t) from the set of all previ-

ous measures Z(t) := {Z(T ) | T ≤ t}. The probability
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distribution P[X(t) = x | Z(t)] is usually computed (or

empirically constructed) to obtain this estimation. The

best estimation for X(t) is computed as the expected

value E[X(t) | Z(t)].

For linear estimation problems (linear f and g func-

tions in Eq. (1)), the Kalman-Bucy filter is well known

to be optimal. In this method, the probability distribu-

tion P[X(t) = x] can be exactly computed a priori by

propagating the first line of Eq. (1) from the estimation

of X at the last timestep. The distribution P[Z(t) = z |
X(t) = x] is then expressed using the second line of Eq.

(1). The estimation is finally extracted from the distri-

bution P[X(t) = x | Z(t) = z], which can be expressed

by Bayesian inversion of P[Z(t) = z | X(t) = x]. For

nonlinear problems, a recent filtering mechanism uses

feedback particles (i.e., agents) to empirically form the

distribution P[X(t) = x | Z(t) = z] [9]. The Feedback

Particle Filter (FPF) lets a swarm of N particles fol-

low the same dynamic f as the noisy input signal Y (t)

(g, however, is assumed to be linear). The interaction

kernel K lets the agent self-arrange, based on the noisy

measures dZ(t) obtained and on the state X(t) of the

whole swarm. The regular agents Xi(t) (1 ≤ i ≤ N),

and the leader Y (t), follow the dynamics:
dXi(t) = f (Xi(t)) dt

+K (Xi(t),X(t), dZ(t)) + σdWi(t),

leader’s

dynamic

{
dY (t) = f (Y (t)) dt+ σdW (t),

dZ(t) = hY (t)dt+ σodWy(t).

(2)

Since each measure dZ(t) obtained from the signal Y (t)

is known by each agent, the swarm can be seen as het-

erogeneous: The noisy input acts as the leader, while

the particles act as regular agents [10]. The regular

agents try and arrange themselves optimally around the

leader, knowing only its noisy instantaneous position.

The leader controls the position of the swarm, since the

regular agents always self-arrange around the leader’s

position. The leader also controls the variance of the

regular agents’ positions around itself, by tuning the

parameter σo. The larger the noise added to the leader’s

actual position before it is revealed to the regular agents,

the wider the swarm’s dispersion around its leader. Agents

closer to the leader feel a weaker influence of the self-

arranging mechanism (since they are already well ar-

ranged). Therefore, the leader and its close neighbors

nearly follow the same dynamics, precluding an exter-

nal observer from spotting the leader from even thor-

ough observation of the swarm’s behavior. Fig 2 shows

how the leader is able to steer the whole swarm (2(a)),

while remaining well hidden among the other agents

(2(b)-2(c)).

The results of the FPF applied on a nonlinear filtering

problem are usually not analytically tractable. How-

ever, for a class of nonlinear problems where f is de-

rived from Weber Parabolic Cylinder functions, we have

shown that the mean and variance of P[X(t) = x |
Z(t) = z] can be explicitly written [10]. This enables

us to analytically study the leader’s influence on the

spreading of the swarm around its position, regarding

the noise variance σo.

Several shortcomings can be observed with this type of

control. First, the leader’s influence must explicitly fea-

ture in the regular agents’ dynamics. Therefore, when

one wants to control a specific swarm, its dynamics

must be constructed in order to encompass the presence

of leader agents. Second, the small number of leaders

simplifies the control of a large swarm, but limits its

resistance to single agent failures. If a leader does not

perform as expected, the control of the whole swarm is

weakened.

3 SOFT CONTROL

The second controlling mechanism consists of inserting

special agents in a swarm. The infiltrated agents (called

shill agents) are recognized by the other agents as regu-

lar agents. Control of these infiltrated agents can lead to

the control of the whole swarm, provided one possesses

extensive knowledge of the regular agents’ dynamics.

This type of control is often referred to as soft control,

since the swarm is not aware of being infiltrated. The

influence of the shill agents is not explicitly included

in the dynamic of each agent. Shills control the other
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Fig. 2: (a): Positions of N = 1000 agents (red) follow-

ing Eq.(2), arranging around one leader (black). (b)-

(c): Distribution of the agents (blue) around the leader

(red) at times t = 5 and t = 10. The function f is

the Weber Parabolic Cylinder function with parameter

B = 0.49 (nonlinear case, see [10]), and σ = σo = h = 1.



4 Guillaume Sartoretti1

agents only by taking advantage of the agents’ interac-

tions.

Since shills are infiltrated within an unwitting swarm,

their actions can positively influence the swarm’s dy-

namics. This constructive soft control can help the swarm

fulfill its objectives, by adding the possibility of a real-

time external control. Alternatively, soft control can

also be used destructively – for example, it may break

the swarm cohesion or drive the swarm toward an in-

correct direction. Since a shill must control the reg-

ular agents in a subtle way, in order to remain unno-

ticed within the swarm, the number of shill agents must

usually be selected according to the number of regular

agents.

We introduce a similar distinction between apparent

and hidden shill agents. An example in which shills

must be apparent to control a swarm can help assess

the robustness of the swarm’s dynamics. In those cases,

an infiltrated swarm can be immediately recognized as

such from the outside, precluding destructive shills to

quietly take control of the swarm. Cases in which the

soft control can be achieved using hidden shills how-

ever, help protect the special agent’s identity. In the

same manner as the leaders, shill agents can be a lia-

bility since the whole swarm can be controlled through

their single influence. However, since agents in a soft-

controlled swarm do not recognize their shills, the swarm

can resume functioning on its own (uncontrolled) in

their absence.

3.1 Apparent or Hidden Shills

Similar to apparent leaders, apparent shills stand out in

a swarm of regular agents. For example, if we consider

a swarm of flocking agents constantly driven toward

their barycenter. A shill can then steer the group to-

ward a chosen direction by changing its position, there-

fore changing the global barycentric position. If the shill

is too fast, it can be driven outside the swarm and be-

come apparent. An external observer would recognize

the shill’s action as the cause of the swarm’s global

movement.

We studied a similar model in which a shill agent is able

to drive a stationary swarm of flocking agents toward

a selected direction [11]. The shill can be analytically

proven to remain hidden or to quit the group depending

on its level of turbulence. In this model, a swarm of N

Brownian agents (1 ≤ i ≤ N) diffuse on R following the

dynamics of a Hybrid Atlas Model (HAM) [12]:
dYid =

(∑N
k=1 gk1Qk(i){Yd}+ γi + γ

)
dt

+σidWi(t),

Yi(0) = yi,

(3)

with σi ∈ R the respective noise variances of the N

independent WGN sources dWi(t). In the HAM, each

agent’s drift is constructed from a global barycentric

drift γ, an agent-based drift γi, and a rank-based drift

gi. The rank-based drift depends on the agent’s posi-

tion within the swarm. The first agent has the largest

position Yi(t), and the last one the smallest Yi(t). The

agent-specific and barycentric drifts are time-independent,

whereas the rank-based drift is updated constantly with

time.

Ichiba et al. showed that a HAM swarm achieves flock-

ing iff each agent is constantly driven toward the barycen-

ter of the swarm [12]. This flocking conditions translates

into the set of constraints
l∑

k=1

[
gk + γp(l)

]
< 0, (4)

for l ∈ {1, ..., N − 1} and all possible permutations p =

(p (1) , ..., p (N)) ∈ ΣN – i.e., N !(N − 1) constraints.

Without loss of generality, we can always assume that∑N
k=1 [gk + γk] = 0. In other words, the average barycen-

tric speed of the swarm is governed only by γ, which

we will assume vanishes (stationary swarm). We assume

that agent-specific drifts γi vanish ∀i, and let gi = −g
(1 ≤ i ≤ N − 1) and gN = (N − 1)g (with g ∈ R). This

dynamics fulfills the flocking conditions of Eq. (4). This

choice of rank-based drifts means that every agent is

pushed back with a drift −g, except for the last agent

which is strongly pushed forward with a drift (N −1)g.

In our flocking swarm, we then introduce our shill agent,

agent 1 (without loss of generality), following the same

HAM dynamics but driven by a Ballistic Noise source

dZ(t):

dZ(t) = β tanh [βZ(t)] dt+ dW (t), Z(0) = 0. (5)

Despite its nonlinear nature, this specific noise source

can be reduced to a Brownian motion with constant

drift ±β [13]. In other words, one realization of the

ballistic noise consists of an initial random draw decid-

ing whether the constant drift will be +β or −β, with

equal probability. The rest of the realization will then

just be that of a Brownian motion with constant drift:

dZ(t) = ±β + dW (t).

Therefore, our ballistic shill agent follows the same HAM

dynamics as its regular fellows, but with a constant ex-

tra drift ±β (depending on the realization). The shill

steers the (initially stationary) swarm toward by in-

ducing an average barycentric drift ± β
N . For small β,

flocking is still be achieved within the swarm, and the

shill will be hidden while still steering the swarm. How-

ever, for large β, the shill agent extracts itself from the

swarm, and diverges from the other agents. The shill

therefore becomes apparent, obviously being the rea-

son for the swarm’s movement to an external observer.
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Our dynamic is asymmetric in rank-based drifts: The

last agent is strongly pushed forward, whereas the oth-

ers are gently pushed backward. Therefore, the shill’s

visibility also depends on the realization of its ballis-

tic noise source. When it gets a −β extra drift, the shill

most likely always is ranked last in the swarm, and thus

strongly pushed forward toward the rest of the swarm.

Conversely, during realization with an extra +β drift,

the shill is most likely ranked first, and thus only gently

driven toward the other agents. Therefore, three out-

comes arise:

1. The shill can always remain hidden.

2. The shill is hidden for its −β realizations, but ap-

parent for the +β ones.

3. The shill is always apparent.

Analytical investigation of the model allowed us to ex-

press the thresholds values for β, marking the transition

between each of these outcomes [11].

Fig. 3 shows the two types of realizations, when an ini-

tially stationary swarm is infiltrated by a ballistic shill

for the second outcome. The shill’s visibility depends

on the realization of its noise source (outcome 2.). In

the first realization (−β drift), the shill is able to induce

a negative average drift to the swarm while remaining

flocked with the regular agents. But in the second real-

ization where it gets a +β extra drift, the turbulent shill

becomes apparent, unable to remain within the swarm.
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Fig. 3: Two realizations of the HAM dynamics of Eq.(3)

with a swarm of N = 9 regular agents and 1 shill. Here,

β = 1.5, σ = g = 1, which corresponds to the outcome

2. (i.e., the shill’s visibility depends on the realization

of its noise source). The upper realization shows the

+β realization, where the shill (black) becomes appar-

ent from the regular agents (green). The lower trajec-

tories show a −β realization, in which the shill (black)

steers the swarm of regular agents (red) while remain-

ing flocked.

4 CONCLUSION

Depending on the application, we believe that our clas-

sification helps select the appropriate control mecha-

nism. The inherent need for robustness of the result-

ing control mechanism helps dictate the visibility of

the special agents. In parallel, the desired “subtlety”

of the control type can help choose between soft and

hard control. Although we believe our classification to

be exhaustive, whether further refinements are needed

remains an open question at this stage.
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