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Abstract

The collective dynamic behavior of large groups of interacting autonomous agents (swarms)

have inspired much research in both fundamental and engineering sciences. It is now widely

acknowledged that the intrinsic nonlinearities due to mutual interactions can generate highly

collective spatio-temporal patterns. Moreover, the resulting self-organized behavior cannot

be simply guessed by solely investigating the elementary dynamic rules of single individuals.

With a view to apply swarm collective behaviors to engineering, it is mandatory to thoroughly

understand and master the mechanism of emergence to ultimately address the basic question:

What individual dynamics and what type of interactions generate a given stable collective

spatio-temporal behavior ? The present doctoral work is a contribution to the general common

effort devoted to give an engineering operational answer to this simple and yet still highly

challenging question.

Swarms modeling is based on the dynamic properties of multi-agents systems (MAS). Method-

ological approaches for studying MAS are i) mathematics, ii) numerical simulation and iii)

experimental validation on physical systems. While in this work we strive to construct and

analytically solve new classes of mathematical MAS models, we also make a very special effort

to develop new MAS modeling platforms for which one is simultaneously able to offer exact

analytical results, corroborate these via simulation and finally implement the resulting control

mechanism on swarms of actual robots.

In full generality, MAS are formed by mutually interacting autonomous agents evolving in

random environments. The presence of noise sources will indeed be unavoidable in any actual

implementation. This drives us to consider coupled sets of stochastic nonlinear differential

equations as being the natural mathematical modeling framework. We first focus on the sim-

plest situations involving homogeneous swarms. Here, for large homogeneous swarms, the

mean-field approach (borrowed from statistical physics) can be used to analytically character-

ize the resulting spatio-temporal patterns from the individual agent dynamics. In this context,

we propose a new modeling platform (the so-called mixed-canonical dynamics) for which we

are able to fully bridge the gap between pure mathematics and actual robotic implementation.

In a second approach, we then consider heterogeneous swarms realized either when one

agent behaves either as a leader or a shill (i.e as an infiltrated agent), or when two different

sub-swarms compose the whole MAS. Analytical results are generally very hard to find for

heterogeneous swarms, since the mean-field approach cannot be used. In this context, we

use recent results in rank-based Brownian motions to approach some heterogeneous MAS
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Abstract

models. In particular, we are able to analytically study i) a case of soft control of the swarm by

a shill agent, and ii) the mutual interactions between two different societies (i.e., sub-groups)

of homogeneous agents. Finally, the same mathematical framework enables us to consider a

class of MAS where agents mutually interact via their environment (stigmergic interactions).

Here, we can once again simultaneously present analytical results, numerical simulations and

to ultimately implement the controller on a swarm of robotic boats.

Keywords: multi-agent system, Brownian agent, homogeneous swarm, heterogeneous swarm,

leader-based control, soft control, analytical results, numerical simulation, experimental

validation.
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Résumé

La dynamique collective de sociétés d’agents autonomes (essaims d’agents) suscite un grand

intérêt du point de vue de la recherche en sciences fondamentales et appliquées. Il est avéré

que les non-linéarités dues aux interactions mutuelles entre les agents peuvent engendrer des

motifs collectifs au niveau de l’essaim. Cependant, le comportement auto-organisé qui en

résulte ne peut pas être simplement deviné ou déduit par l’analyse seule des comportements

individuels. Afin d’utiliser ces comportements émergents dans le domaine de l’ingénierie, il

est nécessaire de maîtriser le concept d’émergence afin d’être en mesure de déduire : Quelle

dynamique individuelle, associée à quel type d’interactions, permet-elle de créer un motif stable

souhaité au niveau de la société ? La présente thèse contribue à l’effort dédié à la résolution de

ce défi.

La modélisation d’essaims est basée sur les propriétés dynamiques des systèmes multi-agents

(MAS). Les différentes approches utilisées dans l’étude des MAS sont i) l’appel aux mathéma-

tiques, ii) l’utilisation de simulations numériques et iii) la validation expérimentale sur des

systèmes physiques. Dans ce travail, nous nous efforçons de construire et d’étudier analytique-

ment de nouvelles classes de MAS, tout en mettant l’accent sur la construction de nouveaux

modèles pour lesquels il est possible de simultanément obtenir des résultats analytiques, cor-

roborer ceux-ci par des simulations numériques, et finalement implémenter le méchanisme

de contrôle résultant sur un essaim de robots.

En toute généralité, les MAS sont formés d’agents autonomes, qui interagissent et évoluent

dans un environnement aléatoire. La présence de bruit est propre à tout système physique.

Un cadre naturel consiste à modéliser nos MAS en termes de systèmes d’équations différen-

tielles stochastiques couplées. Par simplicité, nous considérons d’abord de larges essaims

homogènes, pour lesquels l’approche en champ moyen (mean-field approach, inspirée de

la physique statistique) nous permet de caractériser analytiquement les motifs au niveau de

l’essaim à partir de la connaissance de la dynamique d’un agent. Dans ce cadre, nous construi-

sons une nouvelle plateforme de modélisation (dynamique mixte canonique-dissipative),

pour laquelle nous sommes en mesure de conduire simultanément l’analyse théorique et

l’implémentation robotique sur des robots mobiles.

Nous étudions ensuite des systèmes hétérogènes plus généraux, à savoir ceux comprenant soit

i) un agent prenant le rôle de leader ou de shill (i.e., agent infiltré), soit ii) deux différentes sous-

sociétés formant le MAS. Ici, l’obtention de résultats analytiques est en général plus complexe

– l’approche en champ moyen ne pouvant en effet pas être utilisée. Des résultats récents
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obtenus dans le contexte des systèmes de mouvements Browniens ordonnés (ranked-based

Brownian motions) nous permettent d’approcher analytiquement certains MAS hétérogènes.

En particulier, nous sommes en mesure d’étudier i) un cas de soft control (contrôle d’un

essaim par l’utilisation d’un agent infiltré), et ii) un modèle d’interactions mutuelles entre

deux sociétés (i.e., sous-groupes) différentes d’agents homogènes. Le même cadre formel nous

permet enfin de considérer une classe de MAS avec interactions mutuelles via l’environnement

(interactions stigmergiques). Là encore, nous sommes en mesure de présenter à la fois des

résultats analytiques, des simulations numériques et une validation expérimentale du modèle

sur un essaim de bateaux robotiques.

Mots clefs : système multi-agents, agent Brownien, essaim homogène, essaim hétérogène,

contrôle par leader, soft control, résultats analytiques, simulation numérique, validation

expérimentale.
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Zusammenfassung

Das kollektive dynamische Verhalten großer Gruppen (Schwärme) interaktiver, autonomer

Alleinvertreter (Individuen) erweckt heuttzutage ein grosses Interesse in Forschungtätigkeit

sowohl in den Grundlagen- als auch in den Ingenieurwissenschaften. Es ist nun allgemein

akzeptiert, dass intrinsische Nichtlinearitäten aufgrund gegenseitiger Wechselwirkungen

kollektive raum-zeitliche Muster erzeugen können. Allerdings kann das resultierende selbstor-

ganisierte Verhalten nicht einfach durch Untersuchen der elementaren dynamischen Regeln

der einzelnen Individuen erraten werden. Hinsichtlich technischer Anwendung des schwarm-

kollektiven Verhaltens ist es zwingend notwendig den Mechanismus hinter dessen Entste-

hens gründlich zu verstehen und zu beherrschen, um schließlich die grundlegende Frage

beantworten zu können: Welche individuelle Dynamik und welche Art von Wechselwirkungen

ermöglichen das Erzeugen des gewünschten stabilen Verhalten? Die vorliegende Doktorarbeit

versteht sich als Beitrag zu den Anstrengungen welche allgemein unternommen werden, um

eine Ingenieur-operative antwort auf diese einfache und doch sehr herausfordernde Frage zu

erhalten.

Schwarmmodellierung basiert sich auf den dynamischen Eigenschaften von Multiagentsy-

stemen (MAS). Methodische Ansätze für das Studium von MAS beinhalten i) mathematische

Methoden, ii) numerische Simulationen und iii) experimentelle Validierung auf Grund phy-

sikalischer Systemen. In der vorliegenden Arbeit bemühen wir uns neue Klassen mathema-

tischer MAS-Modelle zu konstruieren und analytisch zu lösen. Ebenso konzentrieren wir

uns darauf neue MAS-Modellierungsplattformen zu entwickeln, welche uns erlauben sollten

simultan exakte analytische Ergebnisse zu erhalten, diese mittels Simulationen zu bestäti-

gen und schließlich den resultierenden Steuermechanismus auf Schwärme von Robotern

anzuwenden.

Ganz allgemein bilden sich MAS durch wechselwirkende autonome Alleinvertreter die sich

in zufälliger Umgebungen entwickeln. Rauschquellen sind in einer realistischen Implemen-

tierung zu berücksichtigen. Dieser Umstand bedeutet gekoppelte stochastische, nichtlineare

Differentialgleichungen als den geeignete Rahmen für die mathematische Modellierung zu

bevorzugen. Wir konzentrieren uns zunächst auf den einfachsten Fall homogener Schwär-

me. In diesem Fall kann für große homogene Schwärme der Ansatz der gemittelten Felder

(mean-field approach, aus der statistischen Physik entlehnt) angewandt werden, um das raum-

zeitliche Muster, welches sich aus der Dynamik der einzelnen Alleinvertreter ergibt, analytisch

zu charakterisieren. In diesem Rahmen schlagen wir einen neuen Modellierungsansatz vor
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(die sog. gemischt kanonische Dynamik) welche es uns ermöglicht ein Brücke zwischen reiner

Mathematik und tatsächlich robotischer Implementation zu schlagen.

In einem zweiten Fall betrachten wir heterogene Schwärme in welchen entweder ein Allein-

vertreter als Führer oder als shill (d.h. als infiltrierter Agent) auftritt, oder zwei Unterschwärme

einen vollständigen MAS bilden. In der Regel sind analytische Ergebnisse für heterogene

Schwärme sehr schwierig zu finden, da der Ansatz der gemitteltem Felder nicht verwendet

werden kann. In diesem Zusammenhang nutzen wir jüngste Ergebnisse aus der rank based

Brownschen Bewegungen Theorie, um sich einigen heterogenen MAS-Systemen anzunähern.

Insbesondere sind wir in der Lage i) einen Fall schwacher Steuerung des Schwarms durch

einen shill Agenten und ii) die gegenseitigen Wechselwirkungen zwischen zwei verschiedenen

Gesellschaften (das heißt, Untergruppen) von homogenen Alleinvertreter analytisch zu stu-

dieren. Schließlich ermöglicht uns derselbe mathematische Rahmen eine Klasse von MAS zu

betrachten, in welcher die Agenten gegenseitig über ihre Umwelt (stigmergic interaction) in

Wechselwirkung treten. Für diesen Fall können wir ebenfalls gleichzeitig analytische Resultate,

numerische Simulationen und die Implementation der Steuerung auf einem Schwarm von

Roboter-Booten präsentieren.

Stichwörter: Multiagentensystem, Brownscher Agent, homogener Schwarm, heterogener

Schwarm, Führer-basierte Steuerung, Soft-Steuerung, Analyseergebnisse, numerische Simula-

tion, experimentelle Validierung.

vi



Sommario

La dinamica collettiva di società di agenti autonomi (sciami di agenti) suscita un grande

interesse dal punto di vista della ricerca nelle scienze fondamentali e applicate. Si è verificato

che le non-linearità in seguito alle interazioni mutuali tra gli agenti possono provocare dei

motivi collettivi a livello dello sciame. Nel frattempo, il comportamento auto-organizzato

risultante non può essere facilmente indovinato o dedotto solo dall’analisi dei comportamenti

individuali. Per utilizzare comportamenti emergenti nel campo dell’ingegneria, è necessario

controllare il concetto di emergenza per essere in grado di dedurre: Quale dinamica indivi-

duale e quale tipo di interazioni permette di creare un motivo stabile desiderato a livello della

società? La presente tesi contribuisce allo sforzo dedicato alla risoluzione di questo quesito.

La modellazione di sciami si basa sulle proprietà dinamiche dei sistemi multi-agenti (MAS). I

diversi approcci utilizzati nello studio dei MAS sono i) il ricorso alla matematica, ii) l’uso di

simulazioni numeriche e iii) la validazione sperimentale sui sistemi fisici. In questo lavoro,

ci sforziamo di costruire e studiare analiticamente nuove classi di MAS, mettendo l’accento

sulla costruzione di nuovi modelli per i quali è possibile simultaneamente ottenere risultati

analitici, corroborarli con simulazioni numeriche, e finalmente implementare il modello su

uno sciame di robot.

In generale, i MAS sono formati da agenti autonomi che interagiscono mutualmente ed

evolvono in un ambiente aleatorio. La presenza di rumore è propria a qualsiasi sistema

fisico. Un contesto naturale consiste nel modellizzare i nostri MAS in termini di sistemi di

equazioni differenziali stocastiche. Per semplicità, consideriamo innanzitutto larghi sciami

omogenei, per i quali l’approccio del campo medio (mean-field approach, ispirata dalla fisica

statistica) ci permette di caratterizzare analiticamente i motivi a livello dello sciame a partire

dalla conoscenza della dinamica di un agente. In questo contesto, costruiamo une nuova

piattaforma di modellazione (la cosiddetta dinamica mista canonica-dissipativa), per la quale

siamo in grado di condurre simultaneamente l’analisi teorica e l’implementazione robotica su

robot mobile.

Studiamo poi sistemi eterogeni più generali, vale a dire quelli che includono i) un agente nel

ruolo di leader o shill (cioè, agente infiltrato), o ii) due sotto-società differente formando il

MAS. In questo caso, l’ottenimento di risultati analitici é in generale più complessa, dato che

l’approccio del campo medio non puo’ essere utilizzata Risultati recenti ottenuti nel contesto

dei sistemi di moti Browniani ordinati (ranked-based Brownian motions) ci permettono di

avvicinare analiticamente certi MAS eterogeni. In particolare, siamo in grado di studiare i)
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un caso di soft control (controllo di uno sciame per l’utilizzazione di un agente infiltrato), e

ii) la mutua interazione tra due differenti sotto-gruppi che formano il MAS. Infine, lo stesso

contesto formale ci permette di considerare una classe di MAS dove gli agenti interagiscono

mutualmente attraverso l’ambiente (interazioni stigmergiche). Di nuovo, siamo in grado di

presentare sia risultati analitici che simulazioni numeriche e una validazione sperimentale

del modello su uno sciame di navi robotiche.

Parole chiave: sistema multi-agenti, agente Browniano, sciame omogeno, sciame eterogeno,

controllo da un leader, soft control, risultati analitici, simulazione numerica, validazione

sperimentale.
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Introduction

United We Stand

“United we stand” is a historical saying, having

been often used as a motto by nations/states

or political causes. It means that groups of

individuals can achieve more together than

what single individuals can on their own. The

full expression is usually quoted as “United

we stand, divided we fall”: only by working

together can individuals achieve critical goals.

The power of coherent groups – where individ-

uals work together toward the same goal(s) – is

well known, and has been repetitively demon-

strated throughout history and in the scien-

tific literature. For example, Figure 1 shows a

1941 second world war American propaganda

poster, featuring the full expression of the say-

ing. Like always, collective power can either

be used to do good or evil. In the subsequent

sections, we warn the reader that we will only

consider group control neutrally, as a way of

enhancing a group’s performance (i.e., regard-

less of the nature of the group’s objective).

Figure 1 – 1941 second world war American
propaganda poster. Image in the Public Do-
main.

Groups dynamics – i.e., how a group acts, with regard to the behavior of its individuals – is an

active research topic. Group dynamics have often been studied theoretically using a variety of

tools, such as those offered by stochastic theory and dynamical systems. Other more recent

approaches include numerical and experimental simulations. Theoretical models are either

constructed based on actual observations or measurements, or devised to obtain relevant

group behaviors. The theory of group behavior is strongly tied with other sciences, to cite a

restricted selection:
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• In ethology, the dynamics of groups of social animals are studied. Theoretical models,

constructed from observations of actual animals, are constructed and then validated

against data obtained from real populations. Each animal society has its own hierarchy

and rules, making each population singular in its essence. Interactions between groups

of animals can also be considered, for example, in situations of predation or territorial

concurrence. The case of a pride of lions attacking a herd of wildebeest can be studied

by considering one global group encompassing both types of individuals. In this hetero-

geneous group, the two types of individuals – namely, the lions and the wildebeests –

obviously have opposite goals.

• In sociology, human groups are the main focus. Humans, are social primates, but have

remained strongly individualist. It is more difficult for them than for animals to be part

of a coherent group. Humans feel that they need to sacrifice a part of their self to let

the group’s needs stand before their own, even though they know the power of standing

united. Human crowds are often studied with that essential individuality in mind, which

differs from animal groups. Researches in crowd behavior have, for example, been used

to help optimize public spaces by studying the trajectories of pedestrians. One can use

the knowledge obtained from the study of a given crowd in order to control it. Crowd

control is a powerful tool, which can be constructively used, for example to help define

and test emergency scenarios. It can also be used destructively to break cohesion in

crowds or influence voting pools unnoticed.

• In robotics, swarm robotics in particular, many control mechanisms are devised to allow

a group of robots to work together on completing a given task. Swarm robotics often

takes its inspiration from the fields of ethology or crowd study/control. Recent studies,

at the frontier between robotics and ethology, study the possibility to infiltrate (and

sometimes control) animal groups by using robots, recognized as fellows by the animals.

Contrary to sociology and ethology, robotics control mechanism, defining the behavior

of the individuals, are usually constructed (i.e., not modeled after observed behaviors).

This allows to test individual behaviors, and discover if they lead to interesting behaviors

at the group level. This can sometimes help validate theoretic models of ethology or

sociology.

Modeling a Group

To begin the theoretic study of groups of individuals, we need a way to represent those groups.

Two different approaches can be followed: the macro- and microscopic representations of

groups. Macroscopically, a group is effectively simplified to a single entity. This entity is ob-

tained by grouping the individuals contained within. This aggregation is similar to a complex

solid, which can sometimes be simplified to a single point in physics. The main drawback

with this simplified approach is the fact that we lose information about each individual in the

group, in particular the swarm’s distribution.
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This is the reason why, in this thesis, we will systematically follow the microscopic

representation of groups.

In this representation, a group is built upon the behaviors of its individuals. This approach

allows a more faithful representation of reality, taking into account each individual’s contribu-

tion into the group’s dynamic.

However, since we have chosen to represent a group at the level of its most basic constituents

– the individuals –, it is more difficult to discuss the whole group’s dynamic. In the microscopic

representation, we are interested in determining a group’s behavior from the knowledge of its

constituents’ behavior. In other words, we are looking for emerging patterns that may arise

from the individuals’ behaviors, at the group level. Emergence is defined by the possibility

that a group exhibits a property that the individuals contained within do not. Emergence is

a perfect example of “United we stand”: no individual possesses a property on its own, but

working together the whole group does.

These emergent properties come from the

fact that the individuals are able to work to-

gether. Interactions between the individu-

als allow them to synchronize and create a

coherent group dynamic. Figure 2 shows a

street art from Banksy, illustrating how self-

organization within a group can effectively

lead to greater strength. The capability to in-

teract with the other individuals is the foun-

dation of the concept of agent.
Figure 2 – Emergence of strength in a group
by self-organization. Art piece from Banksy.

In this thesis, we will systematically consider groups of agents, capable of interacting with

one another, creating emergent group properties.

What is an Agent ?

An agent is an individual of a group, that has an autonomous decision capability, and which

can communicate with his fellow agents. The concept of agent is opposed to that of particle,

which is an individual which simply follows a given dynamic. A particle does not take any

decision, and does not communicate with other particles. An important capacity of an agent is

that of being able to make decisions, based on the other agents’ states and on the environment.

As an illustration of this critical difference, consider a portion of the ocean, where fish and
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plankton live. In this illustration, the plankton can be simplified as particles, whereas fishes

are better modeled as agents. Fish and plankton are influenced by the movement of the mass

of water, and can feel the influence of tides or underwater currents. But whereas the plankton

can only derive, driven by their environment, fishes have a capability to decide in which

direction to swim. Ultimately, a strong enough current cannot be countered by the fishes,

but in general, they will enjoy a far greater freedom of movement than plankton. Contrary to

the plankton, the fishes will also be able to interact with their fellows, for example to remain

schooled with them. For example, each fish can adapt its direction and speed to remain with

its fellows, effectively creating a group that will give him a greater chance for survival.

Two large families of agents exist, namely, the deliberative and reactive agents. A deliberative

agent has a planned behavior, which results from its thorough examination of the environment

and the task at hand. After constructing its plan, it simply carries it out. A reactive agent, on

the other hand, does not have a fully planned behavior, but a set of rules defining how to

react to external stimuli. It will follow a nominal dynamic, and mainly react to environmental

changes or interactions with its fellows.

Imagine that you are working for a delivery company, and that your task for the day is the

delivery of packages to different addresses in a city. You could follow a deliberative planning:

you would take some time and come up with a perfect itinerary for the delivery. This itinerary

would be based on a thorough study of the city map, and on information received from other

drivers in the city. You would finally stick to your carefully planned journey, only deviating

from it if you encounter bad traffic or an accident for example. On the other hand, the reactive

planning would be to directly start driving to the first address. You would then adapt your

itinerary as you drive, based on the traffic conditions you encounter and on the information

you receive from other drivers.

In general, you cannot prove than one behavior performs better than the other (with regard

to the underlying swarm objective function), and the choice between the two must be made

depending on the task at hand and the variability of the environment. If the environment is

unpredictable, reactivity will let you better deal with it, whereas in more stable environment,

following a carefully planned behavior can be more suitable. The difference between delibera-

tive and reactive agents embodies the dichotomy between strategy (i.e., planned behavior)

and tactic (i.e., a set of reaction rules). Helmuth von Moltke the Elder is known for his quote

“No plan survives contact with the enemy”, meaning that it does not matter how good your

strategy is, you must always also have a tactic to fall back on. This is why agents rarely are only

reactive or only deliberative, but they generally tend to embody one behavior more than the

other.

In this thesis, we will systematically consider mostly reactive agents, which better model

the groups we study.
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We let agents follow a nominal dynamic, defining their behavior in the absence of interac-

tions with their fellows. This nominal dynamic encompasses the possible influences of the

environment on each agent, and their individual behavior. On top of this dynamic, we then

characterize the influence of their interactions with other agents. A group of agents is called a

swarm. A swarm of such agents, following their individual dynamic and capable of interacting

with each other, is called a Multi-agent system (MAS).

Multi-Agent Systems

In a MAS, each agent is defined by its state, which can change through time. The state of an

agent is the value of its internal variables – discrete or continuous. For example, one such

variable can define its position in space (i.e., a vector in d dimensions to represent a point

in Rd ). Variables can also be tags, defining how the agent is behaving. For instance, a tag

A ∈ {1,0} can respectively define whether or not an agent is active. In this particular case, an

agent with A = 0 cannot move, at least until its tag value changes back to 1. The dynamic of

an agent defines how its state changes with respect to time, depending on the environment,

its current state and its interactions with the other agents.

As mentioned previously, each agent in a MAS has a nominal dynamic and can interact

with its fellows. Agents interact by exchanging information, similarly to the exchange of

messages. Restrictions can exist, defining which agents can directly interact. In general, a

virtual interaction network can be defined in the system. Two agents are connected in this

virtual network if and only if they can interact. This network can either be time-dependent or

not.

In the case of a time-independent network, a fixed hierarchy exists within the system. Some

agents may not be able to directly interact with others, and must go through intermediate

agents to pass their messages along. As an example, systems with global interactions possess

time-independent interaction networks. In those systems, all agents are always able to interact

with all other agents. In such cases, agents share a global consciousness, and share the same

information at all time. When global interactions are involved, centralized systems have a

time-independent network. In those systems, one agent (acting as a base station) receives all

messages, and either routes them to their destination, or broadcasts them to all agents in the

system. These systems possess a star-shaped interaction network, with the base station at the

center.

In systems with time-dependent interactions networks, the interactions depend on the state

of the agents. For instance, in systems with local interactions, two agents are only able to

interact if they are close enough. Local interactions mean that the agents get information only

from their close neighbors. In those systems, two agents far from each other could possess

very different information at a given time. For example, decentralized systems only let agents

gather information locally (by interactions with their close neighbors, or from their local

environment). Agents in decentralized systems are more autonomous, but are often harder to
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synchronize and to keep flocked together. Systems with local interactions are generally harder

to analyze, but describe more accurately the variability of the knowledge between individual

agents, therefore better reflecting reality.

To provide an almost perfect model of the reality, one may wish to define very complex agents,

with a large number of state variables. This representation of these agents would be very

close to the real world, but the resulting MAS would be nearly impossible to study. For this

reason, one generally tries to simplify agents by reducing their number of state variables. A

MAS is always an oversimplified model of the reality. But a well simplified MAS can give useful

insights into the real world situation it models.

In this thesis, we systematically try to consider analytically tractable MAS’s, i.e., MAS’s

which can be theoretically studied.

In those systems, agents follow dynamics which enable an analytical investigation. Our main

aim is to obtain analytical results, which can then be confirmed and illustrated through

numerical simulations. Analytical results are time-independent, and far more reliable than

empirical results. However, they are more difficult to obtain, and often require a specific

kind of agent dynamics in order to use the analytical tools at our disposal. We feel that the

restrictions brought by this choice do not reduce the usability of the results presented in

this thesis. To obtain such MAS’s, we follow a widely used approach Schweitzer (2003), and

consider Brownian agents.

Brownian Agents

Brownian agents are driven by a Gaussian Noise source, usually a White Gaussian Noise

(WGN) source. Concretely, a random component is added to each agent’s state, generally to

its position in the state space. The noise source reflects the sum of the variations due to the

complexity levels that were lost during the simplification. This random noise source effectively

simplifies the agent’s dynamic, while still reflecting the full complexity it should possess to

provide a model closer to reality.

Mathematically, each agent’s state is modeled as a diffusion process on its continuous state

space. Each agent’s dynamic is then expressed as a set of stochastic differential equations

(SDE), defining how it changes through time. The state variables are all continuous, and the

speed at which they change is quantified as a function of their actual state.

We let ~Ai (t ) be the state vector, containing the value of all state variables, of agent i at time t .

We then express agent i ’s dynamic by giving an update function f (~Ai (t )), defining how its state

changes, with regard to its current state. A second function I
[
~Ai ,~A

]
(with ~A = (

~A1, ...,~AN
)
)

characterizes the interactions of agent i with its fellows. The values of the functions f and

I express the instantaneous speeds of the agent in the state space. In particular, we call
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the instantaneous speed of an agent in the position state space its drift. Since we consider

Brownian agents, WGN sources d ~Wi (t ) are also added to the dynamic of each agent. In general,

we say that agent i diffuses on its state space, following the dynamic:

d~Ai (t ) = f (~Ai (t )) ·d t︸ ︷︷ ︸
indiv. behavior

+ I
[
~Ai ,~A

] ·d t︸ ︷︷ ︸
interactions

+ σd ~Wi (t )︸ ︷︷ ︸
WGN source

.
(1)

The WGN source dW (t ) is a statistical noise with a known probability distribution function:

a Normal distribution with mean 0 and variance 1 (i.e., N (0,1)). As a consequence of the

Central Limit Theorem, the WGN effectively models the sum of a large number of different

independent noise sources. This is the reason why this noise source is successfully used to

model the internal complexity of an agent.

Dynamical systems theory provides us with tools to analytically investigate stochastic pro-

cesses, especially those driven by WGN sources. Since the dynamic is stochastic, we must

represent the position of an agent as a probability distribution, expressing the probability of

finding the agent in a global area at a given time. For particles, the Fokker-Planck Equation

(FPE) provides us with a way of estimating the future position of a particle, with regard to

its dynamic. The FPE effectively propagates in the future the probability distribution of the

position of a particle, knowing its nominal dynamic and the variance of its noise source. For

agents, we can use the FPE for the nominal dynamics’ propagation, but we need a tool to inves-

tigate the influence of interactions. The mean-field (MF) approach allows, for a homogeneous

MAS (i.e., where all agents follow the same dynamic), to characterize the agents interactions.

For large homogeneous swarms, the MF approach states that any randomly selected agent is

representative of the whole swarm. The influence of all agents on a representative agent can be

expressed as one external interaction field. From the nominal dynamic of the representative

agent and the effects of this field, the whole swarm dynamic can finally be derived. The results

given by the MF approach are exact for swarm of N →∞ agents, but remain very accurate for

large enough swarms (N ≈ 1000).

In this thesis, we systematically consider the heterogeneity of a group at the behavioral

level, i.e., heterogeneous agents have different dynamics Eq.(1). In robotics terms, we

therefore consider software heterogeneity (as opposed to hardware heterogeneity).

Controlling a Group

When attempting to control a swarm of agents, we will here consider two different approaches,

that we will refer to as planned or real-time control. Similarly to the difference between

reactive and deliberative agents, these two approaches respectively embody the concepts of
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“strategy” and “tactic”. Planned control lets us define a swarm strategy, which the agents will

then follow. Real-time control is usually more difficult to implement. It lets the agents follow a

nominal dynamic, but allows to externally regain control of the swarm at will.

Planned Control

In robotic swarms, the dynamic of each agent can be constructed. If the swarm’s dynamic is

homogeneous, it allows the use of the MF approach. One can therefore hope for analytical

results in those situations. For general heterogeneous swarms, no general analytical approach

exists, and analytical results are far more difficult to obtain.

Planned control (of homogeneous swarms) is easier to define and study, but behaves poorly

when faced with real-time changes. Once the strategy (i.e., the dynamic) has been defined,

the agents will blindly follow it, and will not be able to react to unexpected situations. If one

robot in a homogeneous swarm fails, the overall dynamic of the swarm most likely becomes

unstable. A homogeneous swarm dynamic performs well, as long as it is only used under

exactly the conditions it was designed for.

Real-Time Control

To obtain real-time control of a swarm, one must be able to control each agent continually.

For large swarms of agents, one wishes not to control each agent separately, but to defer the

control of the swarm to a few selected special agents. These special agents can be externally

controlled, effectively enabling the control of the whole swarm.

1[...]The first type of real-time swarm control can be achieved by using a number of leader agents

(possibly only one). In this case, all regular agents must be aware of the presence of the special

agents. Accordingly, the dynamics of the regular agents must incorporate the role of the leader

agents a priori. The result is a heterogeneous swarm, where regular agents simultaneously

follow their own nominal dynamics, and feel the influence of the leader agents. By adequately

controlling the leader agents, one can therefore control the whole group.

Within leader-controlled swarms, we further differentiate two classes of models. The difference

lies in whether the special agents can be identified as such by an external observer of the

swarm’s behavior. This observer would be aware of the presence of special agents, but would

not be allowed access to the underlying swarm’s dynamics. Whether a leader can be externally

recognized defines its visibility, and can help us to assess its vulnerability. Since a small number

of leader agents control the entire swarm, leaders are the main liability of the group. Leaders are

single points of failure in a swarm, and could be targeted by external forces wishing to break the

swarm’s cohesion and dynamic. Depending on the application, hiding the leaders’ identity can

therefore effectively protect the swarm.

1Italic text in the present section is reproduced from the conference paper Sartoretti (2015).
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Apparent leaders usually stand out in the swarm by their positioning. They act as general

landmarks for the regular agents, either stationary or moving, and can therefore easily be

identified by an external observer. Hidden leader agents are intrinsically less vulnerable than

apparent leaders. Hidden leaders are often encountered in swarms of social animals; a prime

example is swarms of bees. When swarming, either moving or resting, regular bees regroup

around the queen bee (which acts as the leader). Even when the swarm is moving (and thus less

tightly packed around the queen), an external observer will not be able to tell the queen from

the regular bees. This allows the swarm to safely move to a new hive location, led by a leader

hidden within the swarm and following a similar dynamics.

The second controlling mechanism consists of inserting shill agents in a swarm. These infiltrated

agents are recognized by the other agents as regular agents. Control of these infiltrated agents

can lead to the control of the whole swarm, provided one possesses extensive knowledge of the

regular agents’ dynamics. This type of control is often referred to as soft control, since the swarm

is not aware of being infiltrated. The influence of the shill agents is not explicitly included in the

dynamic of each agent. Shills control the other agents only by taking advantage of the agents’

interactions.

In this thesis, we introduce the term hard control, that we will use indistinctively from

leader-based control, in contrast with the term soft control.

Since shills are infiltrated within an unwitting swarm, their actions can positively influence

the swarm’s dynamics. This constructive soft control can help the swarm fulfill its objectives,

by adding the possibility of a real-time external control. Alternatively, soft control can also be

used destructively – for example, it may break the swarm cohesion or drive the swarm toward

an incorrect direction.

We introduce a similar distinction between apparent and hidden shill agents. An example in

which shills must be apparent to an external observer, to control a swarm, can help assess the

robustness of the swarm’s dynamics. In those cases, an infiltrated swarm can be immediately

recognized as such from the outside, precluding destructive shills to quietly take control of the

swarm. Cases in which the soft control can be achieved using hidden shills help protect the

special agent’s identity. In the same manner as the leaders, shill agents can be a liability since

the whole swarm can be controlled through their single influence. However, since agents in a

soft-controlled swarm do not recognize their shills, the swarm can resume functioning on its

own (uncontrolled) in their absence.[...]

Figure 3 illustrate an actual case of hard and soft control. Leader-controlled groups of animals

are often encountered in nature, where leaders are often visible. Soft control of animal swarms

have been studied, usually with ties in robotics to supply the actual shills.

11



State of the Art

In this section, we present the reader with a brief review of the literature associated with

multi-agent systems. We mainly focus on homogeneous MAS and their applications to other

topics, and on cases of soft control. Leader-based control is discussed only briefly, mainly for

the completeness of the present thesis.

Figure 3 – Left: Pack of wild dogs, driven by the leading dog. Here the leader is clearly apparent.
Right: Robotic shill used to control the decisions of a group of cockroaches in Halloy et al.
(2007). Here also the shill is apparent (i.e., easily recognizable by an external observer).

Homogeneous Swarms of Agents

Scalar and Planar Brownian swarms

In this subsection, we only list the type of analytical approaches that we plan to adopt in

this thesis (i.e., simulation experiments are not reported here). The seminal contribution

of F. Schweitzer Schweitzer (2003) sets several basic elements of interacting agent dynamics

including some inertial features. Gazi and Fidan (2007) provides us with a comprehensive

review of the different MAS construction mechanisms, and of their control.

In parallel, the monograph by T. D. Frank Frank (2005) and the recent contribution Chavanis

(2008) offer comprehensive frameworks devoted to nonlinear Fokker-Planck equations. It is of

direct use for the mean-field approach that can be used for Brownian interacting agents. Zola

et al. (2008) recently studied solvable nonlinear FPEs which can be interpreted as a mean-field

dynamics for interacting agents. More recent analytically solvable models stylizing some

aspects of reality are becoming scarce Hongler et al. (2014); Bertin et al. (2006).

A large family of dynamics encompasses all potential-based dynamics. In this family, each

agent’s dynamics directly depends on a potential landscape V (~x), attributing an altitude to

each point~x in the state space. Agents are naturally driven towards the lower sections of this

landscape, and naturally follow a gradient approach. Their instantaneous speed is then usually

obtained by deriving the potential function at their current position: −∂V
∂~x (~x). In the large
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family of potential-ruled algorithms, we can cite for example Gazi and Passino (2004); Paley

et al. (2007) where global attractive/repulsive potentials are used to obtain a cohesive swarm.

Local potentials, constructed separately by each agent, are used to devise the dynamics of

robotic swarms in Hsieh et al. (2008); Sepulchre et al. (2008).

In economy, MAS have been used to model the and analyze the movement of stocks or portfolio

management Fernholz (2002). A large family of models let agent have rank-based dynamics

Chatterjee and Pal (2010); Pal and Pitman (2008). In other words, the agents’ behaviors change

according to a ranking of their position (i.e., the price of the stock they are modeling). The

first famous model of this kind was the Atlas model, where agents only had a rank-based

drift Banner et al. (2005). An extension to this model was then introduced in Ichiba et al.

(2011), creating the Hybrid Atlas Model, where agents have a nominal drift, a rank-based drift

and a global swarm drift. These rank-based swarms are effectively heterogeneous, but some

analytical results can still be expressed.

Ethological Models

Many ethological studies focus on the emergence and hold of flocking in swarm of animals

Aldana et al. (2007). Flocking occurs when a swarm comes together and creates a cohesive

group, where all individuals can remain together through movement and even direction

changes. The first attempt at characterizing flocking was done in Reynolds (1987), where the

first rules to obtain a flocking swarm were devised: the rules of Reynolds. Nowadays, most

dynamics are proven to create flocking in a system by showing that they obey to the rules

of Reynolds Olfati-Saber (2006); Dosseti (2012). Fundamental papers like Cucker and Smale

(2007a,b) offer a synthesized and now almost classical view on emergent flocking behaviors

and relevant modeling issues for MAS.

Decentralized models, where agents only rely on locally gathered information, and local

interactions with neighbors, to create flocking patterns, have been pioneered by Viczek et al.

(1995). The famous Viczek model has then been extended in Chate et al. (2008), but where

no noise source is considered in the dynamic. Leonard (2013) discusses how decentralized

ethological models can positively influence the construction of powerful MAS. In Bialek et al.

(2012), the flocking of birds is studied, and a model using non metrics interactions is proposed

and tested against real life data.

Eftimie (2012) provides a good review of the aggregation mechanisms in biological systems. In

Yates et al. (2009), the importance of the noise in the dynamics of flocking herds in movement

is shown, leading to the conclusion that noise is needed in order to let a swarm remain flocked

through changes in direction. A small survey of (human) crowd modeling can finally be found

in Bellomo and Dogbe (2011).
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Agent Circulation in Production and Service Networks

In recent contributions Filliger and Hongler (2005); Gallay and Hongler (2008b,a), an agent

character has been introduced in elementary queueing models allowing analytical treatment.

These models show that interactions between autonomous agents traveling in queueing

networks may give rise to the emergence of dissipative spatio-temporal flow patterns. In Gallay

and Hongler (2009a), several simple queueing networks involving agents with smart parts

features have been analytically discussed. More particularly, we have considered situations

where autonomous agents select, at a given time and at a given vertex location, their routing in

the network, according to (individual) historical data (such as waiting times) collected during

their past progression in the network. For several simple network configurations and despite

the intrinsically non-Markovian character of the dynamics, we have been able to discuss

analytically the emerging collective dynamics that such a circulation of autonomous agents

generates. Feedback loops in the network topology coupled with the presence of delays in the

routing selection mechanisms produce a wealth of dynamical phenomena like self-sustained

generically stable oscillations, spatio-temporal patterns, stabilization by noise phenomena

and oscillator synchronization that are explicitly discussed. Very recently, the idea that the

emergence of spatio-temporal patterns could actually be used to produce optimal flow control

has been explored in Gallay and Hongler (2009b).

Homogeneous Robotic Swarms

For the state of the art in homogeneous robotics swarm, we refer the reader to the introduction

of Chapter 2, where we present a comprehensive state of the art for homogeneous MAS applied

to swarm robotics.

Hard Control of Swarms

Leader-based control is often encountered in animal swarms, where some individuals may

have a special knowledge and should be able to guide a whole group toward the correct

direction. Couzin et al. (2005) discusses how the proportion of leader agents, having a correct

information, can affect the course of a large moving group of animals. Their result is very

interesting, as well as counter-intuitive: it states that the larger the group, the less the number

of leaders is needed to achieve the best decision making.

Analytical study of Brownian swarm controlled by a leader is presented in Aureli and Porfiri

(2010). In this paper, the leader can be shown to induce different aggregation states to the

whole swarm. In Nourian et al. (2010), the case of a swarm flocking around a group of leaders

is studied from the point of view of game theory. An analytical approach can even be applied,

using the MF approach on both the group of leaders and of followers.

In robotics, leader-based control have been extensively studied to control swarms of mobile

robots. In Desai et al. (1998), authors give the first ideas toward a leader-follower dynamic,
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allowing to synchronize the motion of multiple robots behind a few leading robots. Tanner

et al. (2004) further discusses the stability of leader-follower type formations, with regard

to the leader’s behavior. The possible issues with decentralized leader-follower models are

discussed, and conditions on the interaction graph within the swarm are presented in Ji et al.

(2009). Recently, in Michini et al. (2014), a decentralized leader-follower dynamic is devised to

successfully allow a swarm of sub-aquatic mobile robots to track a given manifold.

Soft Control of Swarms

Soft Control of Brownian Swarms

Soft control of swarms, via the use of shill agents, is a fairly recent topic of study. As mentioned

previously, the heterogeneity of the group generally precludes the use of the MF approach.

In Han et al. (2006), the authors constructed, for a specific model at hand, a control law for

the shill and showed numerically that the shill can synchronize the whole group to a given

objective. In a recent contribution, a different strategy of the shill is then studied Jing and Lin

(2010).

Constructive soft control, allowing the swarm to remain cohesive or to reach a consensus,

have been studied in Wang et al. (2011); Wang and Guo (2008). In Wang et al. (2009), soft

control of a swarm via the use of potential functions is achieved.

Robotic Soft Control of Animal Swarms

Recently, the soft control of actual animal groups has been achieved, by introducing robotic

shills in societies of animals. Animals societies are very complex decentralized MAS, and the

journey from biological systems to artificial models is discussed in Bonabeau et al. (1999).

Mondada et al. (2011) discusses the approach and methodology needed to design a robotic

shill, and to devise its dynamic.

A robotic shill has been successfully recognized as their mother by hatching chicks in Gri-

bovskiy et al. (2010). External influence of internal decision mechanisms has been managed

by a robotic shill inserted within a colony of cockroaches in Halloy et al. (2007). Robofish, a

robotic fish, has also been developed to soft control schools of fishes in Faria et al. (2010).

In Vaughan et al. (2000), a robotic shill is used to soft control a swarm of ducklings, after a

potential-based model is devised to theoretically investigate the soft control of the swarm.

Thesis Outline

In this thesis, we present different examples of planned and real-time swarm controls. After

this introduction, we provide the reader with a short review of literature on the subject of

MAS’s, and their planned and real-time control, concluding Part I. The outline of the thesis is
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summarized in Table 1, where the chapters are separated along the two main axes. The first

axis is the type of control used, and the second the visibility of the special agent used (if the

swarm is controlled in real-time).

Table 1 – Structure of the thesis.

Introduction (Part I)

Planned Control

(Part II)

aaaaaaaaaaaa

Control

Visibility

Control

Type

Real-Time Control

Hard control

(Part III)

Soft control

(Part IV)

Chapter 1

Chapter 2

Apparent Chapter 3 Chapter 6

Hidden Chapter 4
Chapter 6

Chapter 5

Strongly Heterogeneous Chapter 7

Swarms (Part V) Chapter 8

Conclusion (Part VI)

Appendices (Part VII)

Bibliography (Part VIII)

In Part II, we focus on planned control of homogeneous swarms. Part III and IV consider

real-time swarm control using special agents. Part V presents strongly heterogeneous systems.

In Part VI, we present concluding remarks to this thesis, and perspectives for future research.

Appendices are featured in Part VII, while Part VIII provides the reader with the bibliography

and the index. The author’s CV and publications are presented after the index, at the end of

the present thesis.

Original Contributions of the Thesis

Innovative contributions to the state of the art, in the field of multi-agent systems, are featured

in Chapters 1-2, part of Chapter 3 and Chapters 4-8. More specifically, those chapters are

detailed as follows:

• In Chapter 1, we present a homogeneous swarm dynamics, where planar agents follow

a distributed mixed canonical-dissipative (MCD) dynamics. Using only locally gathered
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information, agents are able to consensually select a closed curve within a given family

of curves and circulate on it. For circular orbits, the radius of the limit cycle can be

explicitly expressed.

• In Chapter 2, we present a natural extension of the MCD dynamics to other closed

curves. We then present a robotic control mechanism, allowing a swarm of mobile

robots to follow the circular MCD dynamics of Chapter 1. We experimentally validate

our model by implementing the robotic control mechanism on actual mobile robots,

and run 25 experiments.

• In Chapter 3 we present simple examples of leader-controlled robotic swarms, with a

visible leader. The control of the swarm is derived from Braitenberg-inspired dynamics,

similar to the robotic adaptation of the MCD dynamic of Chapter 2. Since visible leaders

have been extensively studied in the literature, these examples are presented here mainly

for completeness.

• In Chapter 4, we present an analytically tractable swarm dynamics, where agents are

controlled by a leader, which remains hidden in the swarm. The example is taken from

the field of nonlinear estimation problems. The swarm of regular agents follow the

dynamic of a feedback particle filter, whereas the leader acts as the noisy signal to filter.

• In Chapter 5, we present an extension of the circular MCD dynamic of Chapter 1. Now,

the agents also self-select their angular speed on the circular limit cycle by local interac-

tions. A shill agent, with a constant angular speed, is then able to soft control the global

swarm’s angular speed while remaining hidden.

• In Chapter 6, we present the soft control of a swarm of Brownian agents following a

Hybrid Atlas Model on R. A shill agent, driven by a ballistic noise source, is able to drive

an initially stationary swarm toward one direction. Depending on the shill’s level of

turbulence, it can either remain hidden within the swarm or become apparent.

• In Chapter 7, we present a case of interactions between societies of agents. In each

society, agents achieve flocking by mutual interactions, and the whole society propagates

in one direction as a soliton wave. When two societies of agents meet, interactions

between their agents can either allow them to remain flocked together, as the faster

society pulls the slowest one, or both societies reach asymptotically freedom.

• In Chapter 8, we consider the case of a MAS with stigmergic agent interactions. With this

type of interactions, agents interact indirectly, by influencing the global state of their

environment. In this chapter, the control of a swarm of robotic boats is devised, in order

to collaboratively approach, grasp and manipulate a floating object in a distributed

manner. Analytical results on the object trajectory are presented, and numerical sim-

ulations confirm our theoretical findings. Finally, the experimental validation of our

distributed control mechanism is performed using a swarm of N = 4 robotic boats.
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1 Self-Organized Mixed Canonical-
Dissipative Dynamics for Brownian
Planar Agents

Summary

We consider a collection of N homogeneous interacting Brownian agents evolving on the plane.

The time continuous individual dynamics are jointly driven by mixed canonical-dissipative

(MCD) type dynamics and White Gaussian noise sources. Each agent is permanently at the

center of a finite size observation disk Dρ . Steadily with time, agents count the number of their

fellows located in Dρ . This information is then used to re-actualize control parameters entering

into the MCD. Dissipation mechanisms together with the noise sources ultimately drive the

dynamics towards a consensual stationary regime characterized by an invariant measure Ps

on an appropriate probability space. A mean field approach enables to analytically calculate

Ps . For each agent, our dynamics naturally implement: i) a trend to not be isolated, ii) a trend

to avoid strong proximity, and iii) an overall trend to be attracted to a polar point. The MCD

drift is derived from a Hamiltonian function H and drives the agents to follow one consensual

orbit coinciding with a level curve of H . When H is the harmonic oscillator, we are able to

analytically derive the consensual orbit as a function of the size of Dρ . Generalizations involving

more complex H are explicitly worked out. Among these illustrations, we study a Hamiltonian

whose level curves are the Cassini’s ovals. A selection of simulations experiments corroborating

the theoretical findings are presented.

1.1 Introduction

The emergence of structured collective dynamical patterns from simple agent level behaviors

as observed in nature for fishes, birds, insects and the like inspires a sustained research activity

in management and control of complex systems, and particularly in the domain of swarm

robotics. The capability of agents to act asynchronously to determine specific trajectories

by relying only on local sensing is definitely attractive when a centralized control becomes
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Chapter 1. Self-Organized Mixed Canonical-Dissipative Dynamics for Brownian Planar
Agents

unfeasible - for example to coordinate large assemblies of autonomous robots or other agents.

One possibility to address these difficult global control issues is by implementing adaptive

strategies where identical robots are programmed with elementary features requiring limited

on-board real time sensing and computational resources. This general and truly simple idea

triggers a strong interdisciplinary research activity which, as emphasized in the recent review

Gazi and Fidan (2007), encompasses a relatively wide spectrum of perspectives ranging from

ethology to swarm robotics. Focusing here on the dynamical system and control perspectives,

we study a collection of asynchronously interacting point Brownian agents obeying elementary

coordination algorithms. The basic ingredients of our modeling are: i) a Hamiltonian function

H which provides a parametric family of non-intersecting level curves defining closed orbits,

ii) a mixed conservative and gradient vector field constructed from H involving one (or

several) control parameters, iii) a stochastic driving stylized by WGN’s sources and iv) for each

agent, a circular observation range Dρ with radius ρ, centered at each agent location. The

agents mutual interactions directly depend on the size of Dρ . Interactions produce an adaptive

mechanism which drives the agents to ultimately adopt one (or several) consensual value(s) of

the control parameter(s). The consensual parameter(s) value selects one specific orbit among

the Hamiltonian parametric family. For such mixed canonical-dissipative stochastic dynamics,

connected with models discussed in Hongler and Ryter (1978), we are able to explicitly write

the resulting invariant probability measure solving the associated time-independent non-

linear Fokker-Planck equation (NLFP). We can therefore analytically investigate the influence

of the radius ρ of the observation range Dρ on the emerging dynamics achieved by the agents.

While our class of dynamics presents similarities with potential-ruled algorithms as those used

for example in Gazi and Passino (2004); Gazi and Fidan (2007); Hsieh et al. (2008); Sepulchre

et al. (2008), it however keeps a decentralized mechanism stylized in the basic agents models

pioneered by Reynolds (1987); Viczek et al. (1995) and more recently by Cucker and Smale

(2007a).

Mathematically speaking, our modeling relies on a set of N continuous time, coupled non-

linear stochastic differential equations (SDE) driven by White Gaussian noise (WGN). In this

context, the basic formal question, first raised first by H. McKean McKean Jr. (1966), is to

calculate the limit of the probability distribution which describes a large agent collection

(i.e. formally the thermodynamic limit N →∞) and then fluctuations around this limit for

finite N . Considering that all agents have random identically distributed independent initial

conditions, one mathematically expects (this can be rigorously proved under somehow re-

stricting technical hypothesis) that in the thermodynamic limit, all finite number of agents

behaves independently of the others and they can all be described by the same probability

distribution (this is known as propagation of chaos). The common probability distribution

solves a Markovian evolution described by a nonlinear Chapman-Kolmogorov type partial

differential equation. Accordingly, when propagation of chaos holds, we may characterize the

dynamic behavior of the global population by only studying the dynamics of a single, randomly

chosen, agent subject to an effective external mean-field generated by its surrounding fellows.

In presence of WGN’s sources, the single representative agent follows a diffusion process and
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1.2. Interacting Brownian Agents Driven by Canonical-Dissipative Dynamics and White
Gaussian Noise

its probability measure obeys to a NLFP, Frank (2005).

1.2 Interacting Brownian Agents Driven by Canonical-Dissipative

Dynamics and White Gaussian Noise

We consider a swarm of N mutually interacting dynamical planar agents ak for k = 1,2, · · · , N

evolving on the planeR2 with state variables ~X (t ) = (X1(t ), X2(t ), · · · , XN (t )). In this section, we

assume the homogeneous situation in which all individual isolated agents ak are dynamically

identical. The collective dynamics is assumed to obey an N -dimensional diffusion process on

R2 given by a set of stochastic differential equations (SDE):


dXk (t ) =Ak (t )Xk (t )d t +

Ck (Xk (t ))︷ ︸︸ ︷
γ

[
L 2

k,ρ(t )−‖Xk (t )‖2
2

]
Xk (t )d t +σdWk (t ),

Xk (0) = X0,k , and Xk (t ) ∈R2, k = 1,2, · · · , N .

(1.1)

In Eq.(1.1), the following notations are used: Xk (t) = (
xk,1(t ), xk,2(t )

) ∈ R2, the usual norm

‖Xk (t )‖2
2 :=

(
x2

k,1(t )+x2
k,2(t )

)
, γ and σ are positive constants common to all ak (i.e. homogene-

ity assumption) and Wk (t) = (
Wk,1, Wk,2

)
t≥0 are independent standard Brownian Motions

(BM) and hence the formal differentials dWk (t ) are White Gaussian Noise (WGN) processes.

The agents interactions will be defined via the scalars L 2
k,ρ(t ) and the matricesAk (t ) which

both will depend on Dk,ρ(t ) the set of instantaneous neighboring fellows surrounding agent

ak at time t . For a given observation range ρ, the ak -instantaneous observation neighborhood

Dk,ρ(t ) is the disk:

Dk,ρ(t ) = {
X ∈R2 | ‖X−Xk (t )‖2 ≤ ρ

}
(1.2)

and we define the indices set

Vk,ρ(t ) = {
i | Xi (t ) ∈Dk,ρ(t )

}
. (1.3)

which identifies the ak -neighboring agents present in the disk Dk,ρ(t ). We shall write Nk,ρ(t ) :=
|Vk,ρ(t)| the cardinality of the set Vk,ρ(t). The dynamic elements contained in Eq.(1.2) and

Eq.(1.3) are now used to characterize the agents’ mutual interactions via a couple of contribu-

tions:
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i) Canonical-dissipative matrixAk (t). The skew symmetric dynamic matrix Ak (t) as-

sociated with agent ak can be defined as:

Ak (t ) :=


Nk,ρ(t )

N − 1
M

Nk,ρ(t )
N

−Nk,ρ(t )
N

Nk,ρ(t )
N − 1

M

 , (1.4)

with 1 ≤ M ≤ N and Nk,ρ(t)/N is the fraction of the total swarm that agent ak detects

in Dk,ρ(t) (we shall adopt the convention that agent ak systematically detects itself,

implying that Nk,ρ (t ) ≥ 1, ∀ t ). As Xk = 0 is a singular point of the deterministic dynamics

(i.e. obtained for σ = 0 in Eq.(1.1)) the matrix Ak (t) formally stands for the linear

mapping of the dynamics in the neighborhood of the origin. The associated couple of

eigenvalues ofAk (t ) read:

λk,±(t ) =
[

Nk,ρ(t )

N
− 1

M

]
︸ ︷︷ ︸

:=Rk,ρ(t )

± (
p
−1)

[
Nk,ρ(t )

N

]
︸ ︷︷ ︸

:=Ik,ρ(t )

. (1.5)

Hence, at a given time t , the real part in Eq.(1.5) expresses the non-conservative type

of the dynamics (i.e. the divergence part of the vector field (VF)). The singular point

0 ∈R2 is an attractive (respectively repulsive) node when Rk,ρ(t ) < 0 (resp. Rk,ρ(t ) > 0).

Moreover, the component Ik,ρ(t) expresses the rotational nature of the VF. In partic-

ular, when Rk,ρ(t) = 0, the dynamics are conservative; it expresses the Hamiltonian

component of the ak -VF.

ii) Adaptive limit cycle radius. The scalar quantity

L 2
k,ρ(t ) := 1

|Vk,ρ(t )|
∑

j∈Vk,ρ(t )
‖X j (t )‖2

2 (1.6)

defines the (square) of the radial position of the barycenter of the agents belonging to

Dk,ρ .

Proposition 1. Consider the mixed-canonical dissipative diffusive dynamics Eq.(1.1). Asymp-

totically with times, the dynamics propagates chaos and the MF representative agent obeys to
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the couple of diffusion equations :


d X1(t ) =+ 1

M X2(t )+γ
[
L 2

s,ρ− (X 2
1 (t )+X 2

2 (t ))
]
·X1(t )d t +σdW1(t ),

d X2(t ) =− 1
M X1(t )+γ

[
L 2

s,ρ− (X 2
1 (t )+X 2

2 (t ))
]
·X2(t )d t +σdW2(t ).

(1.7)

For weak noise (i.e. large values of γ/σ2), the radius approximately reads Ls,ρ ' ρp
2(1−cos(π/M))

and the associated stationary probability density Ps(x) reads:

Ps(x)d x1d x2 =
exp

{
2γ
σ2

[
L 2

s,ρ− (x2
1 +x2

2)
]}

d x1d x2

Z
, (1.8)

with x = (x1, x2) ∈R2, and Z being the probability normalization factor.

Proof of Proposition 1.

The Fokker-Planck equation associated with the diffusion process of Eq.(1.1) can be written in

the form:

∂t P (~x, t |~x0) =−5·
{1

2

[
Aa(t )5‖~x‖2 −5Vρ (t ,~x)

]
P (~x, t |~x0)+ σ2

2
5P (~x, t |~x0)

}
, (1.9)

whereAa is the (2N ×2N ) block-simplectic matrix:

Aa(t ) :=


B1(t ) 0

. . .

0 BN (t )

 ,

with Bk (t ) =
(

0
Nk,ρ(t )

N

−Nk,ρ(t )
N 0

)

and the time-dependent generalized potential Vρ (t ,~x) from which the dissipative component
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of the drift is derived, can be written as:

Vρ (t ,~x) =
N∑

k=1

{
1

2

:=Rk,ρ(t )︷ ︸︸ ︷[
Nk,ρ(t )

N
− 1

M

]
‖~x‖2 + γ

2

[
L 2

k,ρ(t )−‖~x‖2
]2

}
. (1.10)

The potential parameterization Rk,ρ(t) and L 2
k,ρ(t) in Eq.(1.10) explicitly depends on the

agents’ configurations implying that Eq.(1.9) is effectively a NLFP. The potential Vρ (t ,~x) is

globally attractive on R2N , (i.e Vρ (t ,~x) →∞ for ‖~x‖→∞). Global attraction together with the

WGN driving sources imply that the diffusive dynamic Eq.(1.1) is ergodic onR2N . Accordingly, it

exists a unique invariant measure Ps(~x) and therefore both Rk,ρ(t ) and L 2
k,ρ(t ) asymptotically

converge to stationary (i.e time-independent) values L 2
k,s,ρ and Rk,s,ρ . Eqs.(1.9) and (1.10)

being explicitly invariant under permutations in the agents labeling, we shall also have L 2
k,s,ρ =

L 2
s,ρ and Rk,s,ρ =Rs,ρ . Finally, in the stationary regime, the system is driven to its minimal

energy configuration implying here that Rs,ρ ≡ 0. This in turn yields that limt→∞Aa(t ) =Aa,s

with:

Aa,s :=


As 0

. . .

0 As

 , As =
(

0 1
M

− 1
M 0

)
.

The gradient 5Vρ (t ,~x) is systematically orthogonal to the antisymmetric component 1
2Aa(t )5

‖x‖2 (this remains true for the stationary regime Aa,s). It enables to write the stationary

solution of Fokker-Planck Eq.(1.9) in the product-form Ps(~x):

Ps(~x) = [Ps(x)]N =
[
N −1e{Vs,ρ(x)}

]N
, Vs,ρ(x) =+γ

2

[
L 2

s,ρ−‖x‖2
]2

(1.11)

with the notation~x = (x1,x2, · · · ,xN ) ∈ R2N , xk ∈ R2 and x ∈ R2 stands for one representative

agents among the collection of the xk ’s. The product form of the invariant measure explicitly

shows that our dynamics propagates chaos, validating the use of a MF approach where a single

agent behavior effectively reflects the global dynamics.

Taking the MF approach, and focusing on the stationary regime, from the point of view of a
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single representative planar agent X(t ) = (x1(t ), x2(t )), we have:

0 =5{1

2

[
As 5‖x‖2 −5Vs,ρ (x)

] ·Ps(x)
}− σ2

2
4Ps(x), (1.12)

where Ps(x) is the invariant probability density.

Within the stationary regime, auto-consistency implies

Ns,ρ

N
=

∫
(x)∈Dρ

Ps(x)d x1 d x2

(
= 1

M

)
(1.13)

and

L 2
s,ρ =

∫ (
x2

1 +x2
2

)
(x1,x2)∈Dρ

Ps(x)d x1 d x2, (1.14)

where Dρ is the representative agent’s neighborhood.

From a uniformly rotating coordinates’ frame with angular velocity M−1, the stationary regime

dynamics becomes purely gradient and the resulting probability density Ps(x) solving Eq.(1.12)

enjoys microscopic reversibility (i.e. detailed balance). It explicitly reads, Hongler and Ryter

(1978):

Ps(x)d x1d x2 = Ps(r )dr dθ =N −1(Ls,ρ)e

[
− γ

σ2 (r 2−L 2
s,ρ)2

]
d(r 2)dθ. (1.15)

with N −1(Ls,ρ) =
√

π3σ2

γ Erfc

(
−

p
γ (L 2

s,ρ)

σ )

)
being the normalization factor.

In this stationary regime, the stationary observation neighborhood of each agent exactly en-

compasses a circular sector with aperture ϕ(M) and radius L 2
s,ρ(M). Both ϕ(M) and Ls,ρ(M)

are adjusted to ensure that N /M agents are located in Ds,ρ . For large ratio γ

σ2 (i.e. essentially a

large signal-to-noise ratio), Eq.(1.15) exhibits a sharply peaked “Mexican hat” shape with its

maximum on the circle r =Ls,ρ (i.e. almost all agents stay confined in the direct neighborhood

of the circle r =Ls,ρ).

As detailed in Figure 1.1’s caption, an elementary trigonometric argument enables to derive
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the compact relation:

Ls,ρ = ρp
2−2cos(π/M)

. (1.16)

Figure 1.1 – The cylindrical symmetry characterizing the stationary regime implies that the agents probability

distribution is rotationally invariant with respect to O. Accordingly, there will be on average N /M agents located

in a sector with an opening angle 2π/M . For large γ/σ2, these agents will be confined in the direct proximity of

the circle of radius Ls,ρ . Let us consider an arbitrary agent located at A with a stationary observation range of

radius ρ = AC. This range exactly encompasses the circular arc with aperture 2π/M thus ensuring that the agent at

A has M/N neighboring fellows. The cosine theorem in the triangle OAC implies that L 2
s,ρ = 2ρ2/[1−cos(π/M)]

2L 2
s,ρ = ρ2/[1−cos(π/M)].

2

Additional remarks. Observe that besides γ and σ which define an overall time scale, there

are two additional control parameters in the dynamics Eq.(1.1):

a) Hamiltonian parameter M . The sector angle M into the canonical-dissipative matrix

A(t ). This parameter fixes the angular velocityω= M−1 of the swarm and adjusts the size

of the consensual limit cycle (i.e., a limit cycle whose value is consensually determined

by the swarm) radius Ls,ρ . For a given size of the observation disk with radius ρ and for

large M , we have Ls,ρ ' ρM/π and the angular velocity tends to vanish.

b) Interaction range parameter ρ. The radius of the observation disk ρ which directly

determines the consensual size of the limit cycle radius Ls,ρ .
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1.3. Numerical Experiments

1.3 Numerical Experiments

In all numerical experiments performed, we observe a truly remarkable agreement with the

theoretical predictions (see Figure 1.2 for a specific illustration). According to Eq.(1.16), by

reducing the sector opening angle (i.e by increasing the values of the M), the resulting limit

cycle radius Ls,ρ increases and the number of agents present in Ds,ρ is reduced thus somehow

invalidating the large population required for MF to be used. Even when M = 50, the couple

of orbits realizations shown in Figure 1.3 show that analytical results, in particular Eq.(1.16),

remain valid in this large M limit.

Figure 1.2 – For a collection of N = 200 agents with M = 4, ρ = 1 and σ= 0.07, we explicitly draw the trajectory of

a randomly chosen agent. We observe that this agent indeed follows the consensual limit cycling orbit with analyti-

cally predicted radius Ls,ρ =p
2ρ =p

2. The observation range of the considered agent (red circle) encompasses

exactly the sector of aperture π/4 to determine the size of the self-generated limit cycle (see the construction given

in Figure 1.1).

1.4 Generalization

By using the class of mixed-canonical dissipative dynamics Hongler and Ryter (1978) and

following the same lines as those given in Proposition 1, we now can relax the cylindrical

symmetry and write:

Proposition 2. Consider the class of functions H (x1, x2) : R2 7→ R+ for which the family of

planar curves defined by [H (x1, x2)−R] = 0 are closed ∀ R > 0 and do not intersect for dif-

ferent values of R’s. Introduce a functional V (H ) : R+ 7→ R with limH →∞ V (H ) = ∞ (here,

we shall use V (H ) = γ
{
L 2H − 1

2 H 2
}

with γ > 0). Assume in addition that the values of the

H -derivatives V ′(0) < 0 and V ′(H ) |H =C= 0 and C is the unique value for which it holds. Then
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Figure 1.3 – For a collection of N = 200 agents with M = 4, ρ = 1 and σ= 0.07, we explicitly draw the trajectory

of a randomly chosen agent. We observe that this agent indeed follows the consensual limit cycling orbit with

analytically predicted radius L 2
s,ρ = 2/[1−cos(π/50)] ' (50/π)2 ' (17)2. The observation range of the considered

agent encompasses exactly the narrow sector of aperture π/50 to determine the size of the self-generated limit

cycle (see the construction given in Figure 1.1). The High value M = 50 is responsible for the sometimes erratic

behavior of the agent, as its observation range only encompasses a very small sector of the consensual circle.

Eqs.(1.1) and (1.7) can be respectively generalized as:


dXk (t ) =Ak (~X)d t −γ{

V ′(H (X))∂Xk H (Xk )
}

d t +σdWk (t ), k = 1,2, · · · , N ,

Xk (0) = X0,k , and Xk (t ) ∈R2,

(1.17)

where

Ak (~X) =


Nk (t )

N − 1
M

Nk (t )
N

−Nk (t )
N

Nk (t )
N − 1

M

 ·

∂X1,k H (Xk )

∂X2.k H (Xk )

 (1.18)

and


d X1(t ) = [+ 1

M ∂X2H (X)−γ{[
V ′(H (X)

] ·∂X1H (X)
}]

d t +σdW1(t ),

d X2(t ) = [− 1
M ∂X1H (X)−γ{[

V ′(H (X)
] ·∂X2H (X)

}]
d t +σdW2(t ).

(1.19)
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The stationary measure Eq.(1.8) here reads:

Ps(H )dH =Z −1 exp

{
2γ

σ2 [V (H )]

}
dH , (1.20)

where Z is the normalization constant.

2

Additional remarks.

a) Observe that Proposition 1 follows from the Proposition 2 in the rotationally symmet-

ric case resulting when H (X) = (1/2)
[

X 2
1 +X 2

2

]
.

b) Contrary to Proposition 1, in Proposition 2, neither the limit cycle nor the invariant

measure Ps(H ) generally have a cylindrical symmetry. This precludes the possibility

to analytically determine the selected consensual limit cycle (i.e we do not have in the

general case a simple expression like the one given by Eq.(1.16)).

c) As an illustration of Proposition 2, we may consider the Cassini Hamiltonian function

given by

H (X) = [
(x1 −1)2 +x2

2

][
(x1 +1)2 +x2

2

]= b4, (1.21)

with the level orbits sketched in Figure 1.4. According to the values of M and ρ which

ultimately will fix the size of the parameter b, we are in this case able to generate

two different regimes. For large b a single closed consensual limit cycle is generated.

Alternatively, for small b, the agents are shared into two clusters and evolve on two

separated consensual limit cycles (see Figure 1.5).

d) Generalizing the previous Cassini ovals construction, one may construct Hamiltonian

generating agents circulation on even more complex orbits. We provide an additional

example in Figure 1.6.

1.5 Conclusions and Perspectives

While agents with behavior-based interactions are relatively easy to implement, it is widely

recognized that the underlying mathematical analysis of such models is generally difficult and

often even impossible to perform completely. It is therefore quite remarkable that very simple
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Figure 1.4 – Typical shapes of the Cassini’s ovals determined by the equation H (x1, x2) =[
(x1 −a)2 +x2

2

][
(x1 +a)2 +x2

2

] = b4 for b-values ranging from b = 0.6a to 1.6a. Image courtesy of Wiki-

media under CC BY-SA 3.0.

Figure 1.5 – Left: Selection of a couple of limit cycling orbits obtained from the Cassini Hamiltonian Eq.(1.21)

when the control parameters are set to M = 4 and ρ = 0.4. In red, the observation range of a randomly picked

representative agent.

Right: Single limit cycling trajectory for the Cassini Hamiltonian Eq.(1.21) but here with the control parameters set

to M = 4 and ρ = 0.8.

analytical results can be derived for a whole class of dynamics which, due to its simplicity, offers

potential for applications. Despite that for limited number of agents, typically one hundred

in our present study, the mean-field approach can only be approximative, we nevertheless

emphasize that all our numerical investigations still closely match the theoretical predictions.

The resilience of our modeling approach opens several perspectives for implementations on

actual agents. Several further research directions are naturally suggested by this contribution,

among them:

a) Extended MCD dynamics to higher dimensional spaces. The role played here by the

Hamiltonian function leading to a canonical motion on the plane can be extended.

In particular one may consider, along the lines explained in Schweitzer et al. (2001),

integrable canonical systems exhibiting additional constants of the motions. Using

these extra constants of the motion, one will be able to stabilize the swarm motion along

orbits in higher dimensions.
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Figure 1.6 – Left: Orbit generated by the
(

2π
3

)
-symmetric Hamiltonian function: H (x1, x2) = [

(x1 −1)2 + (x2)2]
·
[

(x1 + 1
2 )2 + (x2 −

p
3

2 )2
][

(x1 + 1
2 )2 + (x2 +

p
3

2 )2
]

. Here we have N = 200 and the control parameters are set to

M = 4 and ρ = 0.5. In red, the observation range of a randomly picked representative agent.

Right: Here, all parameters are identical, except for the interaction range which is ρ = 1.

b) Heterogeneity in agents and soft control of swarms. Instead of focusing on homoge-

neous agents and by following the work Han et al. (2006), we intend to use the context of

MCD to study the possibility to influence (i.e. soft control) the behavior by introducing

into the society a single “fake” agent (i.e. a shill), which can be externally controlled.

c) Resilience of the modeling. In Eq.(1.2), we used the Euclidean norm to define Dk,ρ(t ),

the instantaneous neighboring agents in Eq.(1.3). To match specific applications, other

type of norms could be used to redefine the interactions.

1.6 New Contributions of Chapter 1

• We present an analytically tractable decentralized mixed canonical-dissipative (MCD)

dynamic for a homogeneous swarm of Brownian agents, in which agents self-select

a control parameter by local interactions only. When cylindrical symmetry holds for

the MCD, we are able to prove convergence of the swarm to a limit circular ring. The

ring radius can be exactly calculated as a function of the interaction range and the

interconnection strength. The method holds for more complex geometries, by relaxing

the cylindrifcal symmetry.

• Publication: This chapter is reproduced from the published journal paper Sartoretti

and Hongler (2013b), with slight modifications to fit the present dissertation. The initial

research leading to the journal paper was published as a conference paper in Sartoretti

and Hongler (2013a).

33





2 Decentralized Self-Selection of Swarm
Trajectories: From Dynamical Sys-
tems Theory to Robotic Implementa-
tion

Summary

In this chapter, we present a distributed control strategy, enabling agents to converge onto and

travel along a consensually selected curve among a class of closed planar curves. Individual

agents identify the number of neighbors within a finite circular sensing range and obtain

information from their neighbors through local communication. The information is then

processed to update the control parameters and force the swarm to converge onto and circulate

along the aforementioned planar curve. The proposed mathematical framework is based on

stochastic differential equations driven by white Gaussian noise (diffusion processes). Using

this framework, there is maximum probability that the swarm dynamics will be driven toward

the consensual closed planar curve. In the simplest configuration where a circular consensual

curve is obtained, we are able to derive an analytical expression that relates the radius of the

circular formation to the agent’s interaction range. Such an intimate relation is also illustrated

numerically for more general curves. The agent-based control strategy is then translated into a

distributed Braitenberg-inspired one. The proposed robotic control strategy is then validated

by numerical simulations and by implementation on an actual robotic swarm. It can be used

in applications that involve large numbers of locally interacting agents, such as traffic control,

deployment of communication networks in hostile environments, or environmental monitoring.

2.1 Introduction

How can one trigger the self-emergence of desired spatio-temporal patterns via a collection of

interacting autonomous agents? Can we analytically derive such collective behavior for scal-

able collections of agents? Is it possible to explicitly demonstrate how such collective behavior
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can possibly remain stable in the face of environmental noise? Progress in the engineering

of swarm robotics relies on explicit and detailed answers to these questions, and that is the

central goal of the present contribution. As no generic guidelines yet exist, engineering such

collective behavior remains, in many respects, an open challenge. Bonabeau, Dorigo and

Theraulaz illustrate how elementary, fully decentralized biological systems can achieve highly

elaborate collective tasks Bonabeau et al. (1999). This pioneering work remains a rich and

challenging source of inspiration for many further developments both in ethology (see the

recent overview by Leonard Leonard (2013)) and in swarm robotics. Presently, serious effort is

being made to import some basic features of these complex living systems into the engineering

world of robotics. Obviously, animals remain intrinsically highly complex machines compared

to actual robots and, therefore, direct applications remain rather limited. Nevertheless, recent

attempts to combine artificial and natural collective systems by implementing the models

observed in animal societies into that of robots shows promise Halloy et al. (2007); Mondada

et al. (2011). Because of the complexity of the interactions taking place in such mixed societies,

the models often remain partial and the link between them has not been fully established.

Several up-to-date reviews Kernbach (2013); Brambilla et al. (2013) summarize ongoing re-

search in this area and the various engineering applications. Often the design of such robotic

systems consists of a bottom-up trial-and-error exercise with no analytical link between the

microscopic model (describing the single agent behavior) and the macroscopic one (describ-

ing the global result achieved). Microscopic and macroscopic models are then seen as separate

approaches Brambilla et al. (2013), rather than steps in the engineering process. To bridge

the gap between the micro- and macroscopic descriptions, Martinoli et al. Martinoli et al.

(1999) constructed the first link between individual behavior and the statistical macroscopic

model, which was successfully implemented on real robots. Along the same lines, Lerman

et al. Lerman et al. (2005) exhibited the emergence of collective behavior from individual

robot controllers using a class of stochastic Markovian mathematical models. The authors

validated their approach by performing experiments using real robots. More recently, Hamann

and Wörn Hamann and Wörn (2008) used an explicit representation of space together with

methods of statistical physics to establish the link between microscopic and macroscopic

models. Space heterogeneities are also considered by Prorok et al. Prorok et al. (2011), who

derived, from diffusion-type evolutions, a collective inspection scenario implemented on

real robots. Brambilla et al. Brambilla et al. (2012) proposed a top-down design process built

on iterative model construction and based on Probabilistic Computation Tree Logic (Deter-

ministic Time Markov Chains). Their design methods were further validated on a group of

physical e-puck robots; their iterative construction potentially enables other types of swarm-

ing behavior, depending on the skills of the acting programmer. Berman et al. Berman et al.

(2009) likewise proposed a top-down design methodology, but at a higher level (i.e., at the

sub-swarm level). Their decentralized strategy allows dynamical allocation of a swarm of

robots to multiple predefined tasks. The approach by Berman et al. Berman et al. (2009) is

based on population fractions, which enable the design of stochastic control policies for each

robot, and does not assume communication among robots. This strategy is analytically proven
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to achieve the desired allocation, and validation is made on a surveillance scenario involving

250 simulated robots distributed across four sites. More recently, Berman et al. Berman et al.

(2011) have extended their work to spatially heterogeneous swarms. This control however,

can only generate static patterns of robot sub-swarms Song and Kumar (2002). In the present

work, we aim to generate self-organized dynamic patterns (i.e, circulation of robots along

closed planar curves).

Closely related to the present research, Hsieh et al. Hsieh et al. (2007) synthesized controllers

that allowed individual robots, when assembled in a swarm, to self-organize and circulate

along a predefined closed curve. The system is fully distributed and relies only on local

information, thus ensuring scalability. The controller can be analytically described, and does

not require communication between the robots, thus simplifying its implementation. Hsieh

et al. Hsieh et al. (2007) demonstrated convergence of the system for a certain class of curves

and validated their theory with simulations. While the final behavior looks similar to what

we are targeting here, we aim at directly deriving our controller from a stochastic dynamical

model that can be analytically discussed. Our goal here is to allow the swarm to converge to

a consensually selected curve among a given family (and not to a predefined curve as done

in Hsieh et al.’s study). Conceptually, Hsieh et al.’s study belongs to the important family of

potential field approaches . Within this family, Pimenta et al. Pimenta et al. (2013) proposed a

decentralized hydrodynamics-inspired controller that drives the swarm into a preassigned

arrangement using a static and/or dynamic obstacle avoidance mechanism. They also tested

their approach on swarms of actual robots, including e-puck robots. More closely related to our

research, Sabattini et al. Sabattini et al. (2012) developed a control strategy using decentralized

time-dependent potential construction. Specifically, this mechanism allows a robotics swarm

to track a closed curve (given by an implicit function, as in this research), while keeping a

minimal safety distance between the robots. In Sabattini et al.’s study Sabattini et al. (2012),

the robots are given a predefined curve, whereas in our approach, the swarm consensually

selects the closed curve that will be tracked.

Amongst non-gradient-based approaches, Schwager et al. Schwager et al. (2011) demonstrated

the stability and quantified the convergence rate of the control of a quad-rotors swarm.

Their approach is based on a combination of decentralized controllers and mesh networking

protocols. Moreover, the authors only used local information and validated their control on

a group of three real robots. Schwager et al.’s controller needs to know the relative position

of its neighbors with high precision, while our goal is to be noise-resistant. Sepulchre et

al. Sepulchre et al. (2007) developed a methodology for the generation of stable circular

motion patterns based on stabilizing feedbacks derived from Lyapunov functions. A very

similar approach was also used in Paley and Leonard (2006); Zhang and Leonard (2007).

This theoretical work was then used to design the control of mobile sensor networks for

optimal data collection in environmental monitoring Leonard et al. (2007). The global patterns

generated in Sepulchre et al’s study exhibit similarities with those presented in the present

research, but their control is “less” decentralized. Namely, Sepulchre et al. assume an all-

to-all communication network between the robots, whereas in our work, we aim at using
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only local communication between neighbors within a given range. Given Sepulchre et al.’s

assumption, the controller is also more sensitive to losses of communication between robots in

the swarm. Finally, within non-gradient-based controls, it is worthwhile to mention Tsiotras et

al. Tsiotras and Castro (2011), who devised a decentralized mechanism, leading to Spirograph-

like planar swarm trajectories. Their approach only relies on individually gathered information

on distance and angle to neighbors.

With respect to the state of the art, whereas most research in control theory aims at finding

strong theoretical guarantees, the present work follows a very different approach. We aim at

bridging the gap between the purely mathematical considerations and the implementation on

actual robots, and approach the problem from a mathematical angle. The mathematical mod-

els are then implemented using a swarm of mobile robots. To some extent, our work is closer

to that of biologists who use robotics as a validation tool for their theoretical models. Using

this approach, we are able to achieve a decentralized consensual swarm control mechanism

using only simple local information, such as the number of neighbors in a given range and

their relative positions. In order to better link the model and the implementation, this article

also includes a dictionary to help translation of the main concepts between the theoretical

and the robotic control mechanisms. The developed controllers are not designed to achieve

a fixed shape or trajectory, as often found in the state of the art, but to collectively choose

one consensual shape. By tuning the control parameters, one can enable a given swarm to

converge on different orbits without changing the behavior of each agent. Another important

feature is the fact that the consensual orbit is not known by the agents, but is only determined

by mutual interactions in a fixed range.

Although perfectly predictable analytically, this collective choice can be described as a collec-

tive weakly emergent behavior. Weak emergence is here understood in the S. and O. Kernbach’s

interpretation Kernbach et al. (2013); Kernbach (2013) (i.e., macroscopic swarm behavior due

to interactions between agents but having its origin in the model that describes the system’s

behavior). Our model has a tractable complexity, enabling us to explicitly describe the re-

sulting emergent collective behavior, which is controllable. Specifically, our class of models

presents a distributed mechanism, enabling agents to select a parameter while fixing one

consensual traveling orbit among the given family in a distributed manner, and this feature

holds even if noise corrupts their movements.

The chapter is organized as follows: Section 2 exposes the basic mathematical formulation of

agents’ dynamics. Section 3 reports simulation experiments that fully match our theoretical

finding even for finite N agents’ populations (i.e., when the mean-field limit is not reached).

Section 4 describes, in detail, how the actual implementation of our mathematical model was

realized with a collection of e-puck autonomous robots.
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2.2 Mathematical modeling

Our mathematical model consists of a set of N coupled stochastic differential equations

(SDE) where the driving stochastic processes are White Gaussian Noise (WGN) representing a

swarm of homogeneous Brownian agents Schweitzer (2003). The use of WGN in the dynamics

implies that the resulting stochastic processes are Markovian. Accordingly, all probabilistic

features of the model are known by solving the associated Fokker-Planck (FP) equation. A

similar approach has already been used in several studies Berman et al. (2011); Hamann and

Wörn (2008); Prorok et al. (2011). Agents’ interactions are ruled by specifying the radius of an

observation disk (i.e., metric interactions) and the strength of the attraction/repulsion control

parameter. The specific form of agents’ individual dynamics and their mutual interactions

are constructed from a Hamiltonian function, from which one derives both a canonical and a

dissipative drift force (i.e., mixed canonical-dissipative vector fields Hongler and Ryter (1978)).

By imposing the orthogonality between the canonical and dissipative vector fields, we are able,

in the N →∞ mean-field limit, to explicitly calculate the stationary probability (i.e., invariant

probability measure) characterizing the global agents’ populations. For our class of models,

we can analytically observe how a decentralized algorithm is able to generate a milling-type

spatio-temporal pattern. In this pattern, all agents will circulate with constant angular velocity

in the vicinity of a self-selected level curve from the input Hamiltonian function.

2.2.1 Single agent dynamics

Let us first consider the single agent Mixed Canonical-Dissipative (MCD) stochastic planar

dynamics:

d X (t )

dY (t )

=V

∂X H(X ,Y )

∂Y H(X ,Y )

d t +σ

dWX (t )

dWY (t )

 ,

(
X (0) = X0

Y (0) = Y0

)
(2.1)

where V stands for a skew symmetric (2×2) dynamical matrix defined by:

V=

U ′[H(x, y)] +ω

−ω U ′[H(x, y)]

 (2.2)

where (X ,Y ) ∈R2 are the positions of the planar agent, H(X ,Y ) :R2 7→R+ and U [H ] :R+ 7→R

(U ′[H ] stands for the derivative of U [H ] with respect to H) are differentiable functions, σ> 0

and ω ∈ R are constant parameters. The inhomogeneous terms dWX (t) and dWY (t) are

two independent WGN sources. We shall assume that H(X ,Y ) = E , ∀E > 0 defines closed
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concentric curves and H (0,0) = 0. In addition, we require that U [0] > 0 and limE→∞U [H (E )] =
−∞. When σ= 0, the (deterministic) dynamics Eq.(2.1) admits closed trajectories C ’s, which

are defined by the solutions of the equation U [H(X ,Y )] = 0. Depending on the sign of the

curvature (i.e., second derivative ) U ′′ taken at C , one can either have attracting (U ′′ < 0)

or repulsive (U ′′ > 0) limit orbits. An attracting C drives any initial conditions (X0,Y0) to C

in asymptotic time. In Eq.(2.1), the antisymmetric part of V produces a rotation in R2 with

angular velocity ω. This defines a canonical (conservative) part of the vector field (i.e., the

Hamiltonian part of the dynamics). Concurrently, the diagonal elements of V model the

non-conservative components of the dynamics (i.e., dissipation or supply of energy). From

its structure, the non-conservative (deterministic) vector field of Eq.(2.1) is systematically

perpendicular to the conservative one. This geometrical constraint reduces the dimensionality

of the dynamics and allows the derivation of explicit and fully analytical results.

In the presence of WGN (σ> 0 in Eq.(2.1)), the resulting SDE describe a Markovian diffusion

process, fully characterized by a bivariate transition probability density (TPD) measure

P (x, y, t | x0, y0,0)d xd y =

Prob
{

x ≤ X (t ) ≤ x +d x, y ≤ Y (t ) ≤ y +d y | X (0) = x0,Y (0) = y0
}

The TPD P (x, y, t | x0, y0,0) is the solution of a FP equation:


∂t P (x, y, t | x0, y0,0) =F

{
P (x, y, t | x0, y0,0)

}
,

P (x, y,0 | x0, y0,0) = δ(x −x0)δ(y − y0)

(2.3)

where δ(·) stands here for the Dirac probability mass and the FP operator reads:

F {·} :=−∂x
[

fx (x, y) {·}]−∂x
[

fy (x, y) {·}]+ 1

2
σ2 [

∂xx +∂y y
]

{·} (2.4)

with


fx (x, y) :=+∂y

[
H(x, y)

]+U [H(x, y)]∂x
[
H(x, y)

]
fy (x, y) :=−∂x

[
H(x, y)

]+U [H(x, y)]∂y
[
H(x, y)

]
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For asymptotic time, the diffusion processes reach a stationary regime: limt→∞ P (x, y, t |
x0, y0,0) = Ps(x, y), solving the stationary FP Eq.(2.3), for which we obtain:

Ps(x, y) =N e−(2/σ2)U [H(x,y)] (2.5)

and N is the probability normalization factor yielding
∫
R2 Ps(x, y)d xd y = 1.

Example. Consider the Hamiltonian function H(x, y) = x2 + y2, U [H ] = γ{
L 2H − 1

2 H 2
}

and

U ′[H ] = γ{
L 2 −H

}
, width γ> 0. In this case, the deterministic dynamics coincides with the

Hopf oscillator with an unique attracting C that is a circle with radius L . In this situation, the

measure Eq.(2.5) exhibits the shape of a circular “ring” with its maximum located on the circle

C (see Figure 2.1).
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Figure 2.1 – “Ring”-shaped probability density on the plane, for σ= 0.07 and σ= 0.35. These
simulations were run with N = 5000 agents, up to time T = 10[s], with γ= 1.

2.2.2 Multi-agent dynamics

Let us now build on the dynamics presented in section 2.2.1 and consider a homogeneous

swarm of N interacting agents exhibiting individual dynamics similar to the one described in

Eq.(2.1). Specifically, for k = 1,2, .., N , we now write:

d Xk (t )

dYk (t )

=Vk,ρ,M (t )

∂Xk H(Xk ,Yk )

∂Yk H(Xk ,Yk )

d t +σ

dWXk (t )

dWYk (t )

 ,

(
Xk (0) = X0,k

Yk (0) = Y0.k

)
(2.6)
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where Vk,ρ,M stands for a (2×2) dynamical matrix defined by:

Vk,ρ,M =



[
Nk,ρ (t )

N − 1
M

]
+

U ′[H ,t ]︷ ︸︸ ︷
γ

[
Lk,ρ (t )− 1

2
H(Xk ,Yk )

]
+ Nk,ρ (t )

N

− Nk,ρ (t )
N

[
Nk,ρ

N (t )− 1
M

]
+γ

[
Lk,ρ (t )− 1

2
H(Xk ,Yk )

]
︸ ︷︷ ︸

U ′[H ,t ]


·M ·ω, (2.7)

where M > 1 andω> 0 are (time-independent) control parameters, M ·ω is a normalization fac-

tor and dW(·)(t ) are all independent standard WGN sources (homogeneity follows as we have

Hk (Xk ,Yk ) ≡ H (Xk ,Yk ) ∀ k). The mutual interactions enter via the term Nk,ρ(t ) present in the

dynamic matrix Vk,ρ,M (t ). To define Nk,ρ(t ), we assume that each agent Ak (k = 1,2, · · · , N ) is

located at the center of an (individual) observation disk Dk,ρ(t ) with common constant radius

ρ. We further assume that Ak is, in real time, able to count the number of neighboring fellows

Nk,ρ(t) that are contained in Dk,ρ(t). Finally, we introduce the instantaneous (geometric)

inertial moment of the agents located in Dk,ρ(t ), namely:

Lk,ρ(t ) := 1

Nk,ρ(t )

∑
j∈Dk,ρ(t )

H
(
X j (t ),Y j (t )

)≥ 0. (2.8)

To heuristically understand the collective behavior emerging from the set of SDE’s given in

Eq.(2.6), let us comment on the following features:

a) Large population of homogeneous agents. As we consider homogeneous popula-

tions, we may randomly tag one agent, say T , and consider the actions of the others

as an effective external field (often referred to as the mean-field point approach). This

procedure reduces the nominal multi-agent dynamics to a single effective agent system,

thus making the analytical discussion much easier while still taking into account interac-

tions of the neighbors. The individual T -diffusive dynamics on R2 are then assumed to

be representative of the global swarm and follow from dropping the index k in Eqs.(2.6)

and (2.7). The effective interactions terms Nρ,M and Lρ,M are to be determined by

auto-consistency from the TPD measure of T . In the stationary regime, thanks to the

orthogonal property between the canonical and the dissipative components of the

vector fields, we obtain:

Ps(~x,~y) = [
Ps(x, y)

]N =
[
N −1e

2γ

σ2 U [H(x,y)]
]N

~x := (x1, x2, · · · , xN ) (2.9)
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2.2. Mathematical modeling

For H (X ,Y ) = X 2+Y 2

2 , the harmonic oscillator Hamiltonian, and for large signal-to-noise

ratio

S = 2γ/σ2 ¿ 1, we can analytically express the value of the limit cycle’s orbit:

Lρ,M = ρp
2−2cos(π/M)

. (2.10)

b) Roles of the control parameters M and ρ. The origin O := (0,0) is a singular point of

the deterministic dynamics and its stability follows from linearizing the dynamics near

O. In the stationary regime, the linearization reads:

Vρ,M (0) =


[

Nρ,M

N − 1
M

]
+γLρ,M +Nρ,M

N

−Nρ,M

N

[
Nρ,M

N − 1
M

]
+γLρ,M


with eigenvalues:

λ± = [
Nρ,M /N −1/M

]︸ ︷︷ ︸
RE

±p−1
[√

Nρ,M /N
]

. (2.11)

When RE < 0,(resp. > 0), O is attractive (resp. repulsive). The very existence of a

stationary regime implies that Ps(x, y) vanishes for large values of |x| and |y |. For agents

far from O, both Nk,ρ,M and Lk,ρ,M will vanish (with high probability, except the agent

at the center, no agents will be found inside Dk,ρ), implying O to be attractive as RE < 0;

conversely, agents close to O will be repelled. Ultimately, an equilibrium consensus will

be reached when the diagonal part of Vρ,M vanishes which is achieved when Eq.(2.10)

is attained.

c) Role of the dissipative terms U ′[H , t ] and the parameter Lρ,M . Observe that the

regulating term U ′[H , t ] is itself not necessary to reach a consensual behavior. However,

for large γ’s, it enhances the convergence rate toward equilibrium and reduces the

variance around the mode of Ps(x, y). This enables us to easily estimate the radius Lρ,M

given by Eq.(2.10).

According to Eqs.(2.9) and (2.10), we observe that, in the stationary regime, the swarm self-

selects a consensual circular orbit with radius Lρ,M that depends on both the observation

range ρ and the effective attracting range M .
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Numerical simulation results, obtained by applying the Euler method over discrete timesteps

with

d t = 5 ·10−3[s], are shown in Figures 2.2 and 2.3. The employed discretization works perfectly,

as the numerical results coincide very closely with our theoretical ones (especially in the case

of the theoretical limit cycle in Figure 2.2, left).

Note that a Hamiltonian function can be constructed from a set of points along any desired

close curve on the plane (without self-intersection). A simple fit can be made on this set of

points (e.g., least squares method), returning a high-degree polynomial form representing

the Hamiltonian function. This function will be differentiable (by construction), and we can

ensure H (X ,Y ) > 0(∀X ,Y ) by adding a constant; the Hamiltonian can then be directly used in

our model.

Figure 2.2 – Numerical simulation for N = 200 agents, ρ = 1,σ= 0.07 and M = 4. The black dots
show the final position of the agent at time T = 50[s], while the blue line gives the trajectory
of one arbitrary agent (with its observation range in red). The black circle (hidden below the
swarm of agents) gives the theoretically computed limit cycle. This shows the exactitude of
Eq.(2.10), even for finite swarms.
Left: Harmonic oscillator Hamiltonian function H(X ,Y ) = X 2+Y 2

2 .
Center: Cassini ovals Hamiltonian function H(X ,Y ) = ((X −1)2 +Y 2) · ((X +1)2 +Y 2), with
ρ = 0.4, showing closed ovals without connections (see Yates (1947)).
Right: Same Hamiltonian function as the center figure, with ρ = 0.8, presenting one connected
orbit around both attractors.

2.3 Robotic implementation

2.3.1 Braitenberg control mechanism

The actual adaptation of our MCD dynamics is implemented on the model of a Braitenberg

control mechanism (BCM) Braitenberg (1984). In the BCM, the speed of the robot’s motor(s) is

reactuated at discrete timesteps, solely based on the output value(s) of a series of sensors.

In our case, we use cylindrical robots, equipped with eight light sensors (s0,s1,...,s7) evenly

distributed along their circular perimeter and two driving motors (left and right), as pictured in

Figure 2.4. The robot’s movement evolves on the plane, with a light source located at the origin.
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Figure 2.3 – Numerical simulation for N = 200 agents, ρ = 1, σ= 0.07 and M = 4, until time
T = 25[s] (left) or T = 50[s] (center and right). In red, the observation range of a randomly
picked representative agent.
Left: Hamiltonian function with three attracting poles H(X ,Y ) = ((X −1)2 +Y 2) · ((X + 1

2 )2 +
(Y −

p
3

2 )2) · ((X + 1
2 )2 + (Y +

p
3

2 )2).

Center: Asymmetric Hamiltonian function H(X ,Y ) = (((X − 1
2 )2 +Y 2) · ((X + 1

2 )2 + (Y −
p

3
2 )2) ·

((X + 3
4 )2 + (Y +

p
27
4 )2))

1
3 .

Right: Hamiltonian function H(X ,Y ) = (((X − 1)2 + Y 2) · ((X + 1)2 + Y 2) · (X 2 + (Y − 4)2))
1
3 ,

resulting in two disconnected orbits.

The light source serves as the origin O in the mathematical model, acting as an attractor for

the robots, while also being the center of the limit cycle the robots will ultimately arrange and

circulate on. Our goal is to let a swarm of robots arrange and circulate in a circle around the

light source, following a similar control mechanism to Eq.(2.1), with the Hamiltonian function

of the Hopf oscillator. This choice of circular trajectories allows us to compare the behavior of

an agent swarm (with analytical results) and a robotic swarm.

The light sensors gather the following information:

1. Nρ(t): the number of instantaneous neighbors in a fixed circular range around each

robot (Nρ(t ) ≥ 1 ∀t as every robot always detects itself),

2. {S0(t),S1(t), ...S7(t)}: the normalized light intensity (∈ [0;1], 1 for the sensor(s) receiving

the most light) measured on each sensor.

The gathered information enables us to update the velocities at discrete timesteps according

to the rule:

VR (t +1) = α ·Nρ(t ) + β ·
( =:SL (t )︷ ︸︸ ︷

S0(t )+
7∑

i=5
Si (t ) −

=:SR (t )︷ ︸︸ ︷
4∑

i=1
Si (t )

)
VL(t +1) = α ·Nρ(t ) + β ·

(
SR (t ) − SL(t )

)
,

(2.12)
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s0

s2

s4

s6

s7

s5

s1

s3

L R

U

S

Figure 2.4 – Left: Theoretical robot, seen from above. Note the 8 sensors evenly distributed
on the perimeter of the robot’s body and the two motors L and R. The point S (resp. U )
shows the stable (resp. unstable) facing direction of the light source in the BCM. Right: Actual
e-puck robot in the same position; the 8 proximity sensors (ps0,ps1,...,ps7) are nearly evenly
distributed on the perimeter.

where α and β are two positive parameters, controlling the translation/rotation velocities.

This pair of controls in Eq.(2.12) effectively adapts Eq.(2.1) (in Cartesian coordinates) to a

robotics paradigm, in terms of left/right motor speeds (speed and heading). In Eq.(2.12), we

reduce the number of sensors to two by grouping them into the left group (SL) and the right

group (SR ).

The first termα·Nρ(t ) accounts for the forward speed of the robot, and the other term regulates

the heading. Indeed, when α= 0, the speeds have the same norm but opposite signs, implying

that the robot can only turn around its main axis. In this case, the robot stabilizes with the

light source facing S, i.e., with the light source at the same distance from sensors 0 and 1, with

SL(t) ≡ SR (t) ⇒VL(t) =VR (t) = 0. This ending position is the only stable steady state; when

the light source is facing the point U , at the same distance from sensors 4 and 5, it is unstable.

When the light initially stands on the left of the robot (i.e., facing sensors 5, 6, 7, or 0), VL(t)

will exceed VR (t) (as SL(t) > SR (t)). In this configuration, the robot will turn on its axis until

the light faces the point S. The same argument holds when the light initially stands on the

right of the robot.

When the first term in Eq.(2.12) (the forward speed) is constant and positive, this control

mechanism drives the robot to the light source to turn around it. The robot constantly moves

forward, keeping the light source facing S, thereby creating a rotating trajectory around the

light source.

The radius of the resulting orbit will be directly proportional to α, and inversely proportional
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to β: an increase in α results in a larger distance covered before the next heading update (and

hence, a larger orbit). Conversely, an increase in β induces a sharper heading adaptation (and

hence, a smaller orbit). For a fixed β, the radius of the limit cycle depends only on α.

In our case, we fix α and β, thus letting the forward speed be proportional to the number of

instantaneous neighbors. This forces the orbit to shrink when few neighbors are detected, and

increase in the other configuration, mimicking the MCD dynamics. While in the mathematical

model of Section 2.2, the parameters ρ and M selected the limit cycle’s radius, here ρ, α, and β

contribute to the orbit selection. Accordingly, the parameter M will be adjusted by an ad-hoc

combination of α and β.

Assuming the swarm of robots is large enough to ensure local communications, the proposed

BCM will let the swarm converge to a consensual orbit and circulate on it at a constant speed.

This convergence does not depend on the initial position and heading of the robots. As the

central light is a global attractor, robots will also never drive away from it.

2.3.2 Physical implementation on e-puck robots

The formerly exposed BCM has been implemented on the open-hardware e-puck robot

specifically designed for experimental swarm robotics Mondada et al. (2006) . The e-puck is a

cylindrical robot, of approximately 70 millimeters in diameter, with 8 infrared (IR) proximity

sensors (emitter and receptor) located nearly evenly on its perimeter (see Figure 2.4). Each

sensor is composed of an IR emitter and a receptor, and can be used passively (only the

receptor, to sample ambient light), or actively (emitter/receptor, for proximity search or

message exchanges).

Our implementation uses only IR sensors (passively and actively, alternately), and the two

motors. Each timestep is separated into five phases:

1. Message broadcasting: Each robot first broadcasts a message to all neighboring robots

via IR (20-40 cm of range, depending on the angles of the emitter/receptor sensors).

The message contains its ID, and the number of agents that have been counted at the

previous timestep Nρ(t −1).

2. Message reading: The received messages are read to measure Nρ(t), the number of

detected neighbors. A filtering step also allows detection of robots that were in range in

the previous steps, but whose messages were not received (to correct possible miscom-

munication between robots). A memory of the detection of the other robots in the last 5

steps is maintained, and a majority window algorithm (MWA) is applied to correct for

robots not being correctly detected. The filtered value N ′
ρ(t ) is thereby constructed.

The MWA counts as a neighbor any robot that has been in range at least 3 times in

the last 5 timesteps, or that has just been detected during the present timestep. The
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number of neighbors can only be underestimated, as we use an unmodulated light

source (on a continuous current), and the IR communication between the e-pucks are

modulated. This means that no false positives can occur in the communication among

the robots, and only false negatives (undetected neighbors) can happen. To try and

reduce the influence of non-detection of neighbors, we artificially force the number of

neighbors at time t to be bounded below by (Nρ(t −1)−1). This mechanism ensures a

smooth behavior of the speeds of the motors, by avoiding large jumps in the number of

neighbors over time. We define Vρ(t ) to be the set of the values Nρ(t −1) received from

the neighbors at time t . Then the final value Nρ(t )à is defined as:

Nρ(t ) := max

(
Nρ(t −1)−1,

N ′
ρ(t )+∑

i Vρ(t )i

N ′
ρ(t )+1

)
. (2.13)

3. Light source sampling: The intensity of the light source is passively sampled on each

of the eight IR sensors to obtain
{
S̄0(t ), S̄1(t ), ...S̄7(t )

}
. The normalized values are then

computed as Si (t ) = S̄i (t )/ maxi
{
S̄i (t )

}
for i = 0,1, ..,7.

4. Velocity feedback: With the data gathered, the velocity of each motor is computed and

updated following Eq.(2.12), with α= 100 and β= 20, and a base speed of 100:


VR (t +1) = 100+100 ·Nρ(t )+20 · (SL(t )−SR (t ))

VL(t +1) = 100+100 ·Nρ(t )+20 · (SR (t )−SL(t )) .

(2.14)

The speeds here are given in steps/second. 1000 steps correspond to one full rotation of a

wheel, whose diameter is approximately 41mm. A speed of 500 steps/s corresponds to
500

1000 ·π ·41 ≈ 64.4[mm/s].

5. Avoidance mechanism: A proximity search is performed on each sensor to detect ob-

stacles; collision avoidance is implemented by adapting the motors’ velocities. The

mechanism used is a standard Braitenberg-inspired collision avoidance mechanism.

It has been designed to avoid collisions between e-puck robots, but cannot guarantee
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collision avoidance with the light source. Its pseudo-code is given in Algorithm 1.

Data: α = 100;

// Something ahead, stop for this timestep

if obstacle_front() then
VR(t+1) = 0;

VL(t+1) = 0;
end

// Something ahead slightly left/right, turn the other direction

if obstacle_front_right() then
VL(t+1) = VL(t+1) - α;

end

if obstacle_front_left() then
VR(t+1) = VR(t+1) - α;

end

// Something left/right, turn slightly the other direction

if obstacle_right() then
VL(t+1) = VL(t+1) - α/2;

end

if obstacle_left() then
VR(t+1) = VR(t+1) - α/2;

end

right_motor(VR(t+1));

left_motor(VL(t+1));
Algorithm 1: Avoidance mechanism

Figure 2.5 summarizes the robot’s main loop.

Different noise sources are inherent to this robotic implementation. First, the motors’ noise:

each robot can have a slightly different speed from its programming (the e-puck motors

sometimes miss some motor steps, thus changing their forward speed and heading). Second,

the sensors’ noise in sampling the light source can also slightly change the robot’s heading in

the BCM. Finally, we must account for the noise in the number of neighbors, as they change

its forward speed in the BCM. This final source is the biggest source of noise in the BCM. All of

these noise sources add up, letting the robots follow noisy trajectories, as expected from the

mathematical model of Eq.(2.1). We follow the assumption that these three noise sources are

similar, in terms of behavior to the two independent WGN sources from the mathematical

model. Indeed, the superposition of multiple independent noise sources can be simplified to

a WGN source, by the central limit theorem (see Gillespie (1992), sect. 1.6).

With the IR sensors acting as the neighbors’ detection mechanism, we can express the following

expected theoretical results. On the limit cycle, each robot has three neighbors in average

(himself and the two nearest neighbors). This is due to the small range, and the fact that the
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Broadcasting of IR signal
(ID + Nbr previous neighbours)

Reception of IR signal
(evaluation Nbr of neighbours)

Light source sampling
(on eight light sensors)

Light

obstacles

Wheel speed update
(based on neighbours and light)

Obstacle avoidance
(speed update based on proximity)

Figure 2.5 – Schematic of the robot’s main programming loop.

robots also block the IR rays; thus, only the closest neighbors can be detected. As on the limit

cycle, the robots always have the light at π
2 on their right, so the value of the sensors can also

be estimated. Indeed, sensors 1 and 2 are closest to the light source, and approximately at the

same distance. Their values will most likely be around 1. Sensors 0 and 3 will also have nearly

the same values, and the other sensors will not receive any light, so that:

∆S := SR −SL ≈ S1 +S2 +S3 −S0 ≈ 2.

This allows us to consider the average speeds on the limit cycle as being constants, and to

rewrite the BCM on the limit cycle as:


VR = 3α+2β

VL = 3α−2β.

(2.15)

A relation between these speeds and the interaxial distance e of the robots, leads to the radius
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of the limit cycle

Lα,β =
e

2

VL +VR

VL −VR
= 3α ·e

4β
(2.16)

The angular speed can also be expressed as

ωα,β =
VL −VR

e
= 4β

e
.

2.3.3 Dictionary theoretical model-robotic implementation

A formal proof of the convergence of our BCM would be very difficult to provide; this is why we

chose to illustrate that our BCM exhibits the same characteristic behavior as the mathematical

model of Sect.2.2, whose convergence we have formally proven. To better link the model and

the robotic implementation, Table 2.1 illustrates the translation of these main characteristics

between the theoretical and robotic control mechanisms.

Characteristic of the
MCD dynamics

Theoretical Control Mecha-
nism

Robotic Control Mechanism

Attraction/Repulsion
with respect to the origin

Symmetric part of the
dynamical matrix V.
Control parameter: M ,
ρ

Forward speed in the Brait-
enberg control mechanism.
Control parameter: α, ρ

Rotation around the ori-
gin

Anti-symmetric part of
the dynamical matrix V.
Control parameter: ω, ρ

Heading correction in the
Braitenberg control mecha-
nism. Control param-
eter: β, ρ

Attraction to the limit cy-
cle

U ′[H , t ] term in the symmet-
ric part of the dynamical ma-
trix V. Control parameter:
ρ

Transmission of Nρ(t − 1)
to/from neighbors, and
filtering step of Nρ(t).
Control parameter: ρ,
majority window size

Repartition on the limit
cycle

Noise sources
dW (t). Control
parameter: σ

Robotics noise sources (mo-
tors imprecisions, communi-
cations errors, environmen-
tal noise, etc.). Avoidance
mechanism.

Table 2.1 – Theoretical and robotics implementations of the main control mechanisms in our
model, and their respective control parameter(s).
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The explicit expression of the limit cycle in both cases is also summarized, to show how both

depend on their control parameters

Lρ,M = ρp
2−2cos(π/M)

Lα,β =
3α ·e

4β
.

In the BCM, we see that our initial choice of setting α and β fixes the radius of the limit

cycle (and the angular speed on it). If we choose a larger swarm of robots, we should not

see a difference in the radius as long as we do not change these two control parameters.

Theoretically, we could see the swarm trying to arrange on a circle whose perimeter is too

small for all the robots to fit. This means that we should see α and β as functions of N , to be

sure that all robots can fit on the consensual limit cycle. We should have the perimeter of the

limit cycle at least larger than N times the diameter d of one robot:

2π ·Lα,β = 2π · 3α ·e

4β
≥ N ·d .

This result from the BCM matches the mathematical model, where the radius of the limit

cycle depends only on the fraction of neighbors M and the radius of observation ρ. In the

mathematical model, changing the swarm number does not change the limit cycle’s radius

either.

2.3.4 Experimental validation

To demonstrate the convergence of our BCM regardless of the initial conditions, tests were car-

ried out with a swarm of eight robots, from 25 different (random) initial situations (positions

and headings of the robots). The choice of these initial conditions was made to experimen-

tally validate the inter- and intra-convergence variability. The headings changes in similarly

located robots in different initial conditions (e.g., experiments 3 and 17) show how the control

mechanism can achieve convergence to a consensual orbit with initial conditions close or

far from the final orbit. The agents were placed systematically in a 200×200 cm rectangular

horizontal arena. The initial positions and headings of the robots are shown in Figure 2.6,

along with the position of the IR source, which remains unchanged during the experiments.

Each experiment lasted from 1 to 4 minutes; long enough to let the robots rearrange from their

initial positions to the limit cycle, and then maintain the limit cycle.

The tracking step allowed us to obtain the position of each robot through all of the 25 experi-

ments. Figure 2.7 shows the tracking step applied to the videos, while Figure 2.8 shows the

resulting tracked trajectories. Details on the multi-agent tracking tool developed can be found

in Appendix A.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2.6 – Initial positions and headings of the eight robots in each of the 25 experiments.
Each circle corresponds to a robot, and the corresponding line denotes the heading. The
center cross represents the position of the light source.

2.3.5 Experiment Results

Data extracted from tracking has been used to quantitatively assess convergence, based on

the following measures:

1. Mean and standard deviation of each robot’s radius in the last 15% of each experiment

(empirically found to be in the limit cycle regime for every initial situation).

2. Mean and standard deviation of each robot’s angular speed in the same time window.

The extracted data are shown in Figure 2.9 for each experiment, where these averages and

standard deviations are pictured for each robot on the left side, and as one average for the

whole swarm on the right. It is worthwhile to note the very low fluctuations on the average

radius and angular speeds for the swarm, through the whole set of initial conditions.
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Figure 2.7 – Left: A randomly selected initial condition assuming eight aligned equally spaced
agents in the inferior working space region. The IR radiation source is located at the center of
the rectangular arena.
Right: Respective agents’ control mechanism and their mutual interactions. It is important
to observe that the proposed Kalman filter (see Appendix A) is capable of determining the
position of an agent with high precision independently of lighting conditions and other agents’
positions.

As a measure of the uniformity of the robots’ dispersion on the limit cycle, we now recall

the order parameter (see Acebrón et al. (2005a)) for a group of N oscillators on R2 in polar

coordinates:

R(t ) =
∣∣∣∣∣ 1

N

N∑
i=1

ri (t ) ·e iθi (t )

∣∣∣∣∣ , (2.17)

which takes a real positive value. Note that if all the oscillators share the same phase θi (t ) (and

the same radii) at a given time, the value for R(t) will be high. Conversely, if all the phases

of the oscillators are uniformly distributed over [0 : 2π], and if their radii are the same, R will

vanish.

In this research, we used information on the position in the last 15% of each run to determine

the phase of each robot through time, and compute R(t ) for the swarm. Figure 2.10 reports

the average in this time window (along with the standard deviation) for each experiment.

Remark: The positions of robots that got stuck against the IR source during an experiment

are shown in the initial configurations plot in Figure 2.6, even though their data was not used

in the analysis. Over the 25 experiments, 15 robots got stuck, with a maximum of 2 stuck

robots for one initial condition (7.5% of unusable data). As the IR source is an attractive point,

and because of the collision avoidance mechanism used, the robots sometimes change their

course and end up hitting the light source. A robot in this situation can not get back to the
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Figure 2.8 – Full extracted trajectories of the eight robots through the duration of experiments,
for initial conditions 1 (left) and 6 (right).

limit cycle, and stays at the same spot with 0 velocity until the end of the experiment. In the

mathematical model of Sec. 2.2, agents can leave the attractor only because of the noise source.

Our robots can not do the same, due to the physical presence of the IR source blocking their

path.

This issue could not be solved by using a different collision avoidance mechanism, as avoiding

a light source, solely with the use of the IR sensors is impossible (at short range, the IR sensors

are saturated by the light source). This result conforms to our expectations, as it fits the

theoretical predictions as well as the underlying Eq.(2.1).

2.3.6 Comparison with the theoretical results

Theoretical results derived in Sect. 2.3.2 lead to the following limit cycle radius and angular

speed (with the e-puck robot’s interaxial distance e = 52[mm]):

Lα,β =
3α ·e

4β
= (100+3 ·100) ·52

4 ·20
= 260[mm] ωα,β =

4β

e
= 4 · 20

1000 ·41π

52
≈ 0.198.

(2.18)

These results very closely match our experimental results, where the average radius of the

limit cycle over the 25 experiments is Lα,β := 252.7[mm], and the average angular speed is

ωα,β := 0.197.
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Figure 2.9 – Average radius/angular speed in the last 15% of each experiment. Left: For each
robot. Right: Averaged for the whole swarm.

2.3.7 Generalization to other Hamiltonian functions

The choice of a BCM limits the characteristics of the Hamiltonian functions that can be

adapted to a hardware implementation. The scope of this research was not to study the limit

of validity of our model; other types of control mechanism may adapt to general Hamiltonian

functions. Nevertheless, the BCM described here for the case of the harmonic oscillator

(H(x, y) = 1
2 (x2 + y2)) can be extended to more complex Hamiltonian functions. For example,

one can obtain Cassini oval-like curves by placing the robots in an environment with two light

sources. Using exactly the same control mechanism of Eq.(2.12), we obtain a swarm behavior

similar to the mathematical case with the Cassini ovals Hamiltonian function. Depending

on the observation range ρ of the robots, cases with one connected consensual orbit or two

separated orbits can arise. This time, robots sample the ambient light coming from both light

sources, acting as the two focal points from the Cassini Ovals Hamiltonian function.

Tests have not yet been carried out on an actual swarm of robots, but numerical results are

shown in Figure 2.11. These results are obtained by simulating Eq.(2.12) with d t = 0.1s, on

a swarm of 100 robots starting with random positions and headings on the plane. The two

light sources are positioned at (±100,0), and WGN sources are added to the (exact) gathered
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Figure 2.10 – Order parameter R of the swarm for each initial situation, averaged over the last
15% of each experiment.

information to simulate the noise actual robots would experience:


VR (t +1) = α ·Nρ(t ) + β · (SL(t )−SR (t )+σl dWR (t ))

VL(t +1) = α ·Nρ(t ) + β · (SR (t )−SL(t )+σl dWL(t ))

(2.19)

Empirically chosen values for the WGN sources are σl = 0.05 for the light source sampling,

and σN = 0.5 for the number of instantaneous neighbors (ÑV (t ) := NV (t )+σN dWN (t )).
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Figure 2.11 – Numerical simulation of the BCM on a swarm of 100 robots, with two light
sources located at (±100,0).
With an observation range of ρ = 100, the swarm consensually rotates around both light
sources (left), whereas a smaller range of ρ = 10 lets the swarm split into two sub-swarms
rotating around each light source (right). The trajectory of 10 randomly selected robots are
shown, along with the final position of all robots as black dots.
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2.4 Conclusion

For a whole class of interacting autonomous agents evolving in an environment subject to

noise or external perturbations, we have been able to perform an analytical characterization

corroborated by an extensive set of simulation experiments and ultimately to implement the

control mechanism on a swarm composed of eight e-puck robots. The possibility to simulta-

neously complete these complementary approaches on the same class of control mechanisms

is exceptional, and originates from the simplicity of the underlying dynamics (i.e., MCD dy-

namics). However, despite its simplicity, our modeling framework incorporates a number

of basic features rendering it generic, namely: non-linearities in the control mechanism;

finite range interactions between agents; self-organization mechanisms leading to dynamic

consensual spatio-temporal patterns; and environment noise, which corrupts ideal trajecto-

ries and sensor measurements. Beyond the pure pedagogic insights offered by this class of

models, the results provide strong evidence that built-in stability of the control mechanism

and the resilient behavior observed during the actual implementation open the door for more

elaborate implementations. The modeling framework exposed here is more than a mere class

of models; it offers a constructive method to deduce generalized classes of fully solvable agent

dynamics. In particular, extension of the MCD dynamics via the introduction of Hamiltonian

functions, involving more degrees of freedom, will allow analysis of the robots’ evolution in

higher dimension (from planar to 3-D spaces).

2.5 New Contributions of Chapter 2

• The mixed canonical-dissipative (MCD) dynamic introduced in Chapter 1 is successfully

converted into a Braitenberg-inspired control mechanism (BCM), thus bridging the gap

between the theory and the real robotic world. Experimental validation on a swarm of 8

e-puck robots is presented.

• Publication: This chapter is reproduced from the journal paper Sartoretti et al. (2014a),

with slight modifications to fit the present dissertation.
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3 Leader-Follower Control Mechanism
for Planar Robots Evolving in Forma-
tion

Summary

Leader-based control has been extensively studied in swarm robotics, where it often is an easily

implementable type of swarm control. Leader-followers models can be viewed as a degenerate

case of heterogeneous swarms (one leader, and N −1 regular agents). In this chapter, which is

mostly added for completeness, we propose a simple class of models based on the Braitenberg-

type dynamic already studied in Chapter 2. We build on the column formation studied in

Krishnanand and Ghose (2005), and propose a control mechanism enabling a swarm of robots

to follow a leader while remaining in a triangular platoon formation. The described control

mechanism can be implemented on mobile robots, and only uses locally gathered information

via their infrared sensors.

3.1 Problem Statement

We consider a swarm of robots containing one leader and N − 1 followers. The swarm is

initially in formation, and our aim is to construct a control mechanism enabling the robots to

follow the leader while remaining in formation. The control mechanism should only use local

information, gathered by the robots using their infrared sensors. The use of leader-follower

models has been extensively used in robotics, and provides a convenient method to externally

control a swarm in real-time (Desai et al. (1998)). As an introductory example, we first recall

the column formation from Krishnanand and Ghose (2005), on which we then build to obtain

the triangular-shaped formation movement.
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3.2 Introductory Example: Robotic Train

1[...]We first consider a swarm of mobile robots initially positioned in a single file. Our aim is to

allow the whole swarm to move in formation, the first robot acting as the swarm’s leader, while

the others follow in its path. To this aim, we let each regular mobile robot act as a differential-

motored, two-sensored, light-attracted Braitenberg vehicle Braitenberg (1984). This vehicle

regularly updates the speed of its left (resp. right) motor proportionally to the intensity of the

light read by its right (resp. left) sensor. In other words, each of our regular robots consistently

adapts its course to drive toward the brightest light source its sensors can detect. To let the robot

move in formation, we attach a light at the rear of each robot. Therefore, each regular robot

will be attracted toward the robot directly in front of it in the file. Hence, each agent (except

for the last one in the file) acts as a (local) leader for the next agent in the file. Similarly, each

regular robot simultaneously acts as a follower, attracted by the previous robot in the file. This

effectively enables us to build a “robot train,” whose path the first agent in line (i.e., the leading

robot) controls.[...]

3.2.1 Braitenberg Control Mechanism

Formally, we respectively write VL(t) and VR (t) the speeds of the left and right motors at

timestep t . Similarly, we respectively write ML(t) and MR (t) the light intensities read on

the left and right sensors at timestep t . We use the normalized values SL,R (t), obtained by

computing SL,R = ML,R (t )
max(ML (t ),MR (t )) . With this, we express the speed update rule as, in a similar

manner as in the previous chapter (see Eq.(2.14)):


VL(t +1) =V (t +1)+β · (SR (t )−SL(t )),

VR (t +1) =V (t +1)+β · (SL(t )−SR (t )).

(3.1)

In Eq.(3.1), V (t +1) stands for the forward speed of each robot, and β ∈ R+ is a parameter

governing the rotation speed of the robots. We let each robot adapt its current forward speed

V (t +1) in order to keep up with the robot in front of itself in the line. More specifically, each

robot aims at remaining at a given distance from the its local leader. To achieve this, we

implement a simple proportional controller on each robot’s speed:

V (t +1) = D(t )

D0
·VLeader, (3.2)

with D(t) the measured distance from the local leader, D0 the goal distance from the local

1Italic text in the present section is reproduced from the conference paper Sartoretti (2015).
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3.2. Introductory Example: Robotic Train

leader, and VLeader the speed of the swarm’s leader (assumed constant).

3.2.2 Numerical Simulations

To simulate our robotic swarm, we consider the robots as e-puck robots (see Chapter 2). As a

reminder, e-puck robots are cylindrical mobile differential robots, equipped with 8 proximity

sensors. These sensors are nearly uniformly distributed along the robots’ perimeter. For the

sake of the numerical simulations, we consider the sensors to be uniformly distributed along

the robots’ perimeter. Figure 2.4 illustrates the real and theoretic shape of the mobile robots

considered here.

Here, the e-puck robots with their 8 sensors are used to model 2-sensored attractive Braiten-

berg vehicles. This is achieved by aggregating their sensors into two groups (left and right),

namely


SR = S0 +S1 +S2 +S3

SL = S4 +S5 +S6 +S7.

(3.3)

To model the ubiquitous randomness of the environment and sensors’ actuators, we add noise

to our control mechanism. White Gaussian Noise (WGN) sources are added to the difference

SR (t )−SL(t ), with an empirically selected variance σ= 0.05:


VL(t +1) =V (t +1)+β · (SR (t )−SL(t )+σW (t )),

VR (t +1) =V (t +1)+β · (SL(t )−SR (t )−σW (t )).

(3.4)

Figure 3.1a illustrates the initial state of the 10 robots, and 3.1b-3.1d display a selection of

consecutive states of the swarm. In this run, the leading robot is scripted to follow a horizontal

figure eight. This pattern is a robust test for the swarm’s resistance to turns induced by

the leader. Indeed, this figure eight consists of two consecutive full rotation with opposite

orientations. Each robot reacts to the change of direction of its leader after a short delay. With

time, these delays add up, and lead to a large difference of paths between the front and the rear

robots in the file. If the rotation speed β in the Braitenberg dynamics Eq.(3.4) is not adequately

chosen, a turn induced by the leader can jeopardize the swarm’s cohesion. This requires us to

further investigate the swarm’s stability (i.e., the swarm’s capacity to remain flocked, mainly

when the leader changes direction).
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Figure 3.1 – a: Initial state of a swarm of 10 robots (1 leader [in red] and 9 followers) following
the dynamics of Eq.(3.2). All robots are initially facing upward. b-d: Selected consecutive states
of the swarm through time. During this run, the leader follows a horizontal scripted figure
eight, while the rest of the train follows in its path. Distances are displayed in millimeters.

3.2.3 Stability Analysis

The forward speed updating rule given in Eq.(3.2) allows the followers to match the leader’s

speed. The main issue with keeping the formation arises when the leader takes a turn. To

remain in formation, the followers must be able to take a turn as sharp as their leader.

A robot’s sharpest turn occurs when one of its sensors measures no light (i.e., for instance

SL(t) = 0 induces the sharpest right turn). When this occurs, we have SR (t)−SL(t) = 1
( =

−(SL(t )−SR (t ))
)
, implying that the differential between both motors will be 2β. Assuming that

the robot’s forward speed remains close to VLeader, the resulting minimal radius the robot

can follow is:

ρmin = e

2

VL +VR

VL −VR
= e

VLeader
2β

, (3.5)

with e the interaxial distance of the robot. Knowing the radius ρmin of the sharpest possible

turn taken by the leader, Eq.(3.5) determines the threshold value βc in Eq.(3.1) (i.e., any β>βc
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ensures swarm cohesion during turns):

βc = e

2

VL +VR

VL −VR
= e

VLeader
2ρmin

. (3.6)

Figure 3.2 displays the end state of an unstable swarm (i.e., where the formation control

mechanism cannot keep the swarm in formation), with β= 32 < 43.19 =βc . Notice how the

last 3 agents are unable to follow the leader during its turn, and ultimately leave the swarm.
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Figure 3.2 – End state of a swarm of 10 robots (1 leader [in red] and 9 followers) following the
dynamics of Eq.(3.2) at T = 60[s]. During this run, the leader follows a horizontal scripted
figure eight, while the rest of the train follows in its path. The choice of β= 32 < 43.19 = βc

does not enable all robots to remain in formation while they follow the leader. Three robots
(red, blue and green lines) ultimately leave the swarm. Distances are displayed in millimeters.

Even in stable swarms, regular robots follow slightly different paths than the leader (this,

because of the delays between the leader’s and the followers’ turns), but cohesion still remains.

3.3 Triangular Formation

3.3.1 First Layer - 4 Robots

Building on the previous section, we shall now allow the robots to move together in more

complex formations. Although the same method can be used to obtain almost arbitrary shape

(limited only by the positions of the sensors along the robot’s perimeters), we here focus on

triangular-shaped platoons. The basic idea is to now have each robot permanently keep its

local leaders at selected angles from its own heading. The resulting control mechanism is the

sum of (slightly modified) Braitenberg-type control mechanisms Eq.(3.4).

The layer 0 of the triangular pyramid (i.e., the top of the triangle) is always occupied by the
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leader agent (robot 1). The first layer is then composed of 3 robots (i = 2,3,4), one behind the

leader, and the two others on its sides. Robot 3 steadily updates its position in order to remain

at the south of the leader. Robots 2 and 4 try to keep the leader at an angle of approximately π
4

on their right/left respectively. The situation is summarized in Figure 3.3.

1

2

3

4

/4 /4

Figure 3.3 – Triangular one-layered formation for 4 robots: 1 leader (in red) and 3 followers (in
black). The blue lines represent the angle at which each follower wishes to keep the leader
from its heading. All robots are facing upward.

To construct the control mechanism of robots 2 and 4, we simply modify the sensor aggrega-

tions as:

(2)


SR = S1 +S2 +S3 +S4

SL = S5 +S6 +S7 +S0.

(4)


SR = S7 +S0 +S1 +S2

SL = S3 +S4 +S5 +S6.

(3.7)

We finally let each follower’s control mechanism be given by Eq.(3.4), with the sensor groups

given by Eq.(3.7). This control produces a triangular-shaped formation progression of the

swarm, driven by the leader. As before, the stability of the formation depends on the parameter

β, and its stability analysis is similar, since the robots are basically following the same control

mechanism. Simulation results are presented in Figure 3.4.

3.3.2 Extra Layers

Building on this idea of individual sensor groups, we can enlarge the triangular formation. The

next step requires to add 5 robots (i = 5,6,7,8,9). One possibility to stabilize the formation is

to let the new robots’ control mechanisms depend on more than one local leader. Figure 3.5

illustrates the leader-follower relations between agents during formation movement.

To obtain control mechanisms allowing a robot to remain in formation with respect to more

than one leader, we adapt Eq.(3.4). As an illustration, consider robot 6. This robot must stay
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Figure 3.4 – a: Initial state of a swarm of 4 robots (1 leader (in red) and 3 followers) in a one-
layered triangular formation. All robots are initially facing upward. b-d: Selected consecutive
states of the swarm through time. During this run, the leader follows a horizontal scripted
figure eight, while the rest of the train follows in its path. The forward speed of the leader is
12.19 [cm/s], and β= 40 >βc = 32.3. Distances are displayed in millimeters.

behind robot 2, while keeping robot 3 at its right with an angle π
4 . To this aim, we define the

two following sensor groups:

(2)


SR,2 = S0 +S1 +S2 +S3

SL,2 = S4 +S5 +S6 +S7.

(3)


SR,3 = S1 +S2 +S3 +S4

SL,3 = S5 +S6 +S7 +S0.

(3.8)

Basically, we now simply add the couple of control mechanisms obtained from Eq.(3.4) for
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Figure 3.5 – Triangular two-layered formation for 9 robots: 1 leader (in red) and 8 followers (in
black). The blue lines represent the angle at which each follower wishes to keep its leading
robots from its heading. All robots are facing upward.

each of these sensor groups:


VL(t +1) =V (t +1)+β · (SR,2(t )+SR,3(t )−SL,2(t )−SL,3(t )),

VR (t +1) =V (t +1)+β · (SL,2(t )+SL,3(t )−SR,2(t )−SR,3(t )).

(3.9)

Introducing Eq.(3.8) in Eq.(3.9), we observe that by adding the values from each sensor groups,

some sensor values vanish. We finally obtain the global left/right sensor groups for robot 6:


SR = S1 +S2 +S3

SL = S5 +S6 +S7.

(3.10)

Along the same lines, we can derive the control mechanism foir robot 8, from its relative

position to robots 3 and 4. Having all the individual sensor groups, we finally use Eq.(3.4) to

obtain the global formation movement.

Figure 3.6 shows the initial state and a selection of consecutive states of the swarm, in a run

where the leader agent follows a figure of eight. Here, the swarm also remains in formation

during the turns, since the parameter β= 40 >βc = 32.3.

Remark: the basic idea behind this triangular formation movement opens to more complex

geometries, where robots depend on more than a couple of leaders. However, appropriate

modification of Eq.(3.2) would be required for robots whose leaders are behind them.
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Figure 3.6 – a: Initial state of a swarm of 9 robots (1 leader [in red] and 8 followers) in a two-
layered triangular formation. All robots are initially facing upward. b-d: Selected consecutive
states of the swarm through time. During this run, the leader follows a horizontal scripted
figure eight, while the rest of the train follows in its path. The forward speed of the leader is
12.19 [cm/s], and β= 40 >βc = 32.3. Distances are displayed in millimeters.

3.4 New Contributions of Chapter 3

• In this chapter, we consider robotic platoon formations driven by a visible leader. Based

on Chapter 2, we construct a control mechanism for the collective evolution of triangular

platoons. This control parameter only relies on local information delivered by infrared

sensors. For such swarms, a simple theoretical analysis enables to analytically fix the

value of the Braitenberg rotation speed, to guarantee swarm cohesion.
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4 Nonlinear filtering and heterogeneous
swarms of autonomous agents - An
exactly solvable model

Summary

We consider slightly heterogeneous swarm of agents controlled by one hidden leader. By hidden,

we mean in this work that an external observer of the swarm cannot distinguish the leader from

the regular agents. We study the global dynamics by using a newly established connection bind-

ing multi-agents dynamics and nonlinear optimal state estimation (nonlinear filtering). For a

whole nonlinear class of mutual interactions, we are able to exactly characterize the resulting

swarm dynamics. Our leader-follower dynamics are interpretable as a feedback particle filtering

problem which itself is similar to a finite-dimensional, nonlinear filter problem originally

proposed by V. E. Beneš. The state estimation problem can be explicitly solved as it merely uses

a change of probability measure on an Ornstein-Uhlenbeck process. The agents interactions,

driven by common observations of the randomly corrupted leaders position, correspond to the

innovation kernel that underlies any Bayesian filter. Numerical results fully corroborate our

theoretical findings and intuition.

4.1 Introduction

Among the vast and steadily increasing amount of literature devoted to the dynamics of

a large number of mutually interacting autonomous agents, analytically solvable models

stylizing some aspects of reality are welcome Hongler et al. (2014); Eftimie (2012); Bellomo and

Dogbe (2011); Bertin et al. (2006). Despite specific features inherent in analytical approaches,

these contributions enhance our understanding of the emergence of collective phenomena

like synchronization, aggregation, pattern formation, behavioral phase transitions, fashion

trend formation, and others. Most analytical studies focus on the dynamics of homogeneous

swarms (i.e., those involving identical agents). Either the agents local rules are given and the

ultimate goal is to analytically derive the emerging collective patterns or inversely, given a
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collective behavior, the goal is to unveil the agents local rules and their interactions. Purely

homogeneous swarms are however rather scarcely encountered in reality.

In this chapter, we focus our attention on slightly heterogeneous populations in which one

special agent (we call it the leader) is able to drive the whole swarm towards a desired objective

Wang et al. (2011). Several types of leaders can be distinguished depending on the ways

they affect their fellows. Either the leader is external and hence is explicitly recognized by

ordinary agents of the swarm Couzin et al. (2005); Aureli and Porfiri (2010)), or it acts as a shill

who appears ordinary to its fellows while in fact obeying a hidden master Faria et al. (2010);

Gribovskiy et al. (2010); Wang and Guo (2008). Besides very particular models Sartoretti and

Hongler (2013d,b), there is generally little hope for an analytical investigation of the collective

behavior of a shill- or leader-infiltrated (and hence heterogeneous) swarm. The objective

of this chapter is to unveil a class of dynamical models for which this investigation can be

achieved.

Our source of inspiration is taken from the realm of estimation problems. In noise filtering,

one considers the evolution of a stochastically driven system S , monitored by an observer

O , which is itself delivering noisy information. The filtering goal at time t is to construct the

best possible estimation of the state S by processing information delivered only from O up

to time t . The filtering process is achieved via sequential Bayesian steps. Specifically, one

starts with a prediction step to estimate the relevant conditional probability density function

(pdf) based on the S -dynamics, and then one updates this pdf based on the O-dynamics.

For linear S -evolutions driven by White Gaussian Noise (WGN) and O-measurements also

corrupted by WGN, the filtering problem is completely solvable, and its explicit solution is

known as the Kalman-Bucy filter. Indeed, due to linearity and Gaussian driving noise, both the

prediction and the updating steps preserve their Gaussian character. Therefore the underlying

filtering problem remains finite-dimensional as all operations are expressible via means and

covariances only. For nonlinear evolution, the Gaussian character is lost, generally leading to

infinite-dimensional problems. Analytical treatments are then precluded and only numerical

approaches are feasible. One numerical method is given by particle filters, specifically feedback

particles algorithms (FPA) Yang et al. (2013). These algorithms are directly based on dynamics

of randomly interacting particles and can therefore be identified with specific agents dynamics.

The FPA prediction step is achieved by attributing the S -dynamics to a homogeneous swarm

of agents. The updating process, realized by mutual agents interactions will globally minimize,

in real time, the Kullback-Leibler distance between the S pdf and the swarm empirical

distribution. In this chapter, we view the S -dynamics as playing the role of a leader evolving

among a homogeneous swarm of N ordinary agents. When N →∞, this dynamic is reducible

to a mean-field game Pequito et al. (2011); Guéant et al. (2011) with here an infinitesimally

short time horizon, (as only real time updating – excluding smoothing – is realized). The FPA

offers, therefore, a natural framework to construct leader driven swarms of agents. As a natural

consequence, solvable filtering problems, like the Kalman-Bucy case, provide directly solvable

heterogeneous swarms dynamics. Here, our intention is to construct a class of multi-agents

models which simultaneously keep the associated FPA finitely dimensional and yet escape
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from the pure Gaussian world. The idea on which we base our construction, is to consider a

class of “Girsanov-changes” of probability measures applied to Ornstein-Uhlenbeck dynamics

(i.e., linear dynamics with Gaussian noise sources). Here one considers the class of Girsanov

changes of measures studied in Taylor (1989); Hongler (1981); Dai Pra (1991); Benes̆ (1981);

Daum (1985).

We organize the chapter as follows: in section 2, the explicit connection between the filtering

problem and the driving of a swarm of agents infiltrated by a leader is exposed. In section 3, we

introduce our specific example of non-Gaussian interacting agents, controlled by a leader and

for which the associated FPA is analytically solvable. Finally, in Section 4, we report numerical

experiments to illustrate our analytical findings.

4.2 Multi-Agent Dynamics and Feedback Particle Filtering

Consider a swarm of N Brownian agents Ai , i = 1,2, · · · , N , and one additional leader agent A

with dynamics:



d Xi (t ) = f (Xi (t ))d t +K
(
Xi (t ),~X (t ),d Z (t )

)+σdWi (t ),

leaders dynamics


dY (t ) = f (Y (t ))d t +σdW (t ),

d Z (t ) = h Y (t )d t +σodWy (t ),

(4.1)

where h > 0 is a constant, f : R→ R, dWi (t), dW (t) and dWy (t) are mutually independent

WGN processes and the vector ~X (t) = (X1(t ), X2(t ), · · · , XN (t )) describes the dynamic state

of the N homogeneous agents. The leader agent Y (t) affects the dynamics of the Xi (t) via

the interaction kernel K
(
Xi ,~X ,d Z

)
. We emphasize that the leader’s dynamics Y (t) itself

is independent from the swarms state ~X (t). Agents are only able to observe the corrupted

leaders position Z (t ), (the leader effectively hides its real position Y (t ) from the other fellows).

In Eq.(4.1), we focus our attention on the class of interaction kernels:

K
[

Xi (t ),~X (t ),d Z (t )
]= ν (Xi (t ), t )⊗


d Z (t )− h

2

[
Xi (t )+ 1

N

N∑
k=1

Xk (t )

]
︸ ︷︷ ︸

G
[

Xi (t ),~X (t )
]

d t


, (4.2)

where the coupling strength ν= ν(Xi (t ), t ) is a positive convex function in Xi (t ) and where, due

to the presence of multiplicative WGN processes, we define ⊗ to denote the Stratonovich in-
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terpretation of the underlying stochastic integrals Jazwinski (1970). In Eq.(4.2), G
[

Xi (t ),~X (t )
]

is a consensual position given by the average between agent Ai ’s position and the whole

swarm barycenter. The interaction kernel relates the position increment Gd t with the leader’s

unveiled position increment d Z (t ) and weights this stimulus with the coupling strength ν.

The assumptions on ν imply that K
[

Xi (t ),~X (t ),d Z (t )
]

tends, in real time, to steadily re-

duce the distance between G
[

Xi (t ),~X (t )
]

d t and d Z (t ). Although the multiplicative factor

ν(Xi (t), t) in Eq.(4.2) remains yet undetermined, its complete specification can be fixed by

introducing a cost structure. In general, one requires that for some running cost functional

J
[
K , Xi (t ),~X (t ),Z (t ), t

]
and final costΨ

(
Xi (T ),~X (T ),d Z (T )

)
at time horizon T , the inter-

action K minimizes the associated optimization problem. Formally, the interaction kernel

(and hence ν) would be the unique minimizer over a setK of admissible controls, namely:

K
[

Xi (t ),~X (t ),d Z (t )
]

= min
K∈K

{(∫ T
t J

[
K , Xi (s),~X (s),d Z (s), s

]
d s

)
+Ψ(

Xi (T ),~X (T ),d Z (T )
)}

.
(4.3)

The coupled set of Eqs.(4.1), (4.2) and (4.3) can be interpreted as a multi-player differential

game Bensoussan et al. (2013). For large populations, one can use the empirical density

P (N )(x, t ) to construct the mean-field posterior density P (x, t |Z (t ), x0) :

P (N )(x, t )d x = 1

N

N∑
n=1

1 {Xn(t ) ∈ [x, x +d x]} ≈ P (x, t |Z (t ), x0)d x, (4.4)

where the condition Z (t ) stands for the information history of the process Z until time t and

x0 for the common initial location of the whole swarm. In the N →∞ limit, we have:

lim
N→∞

1

N

N∑
k=1

Xk (t ) =
∫
R

x ′P (x ′, t |Z (t ), x0)d x ′ = E {X (t ) |Z (t )} . (4.5)

The Fokker-Planck equation which governs this mean-field posterior density reads (with a self

explaining abuse of notation for K ):

∂
∂t P (x, t |Z (t ), x0) = − ∂

∂x

{[
f (x)+K (x,E {X (t ) |Z (t )})

]
P (x, t |Z (t ), x0)

}
+σ2

2
∂2

∂x2 P (x, t |Z (t ), x0).

(4.6)
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Note that Eqs.(4.6) and (4.3) define in a forward/backward coupling, a so called differential

mean-field game problem.

Feedback particles filters. For vanishing forward time horizon (i.e., T = t) in Eq.(4.3), a

simpler situation arises (the backward in time coupling becomes trivial) and the minimization

is reduced to solving an Euler-Lagrange variational problem (ELP) for Ψ (x,E {X (t ) |Z (t )}).

Choosing the objective criterionΨ as the Kullback-Leibler distance dK :


Ψ (x,E {X (t )} ,d Z (t )) := dK

{
P (x ′, t |Z (t ), x0);Q(x, t | x0)

}
,

dK
{
P (x ′, t |Z (t ), x0);Q(x, t | x0)

}
:= ∫

RP (x ′, t |Z (t ), x0)
{

ln
[

P (x ′,t |Z (t ),x0)
Q(x ′,t |x0)

]}
d x ′,

(4.7)

with Q(x, t | x0) being the transition probability density of the diffusion process Y (t ) defined

in Eq.(4.1) we find the ELP:


− ∂
∂x

{
1

P (x,t |Z (t ),x0)
∂
∂x [P (x, t |Z (t ), x0)ν(x, t )]

}
= h

σ2 ,

lim|x|→∞ P (x, t |Z (t ), x0)ν(x, t ) = 0,

(4.8)

which leads to:


ν(x, t ) = h

σ2
o P (x,t |Z (t ),x0)

{∫ x
−∞

[
E {X (t ) |Z (t )}−x ′]P (x ′, t |Z (t ), x0)d x ′} ,

E {X (t ) |Z (t )} = ∫ +∞
−∞ x ′P (x ′, t |Z (t ), x0)d x ′.

(4.9)

Eqs.(4.1) and (4.2), together with ν(x, t ) given in Eq.(4.9) produce a nonlinear continuous time

feedback particle filter. This allows for a direct reinterpretation of the leader-based dynamics

in terms of a stochastic filtering problem. A class of examples is detailed in the next section.

It is worthwhile noting that the leader influences the swarm through the variance σo (and the

parameter h), and not only through its position. As σo grows, the agents uncertainties of the

actual leader’s position increase. Consequently the coupling strength ν(x, t) decreases, the

agents variances increase and the swarm tends to form a widespread group of agents around

the leader. Alternatively, small values for σo allow for very compact swarm formation.
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4.3 Finite Dimensional Filtering with Weber Parabolic Functions

Let us now introduce a specific filtering problem, which will be related to the control of the

multi-agents dynamics. The nonlinear filtering problem is to estimate the value of the one-

dimensional state Y (t ), at time t , given a set of measurements prior to t : Z (t ) = {Z (s) | 0 ≤ s ≤
t }. We will treat hereafter time-continuous measurements and assume that the leader state

Y (t ) – starting at position y0 – evolves according to the stochastic differential equation:

dY (t ) =

:= fB [Y (t )]︷ ︸︸ ︷{
d

d y

[
logYB (y)

]∣∣∣
y=Y (t )

}
d t +dW (t ),

Y (0) = y0

(4.10)

in which W (t) is the standard Brownian motion and where YB (y) is the Weber parabolic

function, which solves the ordinary differential equation:

d 2

d y2 YB (y) =
[

y2

4
+

(
B − 1

2

)]
YB (y) (4.11)

with B a control parameter. From the definition of fB [Y (t )], we easily see that

d

d y
fB (y)+ f 2

B (y) =
d 2

d y2 YB (y)

YB (y)
= y2

4
+

(
B − 1

2

)
. (4.12)

This leads to a Beneš type of finite-dimensional filtering problem (a fully analytical treatment

of filtering problems in the Beneš class can be found in Daum (1985)). In the sequel, we impose

the parameter range B ∈ R+ which ensures the positivity of YB (y) (∀ y ∈ R). For B ∈ [0,1/2],

we further observe that the generalized potential − log
[
YB (y)

]
is locally attractive near the

origin and asymptotically repulsive for |y |→∞. In the parameter range B > 1/2, the potential

is systematically repulsive ∀y ∈R (Hongler (1981)). Figure 4.1 shows the shape of YB (y) and

fB (y) for different values of the control parameter B .

For B = 0 and B = 1 respectively, we obtain linear dynamics:


Y0(y) = e−

1
4 y2 ⇒ f0(y) =−1

2 y

Y1(y) = e+
1
4 y2 ⇒ f1(y) =+1

2 y.

(4.13)
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Figure 4.1 – Shape of YB (y) (left) and fB (y) (right) for B = 0 (plain line), B = 0.01 (stripped line),
B = 0.5 (stripped-dotted line) and B = 1 (dotted line). For B = 0, the filtering problem is linear
and the dynamics are stable. For B = 1, the filtering problem is again linear but with unstable
dynamics. In between, we have a nonlinear filtering problem and the conditional probability
density changes – with increasing B – from unimodal to bimodal and back to unimodal.

Using the framework introduced in Daum (1985), the continuous time filter is given by the

normalized probability density P (y, t |Zt ) of observing Y (t) := y conditioned on the set of

measurements up to time t , Z (t ), and can be written as:

P (y, t ) := P (y, t |Z (t )) = YB (y) ·e−
(y−m)2

2s

J0(m, s,B)
(4.14)

(computational details are given in Appendix B) with J0(m, s,B) the normalization function:

J0(m, s,B) = 2

√
πs

2+ s

[√
2+ s

2− s

]B

e
m2 s

2(4−s2) ·YB

(
2mp
4− s2

)
. (4.15)

(see Appendix B). The measurement dependent quantities m := m(Z (t ); t ) are given by

m = m(Z (t ); t ) = tanh(pt )

p

[
h

∫ t

0

sinh(ps)

sinh(pt )
d Z (s)+ py0

sinh(pt )

]
(4.16)
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and similarly, the measurement independent quantities s := s(t ) reads:

s = s(t ) = 1

p
tanh(pt ) (4.17)

with the definition p =
√

h2 + 1
4 .

With this expression for P (y, t ), we have the conditional mean:

〈Yt 〉 := E(Yt |Z (t )) = 4m

4− s2 + 2sp
4− s2

fB

[
2mp
4− s2

]
(4.18)

and after tedious elementary manipulations, we have the conditional variance:

var (Yt ) := E((Yt −〈Yt 〉)2|Z (t )) = 2s

2+ s
+ 4s2

4− s2

{ m2

4− s2 +B − f 2
B

( 2mp
4− s2

)}
. (4.19)

Remark: For the linear cases B = 0 and B = 1 from Eq.(4.13), we consistently find the following

classical results:

P (y, t ) =
exp

{
− ((2+s)y−2m)2

4s(2+s)

}
√

2π 2s
2+s

, 〈Yt 〉 = 2

2+ s
m, var (Yt ) = 2

2+ s
s (4.20)

for B = 0 and

P (y, t ) =
exp

{
− ((2−s)y−2m)2

4s(2−s)

}
√

2π 2s
2−s

, 〈Yt 〉 = 2

2− s
m, var (Yt ) = 2

2− s
s (4.21)

for B = 1. As predicted by the linear version of the feedback filter, when B = 0 and B = 1 the

coupling strength ν(x, t ) reduces to the standard state independent Kalman gain:

ν(x, t ) = ν(t ) = h

σ2 var (Yt ). (4.22)
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4.4 Numerical Results

Numerical results are obtained by simulating (4.1) for a finite swarm of agents and one leader.

Thanks to the consistency of the estimator (see Yang et al. (2013)), one can still use the

results from the mean-field analysis for a large enough N . In this case P (y, t) must be fitted

to the empirical histogram of the agents’ position at time t to find the values for m and s.

The control ν(x, t ) can then be computed from its integral expression in Eq.(4.9), while 〈Y 〉t

can be computed from Eq.(4.18). The derivative d
d xν(x, t ) is computed by using the relation

d
d x P (x,t )

P (x,t ) = fB (x)+ x−m
s , which can be written as:

d

d x
ν(x, t ) = h

σ2 (〈Y 〉t −x)−ν(x, t ) ·
(

fB (x)− x −m

s

)
. (4.23)

Note that this natural fitting strategy used to estimate P (y, t ) is – computationally – very costly.

Extensive numerical computations have shown that ν(x, t) can safely be computed from

Eq.(4.9) when directly using the empirical histogram of the agents’ position instead of the

fitted function in Eq.(4.14). The derivative d
d xν(x, t ) ' ν(x+h,t )−ν(x,t )

h is computed by selecting a

sufficiently small value h.

Numerical results in linear cases.

Figures 4.2 and 4.3 show in red the time evolution of the noisy leader’s unveiled position. The

mean value from the swarm of agents (likewise, the output of the feedback particle filter)

produces the smooth blue curve. As the agents’ control is updated based on the unveiled

position of the leader, a small delay can be observed between the leader’s movements and the

swarm’s reactions. The filter performs well: as expected, the swarms barycentric position is

nearly always closer to the actual position of the leader than to the unveiled position. This

means that the control on the agents leads to a better approximation of the actual leaders

position.

Numerical results in nonlinear cases.

We now consider the parameter range 0 < B < 0.5 where the dynamics of the leader is nonlinear

and exhibits an attractive potential in the central region (i.e., around the origin) and a repulsive

potential for |x| À 0. Between these two regions, the potential changes from attractive to

repulsive and the agents experience strong nonlinear dynamics. Note that the dynamics in

the attractive region is meta-stable, and a leader starting within this region ultimately escapes

to infinity.

During the sojourn time of the leader in the attractive region, the close-by agents undergo

quasi linear dynamics. They stay in this attractive region and self-arrange in the vicinity of the
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Figure 4.2 – Leader’s position Y (t ) from Eq.(4.10) (black), along with its unveiled position Z (t )
(red), for B = 0, σ= h = 1 and t ∈ [0;5]. In blue the mean value 〈Y 〉t measured from a swarm of
N = 1000 agents. The particles start with Yi (0) = x0 = 1 ∀i , while Z (0) = Y (0) = x0.
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Figure 4.3 – Leader’s position Y (t ) from Eq.(4.10) (black), along with its unveiled position Z (t )
(red), for B = 1, σ = h = 1 and t ∈ [0;5]. In blue the value 〈Y 〉t measured from a swarm of
N = 1000 agents. The particles start with Yi (0) = x0 = 0.1 ∀i , while Z (0) = Y (0) = x0.

leaders position to empirically build the a posteriori distribution P (y, t ). As soon as the leader

escapes from the attractive region, the other agents start feeling their barycentric control and

ultimately follow the leader outside the attractive region. The barycenter of an infinite swarm

follows the leaders position with nearly no delay; but in our case, as N <∞ agents, a delay can

possibly be observed between the exit times of the leader and the agents. Figures 4.4 and 4.5

show the results of a representative numerical simulation for N = 1000 agents, with a very

narrow and shallow attractive region (B = 0.49). Observe the explicit delay between the exit

times of the leader and the swarm for σ= 5 in Figure 4.5.

4.5 Conclusion

Heterogeneous multi-agent systems are notoriously difficult to describe analytically, espe-

cially if the underlying dynamics is intrinsically nonlinear. In this note, we present a class

of dynamics from which explicit and fully analytical results can be derived. The core of our

construction relies on recent approaches that have been obtained in the realm of nonlinear

estimation problems. The so-called particle filter method – commonly used to tackle non-

linear estimation problems - can be reinterpreted as a general leader-follower problem in
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Figure 4.4 – Leader’s position Y (t ) from Eq.(4.10) (black), along with its unveiled position Z (t )
(red), for B = 0.49, σ= h = 1 and t ∈ [0;8]. In blue the value 〈Y 〉t measured from a swarm of
N = 1000 agents. The particles start with Yi (0) = x0 = 0.2 ∀i , while Z (0) = Y (0) = x0.
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Figure 4.5 – Leader’s position Y (t ) from Eq.(4.10) (black), along with its unveiled position Z (t )
(red), for B = 0.49, σ= 5, h = 1 and t ∈ [0;8]. In blue the value 〈Y 〉t measured from a swarm of
N = 1000 agents. The particles start with Yi (0) = x0 = 0.2 ∀i , while Z (0) = Y (0) = x0.

which a swarm of interacting agents try to follow a leader whose unveiled position is corrupted

by noise. In stochastic filtering, only finite-dimensional problems can possibly be solved

analytically. When linear dynamics is driven by Gaussian noise, all relevant probability dis-

tributions remain Gaussian, and hence calculations can be limited to the first two moments

(Kalman-Bucy filter). The intimate connection existing between multi-agent systems and esti-

mation problems show that, for nonlinear dynamics, analytical results are in general hopeless.

However, for one class of non-Gaussian finite-dimensional filtering problems – pioneered

by Beneš – explicit analytical models are available. It is therefore natural to study how the

Beneš’ class enables us to construct nonlinear solvable multi-agents systems, as is done here.

The core analytical tools leading to solvable finite-dimensional filtering problems rely on

an underlying Riccati equation that we explicitly solved (in the scalar situation) via Weber

parabolic cylinder functions. Using these special functions, we are able to answer two open

questions originally formulated in Daum (1985) (our Eq.(4.18) answers Daum’s open question

2, and our class of nonlinear dynamics answer Daum’s open question 6). Our multi-agent class

of dynamics enables us to explicitly observe how a leader can control the spreading factor of

the agents around its position by tuning the strength of the observation noise.
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4.6 New Contributions of Chapter 4

• We present an analytically tractable case of hard control of a swarm by a hidden leader.

By tuning one control parameter, the leader is able to influence the repartition of the

swarm around its own position.

• To achieve this goal, we use a recent stochastic filtering algorithm (feedback particle

filtering). Beside the Kalman-Bucy case (linear dynamic), we also consider a class of

exactly solvable nonlinear estimation problems.

• Publication: This chapter is reproduced from the conference paper Sartoretti et al.

(2014b), with slight modifications to fit the present dissertation.
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5 Soft Control of Self-Organized Locally
Interacting Brownian Planar Agents

Summary

This contribution is addressed to the dynamics of heterogeneous interacting agents evolving

on the plane. Heterogeneity is due to the presence of an unfiltered externally controllable

fellow, a shill, which via mutual interactions ultimately drives (i.e. soft controls) the whole

society towards a given goal. We are able to calculate relevant dynamic characteristics of this

controllable agent. This opens the possibility to optimize the soft controlling of a whole society by

infiltrating it with a properly designed shill. Numerical results fully corroborate our theoretical

findings.

5.1 Introduction

The Soft Control of a swarm of interacting agents consists in introducing an externally con-

trollable agent into an homogeneous swarm of autonomous agents. By suitably chose the

externally controllable fellow, one ultimately can (softly) control the whole swarm. While

her dynamics differs, the controllable infiltrated agent, often referred to as the Shill (SH), is

detected by the other fellows as being an ordinary member of the society. The SH’s influ-

ence can be used to stimulate specific positive features to the whole group (optimal driving

to targets, enhancement of flocking capability, extra energy scavenging, etc. Sartoretti and

Hongler (2013d); Wang et al. (2011); Wang and Guo (2008)). Alternatively the SH’s presence

may destroy the overall swarm’s coherence Sartoretti and Hongler (2013d). Soft control is

also commonly used in ethology, by introducing robotic shills in societies of animals, see for

instance Gribovskiy et al. (2010); Halloy et al. (2007); Faria et al. (2010).

In the sequel, we consider an homogeneous swarm of Brownian agents following a planar

mixed canonical-dissipative dynamics as introduced in Sartoretti and Hongler (2013b). After

showing how the agents asymptotically converge to (and circulate on) a self-selected closed

annular orbits on R2, we then introduce a SH agent into the swarm. We then use the SH’s

presence to soft control the angular speed of the whole society.

85
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5.2 Interacting Diffusion Processes on R2

For X(t) = (X1(t ),X2(t ), · · · ,XN (t )) ∈ R2N with Xk (t) = (x1,k (t), x2,k (t)) ∈ R2, our class of dy-

namics is given by a collection of N mutually interacting planar Brownian agents evolving

according to a set of Stochastic Differential Equations (SDE) on R2N :


dXk (t ) = d t

[
Ak (t )−Λ(

Lk,ρ(t )−H (Xk )
)]5H (Xk )+σdWk (t ),

Xk (0) = X0,k ,

(5.1)

where σ,Λ ∈R+ are control parameters, and the definitions of the dynamical inputs are:

i) the Hamiltonian functionH (x1, x2) : R2 7→ R+ are used to define a family of closed,

non-intersecting, planar curves with equations given by [H (x1, x2)−R] = 0, ∀ R > 0. We

note 5H (Xk ) =
( ∂
∂x1

H (x1, x2)
∂
∂x2

H (x1, x2)

)∣∣∣∣∣
Xk

ii) the tangent dynamical map at the origin. In absence of noise source (σ ≡ 0), the

origin is a singular point of Eq.(5.1) and its associated linear map Ak (t ):

Ak (t ) =


Nk,ρ(t )

N − 1
M

Nk,ρ(t )
N

−Nk,ρ(t )
N

Nk,ρ(t )
N − 1

M

 (5.2)

where M ∈ [1, N ] ⊆R+ is a control parameter and (Nk,ρ(t )/N ) is the fraction of the total

swarm detected by agent ak in the neighborhood Dk,ρ(t ) defined as:

Dk,ρ(t ) = {
X ∈R2 | ‖X−Xk (t )‖2 ≤ ρ

}
(5.3)

iii) the self-adaptive Hamiltonian level. The scalar quantity:

Lk,ρ(t ) := 1

Nk,ρ(t )

∑
i∈Vk,ρ(t )

H (Xi )

where Nk,ρ(t) has been defined in ii). The summation extends over the agents’ set

Vk,ρ(t ) := {
i |Xi ∈Dk,ρ(t )

}

86



5.2. Interacting Diffusion Processes on R2

iv) the noise sources. dWk (t) = (
dW1,k (t ),dW2,k (t )

)
are 2N independent standard

White Gaussian Noise (WGN) processes

Proposition 1. For t →∞, the dissipative dynamics Eq.(5.1) reaches a stationary regime char-

acterized by the time-invariant probability product measure:

Ps(x)dx = [Ps(x)dx]N with Ps(x)dx =Z −1 exp

{
− Λ
σ2

[
Ls,ρ−H (x)

]2
}

dx. (5.4)

where Z is the normalization factor, and Ls,ρ is the stationary Hamiltonian level curve statisti-

cally reached by the agents.

Proof of Proposition 1.

We first write the Fokker-Planck equation (FPE) associated with the diffusion process of

Eq.(5.1):

∂t P (x, t |x0) =−5·
{[

A (t )5H (x)−5Vρ
(
x, t

)] ·P (x, t |x0)− σ2

2
5P (x, t |x0)

}
, (5.5)

with A (t ) the (2N ×2N ) block-simplectic matrix

A (t ) :=


A1(t ) 0

. . .

0 AN (t )

 , with Ak (t ) =
(

0
Nk,ρ(t )

N

−Nk,ρ(t )
N 0

)

The dissipative component of the drift is derived from the time-dependent generalized poten-

tial Vρ
(
x, t

)
, which reads as:

Vρ
(
x, t

)= N∑
k=1

{ :=Rk,ρ(t )︷ ︸︸ ︷[
Nk,ρ(t )

N
− 1

M

]
+Λ

2

[
Lk,ρ(t )−H (Xk )

]2

}
5H (x). (5.6)

The parameters Rk,ρ(t ) and Lk,ρ(t ) in Eq.(5.6) implicitly depend on the agents’ configurations,

implying that Eq.(5.5) is effectively a nonlinear FPE. The potential Vρ
(
x, t

)
is globally attractive

on R2N (i.e Vρ
(
x, t

)→∞ for ‖x‖→∞). Global attraction on R2N in Eq.(5.1) together with the

WGN driving forces imply that the diffusive dynamics is ergodic. Hence, it exists an unique

invariant measure Ps(x) implying that both Rk,ρ(t) and Lk,ρ(t) asymptotically converge

towards stationary (time-independent) values Rk,s,ρ and Lk,s,ρ . Moreover, as Eqs.(5.5) and

(5.6) are invariant under permutations of the agents labeling, we shall have Rk,s,ρ =: Rs,ρ and

Lk,s,ρ =: Ls,ρ (∀k). Dissipation drives the system to its minimal energy configuration, leading

to the specific values Rs,ρ ≡ 0 and to limt→∞A (t ) =As with:
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As :=


As 0

. . .

0 As

 , As =
(

0 1
M

− 1
M 0

)
.

Observe that the gradient 5Vρ
(
x, t

)
is systematically orthogonal to the antisymmetric com-

ponent A (t )5H (x). This remains true in the stationary regime As , allowing us to write the

stationary solution of the FPE Eq.(5.5) in the product-form Ps(x):

Ps(x) = [Ps(x)]N =
[
N −1e{−Vs,ρ(x)}

]N
,

Vs,ρ(x) =+γ
2

[
Ls,ρ−H (x)

]2
(5.7)

with x = (x1,x2, · · · ,xN ) ∈R2N , xk ∈R2. In Eq.(5.7), x ∈R2 stands for one representative agent in

the swarm. The product form of Ps(x) explicitly shows that our dynamics propagates chaos,

validating the use of a mean-field (MF) approach, where the behavior of a single agent of the

swarm effectively reflects the global dynamics.

Here the stationary regime of the single representative agent X(t ) = (x1(t ), x2(t )) is character-

ized by the invariant probability density Ps(x):

0 =−5{[
As 5H (x)−5Vs,ρ (x)

] ·Ps(x)
}+ σ2

2
4Ps(x), (5.8)

Auto-consistency of the nonlinear FPE here implies:

Ns,ρ

N
=

∫
x∈Ds,ρ

Ps(x)d x1 d x2

(
= 1

M

)
(5.9)

where here Ds,ρ is the stationary representative agent’s neighborhood.

2

Corollary 1. For the harmonic oscillator’s Hamiltonian function

H (x1, x2) = 1/2(x2
1 +x2

2), (5.10)

and with Λ→∞, the stationary probability measure converges to a uniform distribution of

the agents on the limit cycle. Indeed, the angular speed of each agent on the limit cycle is

proportional to the local density of its neighbors. This mechanism helps spread the agents on
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Figure 5.1 – Left: An example run with N = 100 agents, and a range ρ = 1. In black, the theoretic
limit cycle, and in blue the positions through time of one agent.
Right: Geometric explanation of the computation of Ls,ρ : In the stationary regime, each agent
has in average N

M agent in her neighborhood. Since the agents are uniformly distributed on
the limit cycle, the number of neighbors is directly correlated with the arc length contained
within the neighborhood of each agent. Thus, each agent’s range exactly encompasses an arc
of 2π

M , and the rule of cosine in the triangle OAC leads to the result of Eq.(5.11).

the limit circle, and its action only stops once the swarm is uniformly distributed.

In the stationary regime, each agent has in average N
M agent in her neighborhood. Since the

agents are uniformly distributed on the limit cycle, the number of neighbors is directly correlated

with the arc length contained within the neighborhood of each agent. Thus, each agent’s range

exactly encompasses an arc of 2π
M , and the rule of cosine in the triangle OAC (see Figure 5.1)

finally leads to:

Ls,ρ = ρ√
2−2cos( πM )

. (5.11)

5.3 Swarm Soft Controlling - Harmonic oscillator Hamiltonian

Now we focus on cylindrically symmetric configurations involving the Hamiltonian Eq.(5.10),

and for these cases we generalize Eq.(5.1) by allowing the agents to self-adapt their circulation

velocities. This can be achieved by replacing the nominal matrix Ak (t ) in Eq.(5.2) byAk :

Ak =


Nk,ρ(t )

N − 1
M ωk (t )

Nk,ρ(t )
N

−ωk (t )
Nk,ρ(t )

N
Nk,ρ(t )

N − 1
M

 , (5.12)

where the now adaptive angular velocity ωk (t ) of agent ak obeys to the relaxation dynamics:
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ω̇k (t ) = γ1 ·

[〈ω〉k,ρ(t )−ωk (t )
]+γ2 · [Ω−ωk (t )] , ωk (0) =ω0,k ,

〈ω〉k,ρ(t ) := 1
Nk,ρ(t )

∑
j∈Vk,ρ(t )ω j (t ),

(5.13)

with γi > 0 (i = 1,2), andΩ the natural angular speed toward which all agents are constantly

drawn.

Remark. The set of ordinary differential equations in Eq.(5.13) describes an autonomous,

systematically dissipative linear dynamical system. Accordingly, the unique resulting attractor

is here given by lim
t→∞ωk (t ) =Ω, ∀k.

5.3.1 Inhomogeneous swarm - Shill soft controlling mode

Let us now introduce an externally controllable agent, to be called the shill (SH) agent, into

the swarm. Agent SH is, without loss of generality, taken as a1 and we assume that we can

fix ω1(t) ≡ ωs . Regarding the radial dynamics, we assume that SH behaves as an ordinary

agent. In presence of SH, the swarm is heterogeneous, thus precluding analytical approaches

for general parameter ranges. Nevertheless, for limiting regimes, we will now see that our

dynamics still lend itself to an approximate analytical treatment.

We assume in Eq.(5.1) that the signal to noise ratio (SNR) (Λ/σ2) << 1. In absence of SH,

the stationary regime of the homogeneous swarm uniformly distributes the agents along the

arcs of a narrow annular ring with radius Ls,ρ . The agents circulate with a common angular

velocity ωk ≡Ω. Let us now introduce SH into the swarm.

We shall consider the cases where ωs >Ω (the other possibilities can be discussed along the

same lines). Taking into account the presence of SH in the swarm, our goal is to first show that

for 〈ω〉k,ρ(t ) in Eq.(5.13) can be approximately expressed as a convex combination of ωs and

ωk :

〈ω〉k,ρ(t ) '


ωs+

(
N
M −1

)
ωk (t )

N /M when SH ∈Vk,ρ(t ),

ωk (t ) otherwise.

(5.14)

To heuristically derive Eq.(5.14), we assume that at initial time t =−∞, we have an homoge-

neous population involving N agents. At time t = 0−, this homogeneous swarm has reached

its stationary regime, i.e. the agents are confined in a ring close to the cycle Ls,ρ and their

stationary circulation has the common angular velocity ωk ≡Ω. For times t ≥ 0+, we switch

on SH’s action by imposing ω1(t) ≡ωs >Ω. Via mutual interactions, SH is able to enhance
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the ak ’s angular velocities for k = 2, . . . , N . Therefore, besides the intrinsic dissipation mecha-

nism given in Eqs.(5.1) together with Eqs.(5.12) and (5.13), the ak ’s (k = 2, . . . , N ) do effectively

scavenge rotational energy from SH and ultimately an energy balance will be reached.

For large populations N , we assume SH’s influence to be quasi-adiabatic. That is to say,

we assume that the ak ’s distribution on the limit cycle Ls,ρ remains essentially unaltered.

Since we choose SH’s angular speed ωs ≡ω1 >Ω and because SH itself circulates with high

probability inside the thin annulus Ls,ρ , SH periodically crosses the Vk,ρ(t ) for k = 2,3, . . . , N .

During the SH’s transit time inside Vk,ρ(t ), interaction with SH enhancesωk . Conversely, when

SH lies outside Vk,ρ(t ), then ωk freely relaxes towardsΩ. To be consistent with the adiabatic

energy exchange assumption, the SH’s influence on ωk during one Vk,ρ(t ) over-crossing has

to remain small. At a given time t , and for a tagged ak (k = 2,3, . . . , N ), two configurations are

alternatively realized depending on whether SH belongs to Vk,ρ(t ) or not:

i) SH ∉Vk,ρ(t ): only regular neighbors surround ak . Their individual speed very slightly

differs from ωk (t ). These differences are due to SH leaving the neighboring ak ’s Vk,ρ(t )

at different successive times. Some of the neighbors of ak will have an angular velocity

slightly higher than ωk (t) (the rapids), while others will have a slightly lower angular

velocities (i.e. the slows). SH’s constant rotation, always leaves a wake of agents with

a slight angular velocity enhancement in SH’s trail. Constant rotation implies that the

rapids and slows are approximatively spatially distributed symmetrically with respect to

ak and close to the cycle Ls,ρ . Since the ak ’s neighbors present in Vk,ρ(t) are approxi-

mately uniformly distributed on the cycle Ls,ρ , on average the numbers of rapids and

slows are identical. Hence, the average speed of the agents in Vk,ρ(t ) is approximately

ωk (t ) (i.e. the rapids approximately compensate for the slows).

ii) SH ∈Vk,ρ(t ): here we invoke the fact that ak has in average N
M neighbors. Using i) for

the N
M −1 regular neighbors of ak and taking into account SH’s presence, the weighted

average of the angular velocities leads to the first line in Eq.(5.14).

Using Eq.(5.14) into Eq.(5.13) enables to write:

ω̇k (t ) =


(
γ1

M
N +γ2

) ·[
ν1︷ ︸︸ ︷

γ1
M
N ωs +γ2Ω

γ1
M
N +γ2

−ωk (t )

]
when SH ∈Vk,ρ(t )

γ2 ·
[
Ω︸︷︷︸
ν2

−ωk (t )
]

otherwise.

(5.15)

For an ultra-fast relaxation regime γk →∞ (k = 1,2), Eq.(5.15) implies:
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Figure 5.2 – Computation of the time intervals T1 and T2 spent by the agents in each of the
states of Eq.(5.16). The state 1 starts when SH enters the agent’s range (that is when their phase
differs by π

M in one direction), and lasts until they differ by π
M in the other direction. Then, the

time interval T2 lasts until SH re-enters the agent’s range, that is when their phases differ of
2M−1

M π.

ωk (t ) '
{
ν1 when SH in Vk,ρ(t ),

ν2 otherwise.
(5.16)

Now, we can calculate the time spend into the alternative states of Eq.(5.16). To this aim

consider Figure 5.2, where we sketch the approximative resulting behavior for an arbitrary

agent k together with SH .

In view of Figure 5.2, we now can write:

{
2π
M +T1 ·ν1 = T1 ·ωs ⇒ T1 = 2π

M(ωs−ν1) ,
pi
M +T2 ·ωs = T2 ·ν2 + 2M−1

M π ⇒ T2 = (2M−2)π
M(ωs−ν2) .

(5.17)

Hence, on a single time period T = T1 +T2, the resulting weighted average angular velocity

yields:

ωave = T1 ·ν1 +T2 ·ν2

T1 +T2
= γ2N

γ1 +γ2N︸ ︷︷ ︸
α(N ,γ1,γ2)

·Ω+ γ1

γ1 +γ2N︸ ︷︷ ︸
β(N ,γ1,γ2)

·ωs .

92



5.4. Conclusion

Figure 5.3 – Top left: In blue, the average angular speed of the regular agents, with in red its
average over the period t ∈ [50;100]. In black, the expected value ωave = 0.4. right: Individual
angular speeds of each agent as a function of time. Bottom left: In blue the average radius of
the regular agents, and in red the radius of SH. In black, the expected value Ls,ρ ' 1.31. right:
Individual radii of each agent as a function of time.

Note that α(N ,γ1,γ2)+β(N ,γ1,γ2) = 1 and
[
α(N ,γ1,γ2)/β(N ,γ1,γ2)

]= N (γ2/γ1). Hence, we

consistently observe that limN→∞α(N ,γ1,γ2) = 1, showing that the SH’s relative influence is

reduced with the population size N .

Figure 5.3 shows numerical results for a swarm of N = 2000 agents for time t ∈ [0;100] with

M = 4. Input parameters are

σ = 0.5 ρ = 1 Ω = −0.2

γ1 = 40 γ2 = 1 ωs = 31.4

}
⇒ωave = 0.4.

Note that some agents end up in the vicinity of the origin. These agents will asymptotically

with time converge to the limit cycle Lsρ , and to the theoretic consensual angular speed

ωave , but that can not be seen in the small time window of these simulations. Despite these

agents, the average values for the radius and the angular speed of the swarm exactly match

the theoretical values.

5.4 Conclusion
The intrinsic swarm’s heterogeneity due to the presence of a shill fellow into an otherwise

homogeneous swarm agents offers, in general, little hope for analytically deriving the dynami-
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cal features of the global population. However for the present mixed canonical-dissipative

dynamics with agent-dependent angular speed, we are able to show how reliable analytical

approximations can be derived. Being able to quantitatively appreciate the shills presence, it

then offers the possibility to select the optimal shills characteristics. Our analytical approach is

fully corroborated by a set of numerical simulations involving large populations of magnitude

order of 103 individuals.

5.5 New Contributions of Chapter 5

• Building on Chapter 1, we introduce a hidden shill (i.e., infiltrated agent), able to soft

control the swarm’s circulation on the limit ring. For this heterogeneous swarm situation,

we are able to analytically estimate the resulting swarm dynamic.

• Publication: This chapter is reproduced from the journal paper Sartoretti and Hongler

(2013c), with slight modifications to fit the present dissertation.
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6 Soft Control of Swarms - Analytical
Approach

Summary

We analytically study the collective dynamics of mutually interacting heterogeneous agents

evolving in a random environment. Our formal framework consists of a collection of N scalar

drifted Brownian motions (BM) diffusing on R. The mutual interactions are introduced via

a ranked-based, real-time mechanism always endowing the laggard (i.e the agent with the

leftmost position) with an extra positive drift. The extra drift generates a net tendency for any

agents not to remain the laggard of the society. For well chosen individual and extra laggard’s

drifts, the agents organize with time to flock towards a tight and stable traveling spatial pattern.

For a population of (N − 1) identical agents and an “atypical” fellow (called hereafter the

shill), we are able to analytically discuss the dynamics. In particular we exhibit how a single

turbulent shill, stylized here by a ballistic diffusion process, can destroy the cohesion of a swarm.

Conversely, we also analytically show how a single shill is able to safely pilot a whole swarm to

avoid an obstacle, via interactions with its fellows. A series of simulations experiments comfort

our analytical findings.

6.1 Introduction

The capability of a collection of interacting stochastic agents to exhibit an emergent collective

behavior (i.e flocking behavior) even in random environments stimulates a strong research

activity devoted to both experimental and theoretical modeling approaches. For suitable range

of mutual interactions, flocking (phase) transitions are observed, namely the self-organized

capability to create finite and persistent spatio-temporal patterns Banner et al. (2005); Yates

et al. (2009); Chatterjee and Pal (2010); Dosseti (2012); Pal and Pitman (2008); Ichiba et al.

(2011); Bialek et al. (2012).

Agents societies can be composed of either dynamically homogeneous or heterogeneous

individuals requiring for each case drastically different approaches. For large and homoge-

neous population of agents, the classical statistical mechanics concepts and in particular the
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mean-field description (MF) directly offers an appropriate tool to analytically discuss the

global dynamics. In the MF description, one basically assumes that the behavior of the global

society can be characterized by the dynamics of a single representative agent which feels its

fellows’ interactions via an effective external field. In most circumstances however, homo-

geneity fails, and therefore a growing attention is now paid to heterogeneous populations.

Heterogeneity occurs typically when one or several masked agents, that we shall from now on

refer to as shills, exhibit leaders or troublemakers behaviors. These shills are not recognized

by the regular agents which see them as ordinary fellows, leaving the interaction rules between

them unchanged. The presence of shills can strongly alter the ultimate evolution of the whole

society and it is the central goal here to analytically study this problematic.

Our approach involves assemblies of interacting stochastic agents in which a single shill ex-

hibits a different individual behavior. All agents, including the shill, interact with their fellows

with fixed given rules. The paradigmatic vision of this situations has been currently explored

in ethology where one fake individual is introduced among schools of fishes, cockroaches,

newborn chicken, etc. The shill is able to ultimately pilot the whole population Gribovskiy

et al. (2010); Faria et al. (2010); Vaughan et al. (2000). This basic mechanism also referred as the

soft control of a population Jing and Lin (2010); Wang et al. (2011, 2009); Wang and Guo (2008)

is the core of our present research. Since heterogeneous societies preclude MF approaches,

rather few analytical results are yet available. Recent mathematical models of heterogeneous

rank-based interacting Brownian motions (RBM), introduced in finance Banner et al. (2005);

Chatterjee and Pal (2010); Pal and Pitman (2008); Ichiba et al. (2011), will be used in the se-

quel to analytically approach the soft control problematic. We shall analytically show how a

troublemaker can break the cohesion of an initially tight swarm and how a single agent can

efficiently incitate its fellows to achieve a preassigned task.

The chapter is organized as follows: we first recall in section 2 relevant properties of RBM,

also known in economy as the Atlas models. In section 3, we use the RBM’s framework to

show how a troublemaker is able to smash an initially tight swarm. Our individual dynamics

are one-dimensional diffusion processes with piecewise constant drifts except for the shill,

which will be assumed to be driven by a ballistic process with quadratic variance in time.

The ballistic noise is itself generated by a simple non-Gaussian diffusive stochastic process

with nonlinear drift. In section 4, we address the dual soft control problem in which a shill is

used to steer the whole collection of RBM’s towards slots that are drilled through an obstacle

board.

6.2 Rank-Based Brownian Motions - Atlas Model

Our approach makes extensive use of recent results Ichiba et al. (2011), that we now briefly

summarize. Let us consider a collection of N interacting agents diffusing according to the

class of processes:

96



6.2. Rank-Based Brownian Motions - Atlas Model

dYi (t ) =
(

N∑
k=1

gk 1Qk (i ) {Y (t )}+γi +γ
)

dt +σi dWi (t ) ,

Yi (0) = yi , t ∈R+, (6.1)

where Y (t ) = (Y1,Y2, · · · ,YN ) ∈ RN and dWi (t ) are N independent standard White Gaussian

Noise processes (WGN) processes. The indicator function 1Qk in Eq.(6.1) effectively generates

mutual interactions. The effective, time-dependent drift component gk entering into the drifts(
gk +γi +γ

)
of the N Brownian motions on R, is rank-based. Namely, it is instantaneously

adjusted according to the position (i.e. the rank) occupied by each agent with respect to the

remaining (N −1) fellows. The constant drift components γi are name-based, i.e. they are

definitely assigned to each individual agent (γi is time-independent). Finally, a constant drift

component γ can be added, which is common to all agents. Accordingly Eq.(6.1) describes

a collection of N diffusion processes having piecewise deterministic drifts. The somehow

simpler situation obtained when γi ≡ 0 ∀i has been thoroughly studied Pal and Pitman (2008).

In the sequel and without loss of generality, we systematically choose γ to be the (average)

barycentric speed of the swarm. This is achieved, provided one has:

N∑
k=1

[
gk +γk

]= 0. (6.2)

For future use, we introduce the following notations and definitions:

1. We write

Ȳ (t ) = 1

N

N∑
k=1

Yk (t ) , Ȳ ∈R, (6.3)

for the barycenter position. The set ΣN stands for the set of all the permutations of

{1,2, ..., N }. It is proven Ichiba et al. (2011) that, for almost every initial conditions and

when the set of constraints

l∑
k=1

[
gk +γp(l )

]< 0 (6.4)

are fulfilled for all possible permutations p = (
p (1) , ..., p (N )

) ∈ΣN , and ∀l ∈ {1, ..., N −1},

then the N deviations processes:

Ỹi (t ) = [
Yi (t )− Ȳ (t )

]
(6.5)
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converge to stationary probability measures. Note that Eq.(6.4) yields therefore a set of

(N −1)×|ΣN | = N ! (N −1) constraints to be verified.

2. When all constraints in Eq.(6.4) are fulfilled, the dynamics given by Eq.(6.1) then con-

verges to a tight swarm described by a stationary multi-variate process characterizing

the (N −1)-gap processes

Ξi (t ) = [Yi+1 (t )−Yi (t )] . (6.6)

The associated probability density ψ (z), z ∈RN−1+ can be written as a sum-of-product-

of-exponential form:

ψ (z) =
( ∑

p∈ΣN

N−1∏
k=1

λ−1
p,k

)−1 ∑
p∈ΣN

exp
(−〈

λp , z
〉)

(6.7)

with the parameters explicitly given by

λp = (
λp,k

)N−1
k=1 λp,k =

−4
k∑

l=1

(
gl +γp(l )

)
σ2

k +σ2
k+1

. (6.8)

Remark. It is worth observing that the diffusion coefficients σi do not enter into the set of

tightness constraints given in Eq.(6.4). However, the σi ’s do enter into the parameters Eq.(6.7)

characterizing the stationary probability measure.

6.3 How Does a Super-Diffusive Fellow Smash Tightness

We first investigate how a single “turbulent” fellow can destroy the cohesion of a tight swarm.

To this aim, we use the RBM formalism introduced in section (6.2). We consider a configuration

involving (N −1) identical mutually interacting RBM’s, referred from now on as the regular

agents, interacting with a single fellow, the shill, say agent number one, which is itself driven

by a ballistic diffusion process (remember from Eq.(6.1) that the (N −1) regular agents are

driven by independent WGN’s). The ballistic process, to be introduced below, exhibits a

variance ∝ t +βt 2 with a ballistic parameter β ≥ 0 a constant. For β = 0, the shill simply

behaves as a regular fellow and therefore, in this β= 0 limit, our global dynamics reduces to a

standard version of Eq.(6.1). We set the specific parameters: gN = (N −1) g and gk =−g for

1 ≤ k ≤ N −1. In addition, we shall further assume that:

i)
∑N

i=1γi = 0,

ii) max
1≤i≤N

γi < g .
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The couple of constraints i) and ii) imply that the Eq.(6.4) is fulfilled. Indeed, we directly verify

that :

−g +γp(1) < 0, −2g +γp(1) +γp(2) < 0, · · ·

− (N −1) g +
N−1∑
k=1

γp(k) < 0. (6.9)

Hence, for β= 0, our collection of agents behaves as a tight swarm enjoying a stationary joint

probability law for the inter-distance between successive agents.

Let us now focus on β> 0. Now, the shill Y1 (t ) behaves as a turbulent fellow which interacts

with the remaining (N −1) regular fellows. Specifically the dynamics of Y1 (t ) is chosen to be

described by:

dY1 (t ) =
(

N∑
k=1

gk 1Qk (i ) {Y (t )}+γ1 +γ
)

dt +dZ (t ) ,

Y1 (0) = y1 t ∈R+, (6.10)

where the process dZ (t ) is a super-diffusive ballistic noise generator introduced in Hongler

M. O. and Blanchard (2006); Hongler M. O. and Rodriguez (2012):

dZ (t ) = {
β tanh

[
βZ (t )

]}
dt +dW (t ) , Z (t = 0) = 0. (6.11)

The non-Gaussian Markov diffusion process Z (t ) given in Eq.(6.11) is fully characterized by its

transition probability density P (z, t | 0) which simply reads:

P (z, t | 0) =
(
P++P−

)
(z, t | 0)

2
= e−

β2

2 t

p
2πt

e
(x±βt )2

2t , (6.12)

with average 〈Z (t )〉 = 0 and variance 〈Z 2(t )〉 = t +β2t 2.

The simple form given in Eq.(6.12) suggests the existence of an alternative representation for

the ballistic noise Z (t ). Indeed, writing B M±β(t ) for the Brownian motions with ±β constant
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drifts, we observe that the transition probability for the process Z (t) can be rewritten as

Z (t) = BB M±β(t) where B is a symmetric Bernoulli r.v., taking the values ±1 with equal

probability 1/2. Hence, one realization of the Z (t ) consists first in choosing with probability

1/2 one among the couple processes B M±β(t ), and then follow the realization of the selected

process (see example 2 in Rogers and Pitman (1981) and Hongler M. O. and Blanchard (2006);

Hongler M. O. and Rodriguez (2012)).

We now come back to the dynamics jointly involving a turbulent fellow given by Eq.(6.10) and

(N −1) regular agents described by Eq.(6.1). We then view the (N −1) regular agents as being

infiltrated by a the shill Y1(t ).

Now we have to investigate the values of β enabling the swarm to remain tight (i.e. if a

stationary probability measure for the intervals between successive agents exists). In view

of the representation given in Eq.(6.12), for each realization of the noise source Z (t), we

effectively deal with a standard RBM model with a re-normalized name-based drift of Y1(t ),

namely γ1 7→ γ1 ±β depending on the outcome of B. Accordingly, to infer on the tightness of

the swarm, we simply have to separately examine Eq.(6.4) for the couple of outcomes ±β.

Realization +β. Let us define γ = β
N , γ1 = N−1

N β and γi = −γ = − β
N for 2 ≤ i ≤ N . The

constraints Eq.(6.6) are required for the swarm to be tight. This yields, for l = 1 and

p = (1,2,3..., N ), to the most critical constraint:

g1 +γp(1) < 0 ⇒ −g + N −1

N
β< 0

⇔ β< N

N −1
g . (6.13)

Provided that Eq.(6.13) holds, the swarm remains tight when the Zt noise induces a +β
extra drift.

Realization −β. The same reasoning applied to the −β case yields:

γ=− β

N
γ1 =−N −1

N
β γi = β

N
(2 ≤ i ≤ N ) . (6.14)

The critical constraint arises when l = 1 and γp :=
(
β
N , ..., βN ,−N−1

N β
)

with:

−g + β

N
< 0 ⇔ β< N · g . (6.15)

This implies that for β< N · g , the swarm remains tight when the Zt noise induces a −β
extra drift.

The previous considerations can be summarized by observing that when the constraints
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Eq.(6.13) are fulfilled, so are also those given in Eq.(6.15). This suggests to distinguish an

alternative “semi”-tight regime which arises when the constraints Eq.(6.15) alone are fulfilled.

In this “semi”-tight case, the swarm exhibits a tight configuration when the −β realization

is achieved and is not tight for the other alternative +β. This intrinsic asymmetry can be

easily understood as our RBM dynamics only pushes the laggard towards the others. Hence,

regarding the tightness, the shill is obviously less influential when the −β extra drift is realized.

6.3.1 Spatial Dispersion of the Agents

The extra ±β-drifts due to the super-diffusive process driving the shill dynamics obviously

affect the spatial dispersion of the swarm. Since all noise sources (including the d Z (t ) process)

have zero average, the barycenter of the whole population will remain unchanged by the

presence of d Z (t). However, due to the presence of the shill, an initial single-modal cluster

of agents will, as time increases, be split into two separately evolving population subgroups.

According to the±β realization taken by d Z (t ), the overall effect of the shill will steer the swarm

either towards the negative or positive direction; this generates the formation of two distinct

clusters. Each cluster has an individual barycentric velocity: γ= γ1

N = ±β
N ; this guarantees that

the average barycenter remains unchanged.

Specifically, whenever the shills drift assumes the value −β, the shill has an overall propensity

to stay at the rear of the swarm. Accordingly, all regular agents will, with high probability, be

endowed with the rank-based drift −g . Hence the regular agents possess a clear tendency to

be driven toward the negative direction on R. Conversely, in presence of the +β realization,

the shill is very likely to belong to the group of leaders. This imposes to the remaining (N −1)

regular fellows to equally share, with alternations, the rank-based drift of (N −1) g which

drives the laggard. Therefore, with the +β realization, the whole population is driven towards

the positive direction of R. We now can isolate three regimes depending on the strength β.

a) β<βc := N
N−1 g . In this regime, the shill is able to steer the whole population in one

of the two possible directions while remaining itself attached to the swarm. In other

words, a stationary probability measure exists for the distance between the agents (i.e.

all agents evolve in a single flock). Note however that the presence of the shill breaks an

initially uni-modal spatial repartition into a bi-modal repartition.

For three agents (i.e. one shill and two regular fellows), the resulting spatial repartition

obtained by simulation is shown in Figure 6.1. In Figures 6.1 and 6.2, the shills position

is represented in black, the others being displayed in grey.

b) βc ≤ β < g ·N . Here the strength of the ballistic noise precludes to reach a global

stationary state for the inter-distance processes between the N agents. Indeed, the

renormalized drift associated with the +β realization of d Z (t ) (i.e. γ̂1 = γ1 +β), violates

the constraint Eq.(6.13). However, for the −β realization, the constraint for γ̂1 = γ1−β is

fulfilled, implying that the shill remains flocked with its (N −1) remaining fellows. An

experiment with β chosen in this range, shows the spatial repartition in Figure 6.2 (left).
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Figure 6.1 – Probability of spatial repartition of the agents at tend = 10, numerical computation
over 103 runs, with N = 3, g = 1, β= 1.1 <βc = 3

2 .

Figure 6.2 – Left: End position distribution at tend = 10, with N = 3, g = 1, β= 2 >βc .
Right panel: Probability density of the position at tend = 10 for N = 3, g = 1, β= 4 > N · g . Both
numerical computations include 103 runs.

c) Finally, for β> g ·N , the shill becomes highly turbulent (i.e., with a large ballistic noise

variance) and the tightness constraints are never fulfilled. The shill escapes from the

flock and the resulting spatial repartition is typically shown in Figure 6.2 (right).

For all choices of the ballistic strength β, the numerical results intimately match the analytical

predictions. In particular, the shill escapes from the flock when the critical ballistic strength

β=βc is reached (for the +β realization, or when β= N · g for the −β realization of d Z (t ). In

these non-stationary regimes, the shill quits the (N −1)- regular tight swarm with velocity

V (β) ∝β.

6.3.2 Distance Between Successive Agents

Complementary to the tightness constraints, let us now briefly discuss the stationary proba-

bility measure which characterizes the distances between successive agents. To this aim, we

shall choose β to ensure the existence of a global stationary regime (i.e. ensures tightness),
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namely 0 ≤β<βc = N
N−1 g .

Note however that using the results derived in Ichiba et al. (2011), heterogeneous diffusion

constants can also be analytically discussed. The distances separating consecutive agents

defined in Eq.(6.6) can be explicitly computed by using the results summarized in section

(6.2). For agent Y1(t ) and in view of the extra β-drift induced by the shill ballistic driving, we

are now led to define a couple of name-based drifts vectors as:

γ± =±
(

N−1
N β − β

N · · · − β
N

)
. (6.16)

The fulfillment of the tightness constraints given in Eq.(6.4) ensures that the λp,k from Eq. (6.8)

are strictly positive (∀p,k). Hence, it results a couple of stationary probability densities (one

for each realization +β and −β), characterizing the inter-distance process Ξ (t ) (see Eq.(6.6)):

P
{

z ≤Ξ(t ) ≤ z +d z | ±β is realized
}=P±β (z)d z

=
( ∑

p∈ΣN

(
N−1∏
k=1

λ±
p,k

)−1)−1 ∑
p∈ΣN

exp
(
−

〈
λ±

p , z
〉)

d z. (6.17)

The complete stationary probability density then reads:

P (z) = 1

2

[
P+β (z)+P−β (z)

]
. (6.18)

6.4 Using a Shill to Guide the Collective Crossing of Obstacles

The shill Y1(t) of section (6.3) has so far been viewed as a mere trouble maker. However, for

specific tasks to be achieved, a shills presence might become truly beneficial. Indeed, the

presence of a shill can softly control a swarm towards a preassigned target.

To concretely illustrate this alternative view point, let us, once again, consider a collection

of (N −1) identical drifted Brownian (regular) agents and one shill, say Y1(t ), all diffusing on

R. From now on, we shall represent the evolution on R2 with the time being identified with

the x-axis, and positions with the y-axis. At time t = 0, all N agents start at location yi (0) = 0,

1 ≤ i ≤ N . We may think of agents running on the x-axis with constant unit speed, as we

therefore identify the x-axis with time. At the x-location T (see Figure 6.3), we introduce a

solid wall (i.e. the obstacle) in which two-slots are drilled. The global objective for the N

agents is to try to avoid the fatal collisions with the wall by traveling trough one of the couple

of slots. The two slots have width W and are symmetrically drilled at the ordinates ±D, see

Figure 6.3 for a sketch of the configuration.
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Figure 6.3 – Initial configuration for the soft control problem. The agents start their diffusion
at

(
t0, y0

)= (0,0).

In absence of shill, one has an homogeneous swarm (all agents are dynamically identical)

and the N -swarm proceeds according to the rule defined in Eq.(6.1). As a consequence, the

wall will be hit with high probability as, at time T , the probability density of the positions

will be given by a collection of N centered Gaussians (we basically have N Brownian motions

with constant drifts having their mean barycenter located at zero). As seen in section (6.3),

the presence of a super-diffusive shill Y1(t) may strongly modify this nominal β= 0 picture.

Indeed Y1(t), with suitable parameters β and g is able to steer the whole swarm with high

preference to one of the slots. This basic and simple idea can be made fully quantitative as

discussed below. In our simulations, we set β= 0 once the slots are crossed. Therefore, the

global swarm continues its nominal path with a tight configuration after the obstacle.

6.4.1 Optimal Barycentric Driving for Suitable Choice of β

First, we select the Y1(t ) parameters to ensure global tightness. This is achieved by defining

β < βc = N
N−1 g . For a single realization of the Z (t) noise, we already know that the average

barycentric y-speed of the swarm is ±β
N . Hence, at time T , the group barycenter reaches the

y-position located at ±βT
N . The center of the slots being located at ±(

D + W
2

)
, we therefore

naturally require:

±βT

N
=±

(
D + W

2

)
⇔ βopt :=

(
D + W

2

) ·N

T
. (6.19)

The choice βopt , does not yet ensure that the shill Y1(t) itself remains attached to the flock.

This second requirement can be achieved provided one has:
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(
D + W

2

) ·N

T
=βopt <βc = N

N −1
g

⇔ g >
(
D + W

2

) · (N −1)

T
=: gc . (6.20)

This choice of the couple parameters βopt and g > gc now jointly ensures that i) the barycenter

is steered towards one of the slots centers and ii) Y1(t ) remains tightly attached to the swarm.

The overall swarm’s y-dispersion is itself dependent on the diffusion constants σi , which were

here taken as (σi :=σ ∀i ).

Figure 6.4 – Left panel: N = 10 agents, W = 20 and D = 10. Right panel: N = 20 agents, W = 20
and D = 50.

6.4.2 Adjusting the Spatial Dispersion Resolution for a Given Drift g

When the drift g is fixed, the ballistic component β cannot always be chosen to simultaneously

ensure tightness and the collective drive into one of the slots. Keeping the barycentric driving

β=βopt , as defined in Eq.(6.19), three different scenarii are now possible:

a) β=βopt <βc . In this case, the shill nicely steers the group towards one of the slots

while staying attached to the flock, as we already established in section 6.4.1.

b) β = βopt ≥ βc . Here, Y1(t) escapes from the (N −1)-flock with a constant drifting

velocity. Two sub-cases have to be distinguished, i) drift β− g resulting when +β is

realized by d Z (t) and conversely ii) drift (N −1) g −β for the alternative −β case. In

both cases, the regular agents evolve with an average drift γave which reads:

γ=
{

β
N = (β−g)·1+(N−1)·γave

N for +β
− β

N = ((N−1)g−β)+(N−1)γave

N for −β
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⇔ γave =
{

g
N−1

−g
. (6.21)

c)β=βopt ≥βc < N ·g . Here, the shill remains attached to the flock for the−β realization

of d Z (t ), but escapes otherwise. This then leads to a mix of cases a) and b) depending

on whether +β or −β is realized.

The computation of γave from case b) shows that with g fixed such that βopt ≥ βc , the shill

escapes from the flock (hence, no stationary probability measure exists). The remaining (N−1)

regular fellows evolve with average speed γave (which is β-independent). Whatever the values

taken by β, the shill is never able to drive the swarm through one of the slots, the swarm’s

speed being only g-dependent if the shill is not attached to the swarm.

So far, only the swarm’s directions has been considered. Obviously, the dispersion is also

a determinant feature for efficient slots crossings. Here, not only g but the ratio g
σ will be

determinant. Clearly for small g values, the swarm dispersion will exhibit a clear tendency to

exceed the slots widths, altering therefore the overall efficiency.

6.4.3 Multi-slots Configurations

So far, we did consider the capability of a shill to steer the swarm through a couple of slots. For

multi-slots configurations, the shill construction used before naturally suggests to define more

general shills to steer swarms in many different directions. This is achievable by replacing the

ballistic noise driving the shill with more complex stochastic processes. Doing so however, the

shill dynamics cannot be anymore represented by a simple diffusive stochastic differential

equation like Eq.(6.11). As an illustration, consider a three symmetrical slots configuration for

which one is naturally driven to introduce the following noise source:

d Z (t ) =
{
β tanh

(
βZ (t )

)
d t +dW (t ) with prob. 2

3 ,

dW (t ) with prob. 1
3 .

(6.22)

The shill dynamics is taken as before, namely with probability 2
3 it steers the swarm towards

the positive or negative slots with ballistic parameter β and with probability 1
3 , it behaves as a

regular agent driving the swarm on a centered path, see Figure 6.5.

For arbitrary number of slots and configurations, one can generalize our construction by

suitably adjusting the properties of the noise source driving the shill.
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Figure 6.5 – Trajectories for β and g optimal, with Nd = 3 doors, under different conditions for
the position/width of the doors.

6.5 Conclusion

It is a true challenge, to analytically discuss the swarm dynamics of heterogeneous interacting

agents. Due to heterogeneity, ordinary analytical tools like the mean-field approach are to be

ruled out a priori. Hence besides simulation experiments, very little hope remains for rigorous

theoretical results. We think particularly to modeling approaches relying on statistical mechan-

ics and phase transitions to explain the emergence of self-organized spatio-temporal patterns

(i.e flocking). However as our research intends to show, facing inhomogeneous swarms prob-

lems, complete hope for analytical results should not be abandoned. The theoretical analysis,

when achievable, definitely offers sources of inspiration for new and unexpected research axis.

In our present contribution, we barely scratched the wealth of analytical possibilities. Indeed,

swarm heterogeneity has numerous origins, affecting the individual drifts and/or the variances,

modeling the sensitivity of each agent to the external random environment. In parallel,

heterogeneity can either be systematic, thus implying that each agent behaves differently, or

can be limited to one or only a few individuals who exhibit singular behaviors. In the latter

configuration, the emergent swarm dynamics can be affected, sometimes even strongly, by the

exotic behavior of this (or these) individual(s). The influence of the exotic fellow(s) can hence

be viewed as a soft control mechanism, either harmful or beneficial. The exotic insiders, acting

as leaders (or as shills in economy) are not detected to be singular by the other fellows, offering

the (politically frightening possibility!) to drive large swarms towards global goals known only

to the manipulators. A formal analytical approach (complemented with simulations) to this

general problematic is a truly fascinating challenge.

Further works include analysis of multiple shills influence, leading to the separation of the

initial swarm into multiple flocks, one shill soft-controlling each flock. Generalization in two

or three dimensions would also provide more realistic applications.
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6.6 New Contributions of Chapter 6

• Based on rank-based Brownian motions (Hybrid Atlas Model [HAM]) dynamic, we are

once again able to analytically discuss the soft control of a swarm. The shill’s dynamics

tune a swarm’s behavioral phase transition. Either flocked, semi-flocked or incoherent

swarm evolutions emerge.

• We use this model to visit the many facets offered by swarm soft control (visible/invisible

shill, constructive/destructive soft control).

• Publication: This chapter is reproduced from the conference paper Sartoretti and

Hongler (2013d), with slight modifications to fit the present dissertation.
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7 Interacting Brownian Swarms: Some
Analytical Results

Summary

We consider the dynamics of swarms of scalar Brownian agents subject to local imitation

mechanisms implemented using mutual rank-based interactions. For appropriate values of

the underlying control parameters, the swarm propagates tightly and the distances separating

successive agents are iid exponential random variables. Implicitly, the implementation of

rank-based mutual interactions, requires that agents have infinite interaction ranges. Using

the probabilistic size of the swarm’s support, we analytically estimate the critical interaction

range below that flocked swarms cannot survive. In the second part of the paper, we consider the

interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both

swarms travel with different barycentric velocities, and agents from both swarms indifferently

interact with each other. For appropriate initial configurations, both swarms eventually collide

( i.e., all agents interact). Depending on the values of the control parameters, one of the following

patterns emerges after collision: (i) Both swarms remain essentially flocked, or (ii) the swarms

become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set

of analytical flocking conditions based on the generalized rank-based Brownian motion. An

extensive set of numerical simulations corroborates our analytical findings.

7.1 Introduction

Elementary models of multi-agents swarms often rely on the assumption that all individuals

obey identical dynamical rules. This hypothesis of agents’ homogeneity significantly simplifies

the mathematical modeling and its treatment. In particular, for large swarms, homogeneity

enables analytical discussions based on the mean-field (MF) approach. In the MF approach,

the effects of mutual interactions are aggregated into an external effective force field, driving

the dynamic of a single randomly picked agent, whose behavior reflects the whole society’s evo-

lution. Homogeneity is, however, rarely encountered in actual situations. A natural question is

to then ask how heterogeneity between agents affects and/or possibly destroys the potential
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emergence of collective (i.e., flocking) dynamics. In the presence of heterogeneity, analytical

approaches are more difficult as, a priori, the MF approach cannot be directly employed. In

multi-agent swarms, heterogeneity can manifest itself in many different forms and degrees. It

may concern the individual dynamics of each agent and/or the way agents interact with their

fellows. An extreme heterogeneous situation is realized when, due to its specificities, a single

agent is actually leading the entire swarm Couzin et al. (2005); Sartoretti et al. (2014b); Han

et al. (2006); Sartoretti and Hongler (2013d,c). In this paper, we focus on comparatively low

heterogeneities encountered when only the individual dynamics differ but not the interacting

rules. For this case, a paradigmatic and pioneering example is the Kuramoto synchronization

of heterogeneous phase oscillators for which the role of heterogeneity can, to a certain extent,

be analytically discussed Strogatz (2000); Acebrón et al. (2005b). More recently, models based

on rank-based drifted Brownian motion (RBM) Pal and Pitman (2008), and, in particular, the

so-called Hybrid Atlas Model (HAM) Ichiba et al. (2011), offer another possibility to analytically

discuss the heterogeneous swarm dynamics, without relying on the MF approach. In the

sequel, we shall basically use the HAM modeling framework to study a new type of global

heterogeneity. This is achieved when two sub-swarms are forced to mutually interact. Each

sub-swarm, formed by homogeneous agents, is initially tightly flocked and obeys specific

collective dynamics. The global society formed by the union of the two sub-swarms is clearly

heterogeneous. This example depicts a situation where two distinct sub-swarms (agents

of each sub-swarm are different) interact via a local competition mechanism (here, agents

systematically try to catch their leaders in a finite observation range). In this paper, we are

able to analytically characterize the post-collisional outputs. Depending on external control

parameters (individual sub-swarm dynamics, strength of competition), we observe that the

post-collisional situation can either be a single tight swarm or a segregation into the nominal

sub-swarm.

The paper is organized as follows: In Section 7.2, we introduce the microscopic agent’s dynamic

and link it to RBMs. In Section 7.3, relying on the HAM theory, we derive the flocking conditions

for single swarms composed of scalar agents interacting via imitation. The mutual interactions

are effectively of long-range types (i.e., each agent can observe all leaders independent of their

distance). For a finite number of tightly flocked agents, the (scalar) inter-distance between

successive fellows is a stationary random variable, and, hence, so is the size of the swarm

extension. This enables us to define a characteristic stationary swarm extension. In Section

7.4, we consider a couple of sub-swarms, initially well separated on the real line and with

different average barycentric speeds. As the positive barycentric velocity of the leftmost sub-

swarm is chosen, larger than the one of the rightmost sub-swarm, collision is unavoidable.

For large but finite observation ranges of the sub-swarm (i.e., range larger than the sub-swarm

characteristics of each sub-swarm extension derived in Section 7.3), we study the asymptotic

post-collisional behavior of the whole system. The conditions for either the emergence of

a global flocking swarm or quasi-freedom of the sub-swarms are approximatively derived.

All analytical findings are tested and corroborated by simulation experiments. Concluding

remarks, along with perspectives, are finally presented in Section 7.5.
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7.2 Flocking of Interacting Brownian Agents

We consider a swarm of N Brownian agents A j , j = 1,2, · · · , N , diffusing on R. Agent Ai follows

the dynamic:

d Xi (t ) = dU ,i (~X (t ), t )d t +σdWi (t ), Xi (0) = xi ,0, (7.1)

where ~X (t ) = (X1(t ), X2(t ), · · · , XN (t )) and dWi (t ) (i = 1, .., N ) are independent White Gaussian

Noise (WGN) sources. The set of individual drifts dU ,i (~X (t), t) for i = 1,2, · · · , N are rank-

dependent interactions that are defined as follows:

(i) In real-time, agent Ai counts the (time-dependent) number NU ,i (t ) of leading fellows

located within an observation interval U , namely the number of Ak for k 6= i that are

located in RU ,i (t ) with:

RU ,i (t ) := {x ∈R | 0 < x −Xi (t ) ≤U }. (7.2)

(ii) The Ai -rank-based drift in Equation (7.1) is then determined by:

dU ,i (~X (t ), t ) :=αNU ,i (t )

N
, i = 1,2, · · · , N , (7.3)

with α ∈R+ a velocity scale factor.

According to Equation (7.1), agent Ai is positively accelerated by its leaders located in RU ,i (t )

but ignores the presence of its followers. These types of dynamics generically model imitation

mechanisms; a typical example for the diffusion of innovation is shown in Hongler et al. (2015).

For very large swarms (i.e., when N → ∞), we may define an agent probability density

ρ(x, t | x0) at position x at time t . Adopting a mean-field (MF) approach, ρ(x, t | x0) obeys a

(nonlinear) Fokker–Planck parabolic partial differential equation (pde):


∂tρ(x, t | x0) =Fρ(x, t | x0),

F (·) := σ2

2 ∂x,x (·)−α∂x

[∫ U
0 ρ(y +x, t | x0)d y (·)

]
.

(7.4)

For U =∞, the model can be analytically investigated, and its solution behaves as a flocked
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swarm of agents that propagate like a soliton wave Hongler et al. (2015); Jourdain and Malrieu

(2008); Hongler et al. (2014). Conversely, for small U , a first order expansion of Equation

(7.4) yields Burgers’ equation, that can be analytically solved via the well known Hopf–Cole

(logarithmic) transformation Jourdain and Malrieu (2008). In this small U regime, ρ(x, t)

exhibits a diffusive behavior that asymptotically vanishes with time. Qualitatively, when U

is very small, the agents mutual interactions are not strong enough to sustain a cooperative

soliton dynamic pattern. By introducing a decreasing distance-dependent modulation on

rank-based drifts, it has been showed that a bifurcation point, controlled by the distance decay

rate, exists that separates both propagating regimes Hongler et al. (2015, 2014).

In general, however, the joint nonlocal and nonlinear characteristics of Equation (7.4) pre-

cludes direct analytical characterization of this bifurcation point. Alternative approaches

then have to be found. In the present paper, focusing on Equation (7.1) with N <∞, we shall

use available results for rank-based Brownian motions Pal and Pitman (2008); Ichiba et al.

(2011) to approximately estimate the observation range required to generate a soliton-like

propagation.

7.2.1 Rank-Based Brownian Motions (RBMs)

For calculation convenience, we now consider the dynamics of Equation (7.1) with respect to

the swarm’s barycenter. That is to say, Equation (7.3) becomes:


dU ,i (~X (t ), t ) :=αNU ,i (t )

N −γ,

γ := 1
N

∑N−1
l=0 α l

N =αN−1
2N (average barycentric drift).

(7.5)

In other words, agents Ai , i = 1,2, · · · , N counts, in real time, the number of its leaders Ak with

k 6= i . It then updates its drift dU ,i (~X (t), t) as given in Equation (7.5), where γ is the average

drift velocity of the swarm. Since the WGN in Equation (7.1) achieves unbounded realizations,

the ability for all Ai ’s to exactly count the number of their leaders effectively requires an

infinite observation range U .

By construction, one can verify that the stability conditions:

l∑
k=1

[
α

k −1

N
−γ

]
= α

2N
l · [l −N ] < 0 ∀1 ≤ l < N (7.6)

are verified, meaning that the laggards have a systematic average tendency to catch up with

the leaders.
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The rank-based drifts effectively implement a stylized gravity model, where the set of condi-

tions for Equation (7.6) ensures the existence of a stationary probability measure for the RBM.

This stationary regime corresponds to a tight propagating swarm that effectively behaves like

a soliton propagating wave. Moreover, Banner et al. (2005); Pal and Pitman (2008) established

that in this stationary state, the inter-distances between successive agents are independent,

λl -exponentially distributed random variables with:

λl =
α

Nσ2 l · [N − l ] , l = 1,2, · · · , N −1. (7.7)

Since the swarm’s stationary size is the sum of (N −1) independent exponentially distributed

r.v.’s, it defines a hypoexponential probability distribution H (x) with density:

dH (x) =
N−1∑
l=1

λl e−λl x

(
N−1∏

l=1,k 6=l

λk

λk −λl

)
d x. (7.8)

Accordingly, the average size of the swarm µS(N ) and its corresponding varianceσS(N ) behave

as follows:


µS(N ) = ∫ ∞

0 x dH (x) =∑N−1
l=1 λ−1

l = Nσ2

α

∑N−1
l=1

1
l (N−l ) ≈N→∞ 2σ2

α log(N ),

σ2
S(N ) = ∫ ∞

0 (x −µS)2dH (x) =∑N−1
l=1 λ−2

l ≈N→∞ σ4

α2 [π
2

3 +4 log(N )
N ] →N→∞ σ4π2

3α2 .

(7.9)

The coefficient of variation cv2
S := σ2

S (N )

µ2
S (N )

, which measures the stochasticity of the swarm’s size,

vanishes in the mean-field limit (N →∞). Observe that, in the mean-field limit, the agents’

density ρ(x, t ) of the RBM directly coincides with Burgers’ dynamics for U =∞. This leads to a

tight soliton-like propagation density with infinite support. This is consistent with Equation

(7.9), where the swarm’s size slowly diverges for N →∞.

7.3 Heuristic Characterization of the Observation Threshold Lead-

ing to Cooperative Dynamics

Consider the nominal dynamics Equation (7.1) and now assume finite observation ranges (i.e.,

0 <U <∞). Due to the unboundedness of the WGN, an exact ranking procedure is therefore

not strictly possible. A non vanishing probability (decreasing with increasing U ’s) exists to find

outlying leaders (i.e., located beyond the observation range of some of their followers). While
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the average swarm size µS(N ) from Equation (7.9) is valid only when U =∞, we postulate

that it can still be used to approximately characterize the minimal observation range Uc <∞
required to sustain a tight swarm. Indeed, whenever U <Uc , it is highly probable that some

agents cannot determine their respective ranks. These outlying agents will underestimate

their instantaneous drifts (from their incomplete observations), ultimately leading to their

escape from the bulk. Outlying agents always escape the swarm from the rear, leading with

time to an effective “evaporation”.

For consistency, the initial conditions Xi (0), to be drawn from a probability measure with

finite support Ω0, namely Xi ,0 ∈Ω0 with Ω0 = [l ,r ] ⊂ R and length(Ω0) = r − l ≤ µS(N ) must

be restricted. Let us now define a characteristic relaxation time τrelax = µS (N )
σ2 that corre-

sponds to the time needed by the stochastic processes to diffuse over the interval of length

µS . For observation ranges U > µS and initial conditions Xi ,0 ∈ Ω0, all N agents mutually

interact at time t = 0, and, therefore, correctly determine their relative ranks. We assume

that this will remain true with high probability, for times 0 < t < τrelax. In other words, we

expect that the initially tight swarm is likely to remain flocked for t ≤ τrelax, effectively a meta-

stable state. For asymptotic times, however (i.e., t À τrelax), the swarm’s tightness will be

destroyed. Indeed, for any finite U , outliers will ultimately escape the attraction generated by

the bulk of the remaining swarm. Therefore, our heuristic postulates that the characteristic

observation range, separating these two regimes, Uc = µS(N ). The actual validity of these

simple heuristics have been tested in several numerical experiments that are reported in

Figures 7.1 and 7.2.
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Figure 7.1 – End probability distribution P (x,T ) at time T = 200 > τrelax = µs

σ2 = 13.58
12 of swarms

of N = 500 agents, with respect to U . Here, all agents initially start at x0 = −15. (a): tight
swarm for U = 3Uc = 3µS (red) and “diffusive evaporating” swarm for U = Uc

3 (blue). (b):

tight swarm for U = 2Uc (red) and “diffusive evaporating” swarm for U = Uc
2 (blue). The

respective observation ranges U are depicted at the top of each figure.
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Figure 7.2 – End probability distribution P (x,T ) at time T = τrelax = 13.58 of a swarm of N = 500
agents, initially starting at x0 =−15. The observation range U =Uc =µS is depicted at the top
of the figure. Notice that the evaporation (i.e., destruction of swarm tightness) does not start
before the relaxation time τrelax.

7.4 Interactions between Collinear Colliding Swarms

In this section, we investigate the mutual interactions between two initially distinct swarms S1

and S2 composed of A1,k , k = 1,2, · · · , N1 respectively A2, j , j = 1,2, · · · , N2 agents driven

by rank-based interactions. Initially, we let all agents from S1 be randomly positioned

with X0,1 ∈ [l1,r1] :=Ω1; similarly, for S2, we assume that X0,2 ∈ [l2,r2] :=Ω2. Assume non-

overlapping supports Ω1
⋂
Ω2 = ; with r1 < l2 (interval Ω1 is located on the left of Ω2) and

finite observation ranges U such that U < l2−r1). Accordingly, at time t = 0, agents from S1 do

not interact with agents from S2 and vice versa. We further assume that initially the swarm Sk

with k = 1,2 has an average barycentric drift velocity dk > 0 and that d1 > d2. This implies that

the S1-agents will, on average, catch and ultimately overcome their S2-fellows. Therefore, for

large times, the S1-agents exhibit a net tendency to become S2-leaders. Qualitatively, after a

S1-S2 collision, the following dynamic features occur:

(i) S1-agents become leaders and thus are less influenced by (or possibly almost indepen-

dent from) S2-agents. This implies that, with time, S1-agents will exhibit a net tendency

to recover their nominal drifts (i.e., the drifts realized before the collision).

(ii) S2-agents feel the presence of their leaders from S1 and, therefore, have a net tendency

to increase their drifts.

Therefore, depending on the values of the population sizes N1 and N2 and drifts d1 and d2,

two alternative situations emerge:

(a) Mutual capture of swarms. After collision, S1 and S2 aggregate into a global tight

swarm Sglob. The average barycentric drift dglob of Sglob is larger than d2. Thus, in
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this case, mutual interactions generate an increase in the average velocity of the global

population.

(b) Quasi-asymptotic freedom of swarms. After collision, and for asymptotic times, the

swarms S1 and S2 evolve almost without interactions (quasi-free swarm evolutions). In

the quasi-free regime, S1 and S2 recover their respective initial individual barycentric

velocities d1 and d2.

In the sequel, the implementation of the velocity condition d1 > d2 is realized by considering

two distinctive rank-based dynamics: (i) The Hybrid-Atlas model (HAM) introduced by T.

Ichiba et al. Ichiba et al. (2011) and (ii) a new modified HAM model (MHAM). For both cases,

we analytically estimate the threshold values of the relevant control parameters that lead to

either outcome (a) or (b).

7.4.1 Colliding Swarms Driven by Hybrid Atlas Models

In this first situation, we assume that the swarms S1 and S2 are populated by slightly different

types of agents. Agents S1 and S2 share a common rank-based drift, given in Equation (7.1),

but we endow the S1s with an extra systematic constant drift Γ1 > 0:

dU ,i (~X (t ), t ) =αNU ,i (t )

N
+1{i≤N1}Γ1, (7.10)

with N = N1 +N2.

This ensures that S1-agents, on average, initially travel faster than S2-agents, and, therefore,

d1 > d2. Since the initial S1-support Ω1 is located on the left of Ω2, a S1-S2-collision is

unavoidable. At this point, we emphasize that when U =∞, the global heterogeneous society

Sglob =S1∪S2, when subject to the dynamics given by Equation (7.1), is a special case of HAM

dynamics Ichiba et al. (2011). In Ichiba et al. (2011), the authors derive the set of combinatorial

stability conditions that ensure the existence of a tight swarm stationary state. Heuristically

speaking, one has to explicitly verify that, in all possible ranking configurations, the agents S1

and S2 are systematically driven by attractive drifts directed toward the barycenter of Sglob.

For U <∞, the hypotheses in Ichiba et al. (2011) are not strictly realized (since the perfect

ranking determination would indeed require U =∞). Along the same lines as in Section 7.3,

we assume that for large enough but finite U , the agents’ ranking in Sglob during collision

remains approximately unaffected. Accordingly, the HAM tightness conditions also remain

approximately valid in Sglob, during collision. The average barycentric drift of Sglob, during
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collision and when S1 is ahead of S2, reads:

γH AM = 1

N

(
N1∑

i=1
(α

i −1

N
+Γ1)+

N∑
i=N1+1

α
i −1

N

)
= (−1+N )α+2N1Γ1

2N
. (7.11)

Therefore, the recentered rank-based drift dU ,l (~X (t ), t ) of agent Al from Sglob, in this configu-

ration, becomes:

dU ,i (~X (t ), t ) =αNU ,i (t )

N
+1{i≤N1}Γ1 −γH AM , l = 1,2, · · · , N −1. (7.12)

According to Ichiba et al. (2011), the set of combinatorial tightness stability conditions for

HAM dynamics, under any permutation p ∈ΣN of the N = N1 +N2 agents read as:

l∑
k=1

[
α

k −1

N
+1{p(k)≤N1}Γ1 −γH AM

]
!< 0,

for l = 1,2, · · · , N −1,

∀p ∈ΣN ,
(7.13)

where
!< expresses the necessary condition.

To check the validity of Equation (7.13), it is sufficient to focus on the most critical agent

configuration. This configuration is realized when all faster agents take the ranks 1, ..., N1 (i.e.,

when S1 is ahead of S2). This corresponds to the choice l = N1 in Equation (7.13), under the

permutation p = (1,2, ..., N ), where:

N1−1∑
j=0

[
α

j

N
+Γ1

]
=−N1N2(α−2Γ1)

2N
. (7.14)

To ensure that this sum is negative (i.e., outcome (a): both societies remain flocked together),

one must finally have:

Γ1 < α

2
. (7.15)

Remark that the condition in Equation (7.15) does not depend on the individual swarm sizes

N1 and N2, with our specific choice of agent drifts Equation (7.10).
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7.4.2 Colliding Swarms Driven by Modified Hybrid Atlas (MHAM) Dynamics

Here, we assume that the N1 agents from S1 follow the dynamics of Equation (7.1), with

α = α̃1 > 0 and similarly, S2 is subject to the same dynamics but with α = α̃2 < α̃1. From

now on and without loss of generality, we focus only on the α̃2 = 1 and α̃1 = ρ. As before,

we initially configure the system so that swarm S1 and S2 do not interact at time t = 0 (i.e.,

X0,1 = [l1,r1] = Ω1, X0,2 = [l2,r2] = Ω2, Ω1 ∩Ω2 = ; and the common observation range U

is such that U > l2 − r1). When ρ > 1, we have d1 > d2 and we look for a critical ratio ρc

under which a tight swarm survives a S1-S2 collision. To this aim, let us consider a “post-

colliding” configuration realized when S1 is completely ahead of S2. In term of stability, this

configuration is the most critical: S1-agents can only escape from S2 via this configuration.

Therefore, the Sglob tightness has to be checked under this specific configuration.

Accordingly, whenever the stability conditions from Ichiba et al. (2011) are verified under

this critical configuration, they will also be verified under any other configuration. Therefore,

the tightness of Sglob only depends on this critical configuration. Formally, we now rewrite

Equation (7.5) for Sglob and verify whether the stability requirements given by Ichiba et al.

(2011) are fulfilled for this critical case. In this case, the recentered dynamics read:


dU ,k (~X (t ), t ) =


ρ

NU ,k (t )
N −γM H AM for k ≤ N1,

NU ,k (t )
N −γM H AM otherwise.

γM H AM = ρ
N

∑N1

k=1
k−1

N + 1
N

∑N
k=N1+1

k−1
N = ρN1(N1−1)+N2(2N1+N2−1)

2 N 2 .

(7.16)

From Ichiba et al. (2011), the stability conditions for Sglob read:

l∑
k=1

[
(1+1{k≤N1}(ρ−1)) · k −1

N
−γM H AM

]
!< 0, ∀1 ≤ l ≤ N −1. (7.17)

The most critical condition is realized for l = N1 (this condition tests whether the distance

between S1 and S2 remains stationary). It reads:

N1∑
k=1

[
ρ

k −1

N
−γM H AM

]
= N1N2(N2 −1−N1(ρ−2)+ρ)

2N 2

!< 0, (7.18)

implying that the critical threshold ρc (ρ < ρc implies outcome (a), i.e., both societies remain
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flocked together) finally reads:

ρc = 1+ N

N1 −1
. (7.19)

Notice that for N1 = 1, ρc cannot possibly exist (i.e., ρc =∞). The first agent has no drift, since

it never observes any leader. Therefore, a society of one leader cannot possibly drive a swarm.

Instead a single leader always remains flocked with S2. For N1 = N2, Figure 7.3 shows the

critical value ρc . When N →∞, ρc asymptotically converges toward ρc = 3. Figure 7.4 shows

the behavior of ρc as a function of the proportion N1
N (faster agents in Sglob), for N →∞ agents.

For N →∞ and N1
N → 1, ρc → 2.
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Figure 7.3 – Value of the critical threshold ρc , with regard to the swarm size N of the HAM,
when N1 = N2. The asymptotic value N →∞ of ρc = 3 is depicted in red.
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Figure 7.4 – Value of the critical threshold ρc , with regard to the proportion N1/N of fast agents
in the HAM, when N →∞.

7.4.3 Numerical Simulations

We consider two different cases, both with N1 = N2 = 250 agents. In both simulations, the

society S1 starts with all agents located at x0,1 =−15, while agents from S2 start at x0,2 =+15.

The common observation range U is selected large enough (U > max(µS,1,µS,2)), and σ= 1.

For the experiments, we vary ρ, in order to compare i) a case in which both societies remain

flocked together with ii) a case leading to the quasi-freedom behavior.
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Figure 7.5 shows one realization in which ρ < ρc , allowing both societies to remain flocked. The

left plot shows the final distribution of agents from both societies, as S1 leads S2. In the right

plot of Figure 7.5, we show the average barycentric speeds of both societies. Notice how S1 is

initially accelerated as its agents interact with those from S2. Later, when S1 has overcome

S2, agents from S2 get an extra drift due to interactions with S1. This finally enables both

societies to evolve at the same average barycentric speed (and therefore to remain flocked).

In Figure 7.6, we show the same scenario, for one realization with ρ > ρc (quasi-freedom

regime). In the right plot, we still notice the initial drift gained by S1 as its agents interact with

those from S2. Once S1 has overcome S2, agents from S2 get an extra drift, that is not large

enough to keep both societies flocked together. The extra drift gained by S2 finally vanishes,

once S1 exits the observation range of the agents from S2. Finally, S1 and S2 recover their

nominal speeds.
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(b)Figure 7.5 – Final distributions P1,2(x,T ) and average barycentric speeds v1,2(t ) for one real-
ization, in which both societies that start at x0,{1,2} =∓15 achieve flocking. Here, ρ = 2.5 < ρc ,
U = 20 >Uc = 5.4, σ = 1 and N1 = N2 = 250 agents. (a): distribution of the agents from S1

(blue) and S2 (red), at ending time T = 100. (b): average barycentric speed of each society,
with respect to time.
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(b)Figure 7.6 – Final distributions P1,2(x,T ) and average barycentric speeds v1,2(t ) for one realiza-
tion, in which both societies that start at x0,{1,2} =∓15 do not achieve flocking. Here, ρ = 6 > ρc ,
U = 20 >Uc = 2.26, σ= 1 and N1 = N2 = 250 agents. (a): distribution of the agents from S1

(blue) and S2 (red), at ending time T = 100. (b): average barycentric speed of each society,
with respect to time.
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7.5 Conclusions and Perspectives

Tightly flocked swarms of agents are externally perceived as plastic (i.e., deformable) macro-

scopic bodies with dynamics resulting from the compromise between the individual evolu-

tions, and the nature and range of the mutual interactions. Having macroscopic bodies at

hand, basic physics naturally suggests the questions: (i) how such do solid bodies mutually

interact; (ii) what emerges after collisions, and (iii) what type of information can we get from

studying the results of the collisions? The discussion of collisions presents some similarities

with the physics of solitons’ interactions where the underlying nonlinearities precludes the

superposition principle to be be invoked. We show here that the rank-based Brownian dynam-

ics is one possible approach to explore, in a partly analytical way, some of the challenging

questions related to swarm interactions.

7.6 New Contributions of Chapter 7

• Building again on the Hybrid Atlas Model (HAM), we consider the interactions between

two Brownian agents swarms. We are able to analytically discuss the possible out-

comes of the swarms’ collision. This model simultaneously connects the micro- and

macroscopic descriptions of swarms.

• Publication: This chapter is reproduced from the published journal paper Sartoretti

and Hongler (2016), with slight modifications to fit the present dissertation.
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8 Distributed Planar Manipulation in
Fluidic Environments

Summary

We present a distributed control mechanism allowing a swarm of non-holonomic autonomous

surface vehicles (ASVs) to synchronously arrange around a rectangular floating object in a

grasping formation; the swarm is then able to collaboratively transport the object to a desired

final position and orientation. We analytically consider the problem of synchronizing the

ASVs’ arrival at the object, with regard to their initial random positions. We further analytically

construct a set of acceptable trajectories, allowing the transport of the grasped object to its

final desired position. Numerical simulations illustrate the performance of the presented

control mechanism. We present experimental results, to demonstrate the feasibility and

relevance of our strategy.

8.1 Introduction

As robotic swarm sizes can vary over time, we are interested in developing scalable control

mechanisms, that can adapt to any swarm size, and that are resistant to single robot failures. In

some cases, scalability can be obtained via the use of a distributed control framework, where

the global swarm’s behavior is distributed among all agents. The robustness of the resulting

distributed swarm strategy can then be increased by adding redundancy in the number of

agents performing each role.

In this paper, we address the problem of transporting an object in a fluidic environment,

using a swarm of autonomous non-holonomic robots. We build on Sartoretti et al. (2014a)

to devise a distributed Braitenberg-inspired control mechanism, allowing the autonomous

surface vehicles (ASVs) to move along smooth trajectories only as they approach, grasp and

manipulate a rectangular object.

Previous works have successfully achieved decentralized manipulations of large objects by

swarms of ground robots. In Fink et al. (2008), the decentralized manipulation of an L-
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shaped object held under caging is obtained by first having the team surround the object

of interest and then transporting it by collectively pushing it along the desired direction.

Manipulation is achieved through careful composition of artificial potential fields. More

recently, a decentralized control mechanism allowing the manipulation of a general-shaped

object by a swarm of gripping robots evolving on the ground is presented in Habibi et al. (2015).

However, when considering a swarm of ASVs, new challenges arises, due to the decreased

friction and the non-negligible inertial effects. Closely related to the present work, in Feemster

et al. (2006), the authors devise a decentralized control mechanism allowing a swarm of

tugboats to rotate a larger object, by collaboratively using their individual torques. Using

tugboats attached to a larger vessel, the authors successfully devise and implement a control

mechanism enabling the vessel’s manipulation in Esposito (2008); Esposito et al. (2008).

The main contribution of this work is the construction of a set of acceptable trajectories,

allowing a swarm of ASVs to transport an object from any given initial state (position, given

orientation) toward any desired final state, under conditional closure (CC). The presented

distributed control mechanism then allows the swarm of ASVs to collaboratively grasp the

object under CC, and to collectively transport it toward its final desired state.

The outline of this paper is as follows: in Section 8.2, we briefly presents the considered

problem. In Section 8.3, we define the two main phases of our control mechanism, and

present numerical results. Section 8.4 is devoted to our experimental results, while Section 8.5

discusses of the future perspectives.

8.2 Problem Statement

We consider a swarm of N autonomous robotic ASVs evolving on a still body of water, initially

positioned at random. A large vessel, represented by a rectangular object on the water surface,

is initially positioned at a position that we define as the origin O = (0,0) of the swarm’s global

frame of reference. Without the loss of generality, we will assume that the vessel is positioned

so that its length lays on the X -axis. The goal for the robotic swarm is to first regroup on one

side of the vessel, facing the vessel (namely, on the side where y > 0), and then to push the

vessel toward a final position {x f , y f }, with a final orientation h f . We separate the control

mechanism into two phases, namely the approach and the push phases.

Each ASV is modeled as a differential autonomous robot, evolving on a two-dimensional plane.

Each robot is then assigned a specific target point Ti (1 ≤ i ≤ N ), which it aims for during the

approach phase. The target points T2, ...,TN−1 are uniformly distributed along the central axis

of the vessel, while T1 and TN are placed at each end of the vessel. This allows the swarm,

once positioned near their target points, to hold the vessel under conditional closure (CC) (see

Fig.8.1) Pereira et al. (2002). A robot starting on the bottom half-plane {y < 0} must first move

around the vessel. Once on the other half-plane {y > 0}, the ASV must then gradually change

its course to approach the vessel perpendicularly to its side.
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Figure 8.1 – Example of conditional closure (CC), where the pushing ASVs (black dots) are
able to translate and rotate the vessel, with constraints on the translation direction and the
rotation pivot. The target points are depicted as blue crosses, and the ASVs’ heading vectors as
red segments).

Once each ASV in the swarm has reached the vicinity of its target, the vessel is held under

CC. In this position, the robots can only translate the vessel towards the half-plane {y ≥ 0}.

Furthermore, any rotation applied to the vessel under CC cannot have its pivot point within

the vessel. Therefore, the rotation radius (distance between the barycentric position of the

vessel, and the pivot point) must be at least Sx
2 (i.e., half the length of the vessel). These

constraints define a set of allowed translations and rotations, which the swarm can apply to

the vessel under CC. The objective then is to devise a distributed control strategy to enable

the swarm to maintain CC while manipulating the vessel to the desired position {x f , y f }, with

desired orientation h f , given its initial position/orientation x0 = y0 = h0 = 0.

8.3 Planar Manipulation Under Conditional Forced Caging

8.3.1 Distributed Approach and Grasp

We first define a general Braitenberg control mechanism Braitenberg (1984) allowing an ASV to

move at a constant speed, keeping a given point T =
(

T x

T y

)
at a given angle φ from its heading.

The angle φ defines the desired difference between the angular position of a robot, and its

heading h. For example, when φ= π
2 , the ASV simply revolves around the point T (i.e., T is

the instantaneous center of rotation for the ASV, remaining at an angle of π
2 from the ASV’s

heading). Fig. 8.2 illustrates the situation at a given time and depicts the various relevant

quantities.

With these quantities, both motor speeds are updated as follows:


VL,i (t +1) = S1,i +β ·cos

[
hi (t )−αi (t )+ (π2 −φi (t ))

]
,

VR,i (t +1) = S1,i −β ·cos
[
hi (t )−αi (t )+ (π2 −φi (t ))

]
,

(8.1)

with α= arctan
(

yi−T yi

xi−T xi

)
, (xi , yi ) the position of the robot when its motor speeds are updated
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(x,y)

h

α

φ

Figure 8.2 – Illustration of the system and the relevant quantities needed for the Braitenberg
control mechanism. Here, T = O = (0,0). The vessel (blue rectangle) and an ASV (black dot)
located at position (x, y). The heading h of the ASV is illustrated in red, and its angular position
α in black. A desired angle φ, defining the desired difference between α and h, is depicted in
blue.

and S1,i its (constant) approach speed. The control mechanism defined in Eq.(8.1) allows a

robot to rotate around the origin point in a clockwise direction for φ= π
2 , and in a counter-

clockwise direction for φ= 3π2 . We want to allow robots starting in the half-plane {x > 0} to

rotate in the counter-clockwise direction, to reach their destination faster. To achieve this,

we let D ∈ {0,1} denote each robot’s direction of rotation (clockwise (0) or counter-clockwise

(1)). An ASV starting in the half-plane {x < Ti } is assigned D = 0, and an ASV starting at initial

position x0,i ≥ Ti receives D = 1. A correction is then made to the control mechanism of

Eq.(8.1) to encompass this rotation direction, by changing φi (t ) →φi (t )+Dπ.

To obtain a spiral-shaped motion from the initial position of the robot until its perpendicular

approach to the vessel’s side, we now let φ depend on the angular position of each robot. We

want φ ≈ π
2 when the robot is in the lower half-plane {y < 0} (i.e., pure rotation around the

origin point). We then want φ to gradually decrease toward φ= 0, as α approaches π
2 (i.e., pure

attraction to the origin point). We let φ exponentially decrease, as α approaches π
2 :

φσ(α) = π

2

(
1−exp

(
−ar cmi n(α, π2 )

σ

))
, (8.2)

where σ2 ∈R+ controls the rate of exponential decay. We write ar cmi n(θ1,θ2) as the minimal

angle difference between θ1 and θ2:
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ar cmi n(θ1,θ2) := min

(
mod(θ1 −θ2,2π)

mod(θ2 −θ1,2π)

)
.

We finally incorporateφσ(α) into Eq.(8.1) to obtain the final control mechanism for our robotic

swarm. Note how φσ(α) must also be corrected with regard to D , to obtain suitable dynamics

for both turning directions:


VL,i (t +1) = S1,i +β ·cos

[
hi (t )−αi (t )+ π

2 +Dπ− (2D −1)φσ(αi (t ))
]
,

VR,i (t +1) = S1,i −β ·cos
[
hi (t )−αi (t )+ π

2 +Dπ− (2D −1)φσ(αi (t ))
]
,

(8.3)

Computation of the Approaching Speeds

Using the control mechanism from Eq.(8.3), a robot starting at any given initial position moves

along a spiral-shaped trajectory toward its given target point T . We now want all robots to

converge to their targets Ti within a desired given time Tgoal. The correct synchronization of

the arrival times allows the robots to start pushing the vessel all at once.

We need to estimate the length of the path a robot will move along during its approach,

given its initial position (x0, y0). To do this, we approximate the trajectories created by the

Braitenberg control mechanism of Eq.(8.3) as exponential spirals. We express a spiral as a

function of the radius of each point of the spiral with respect to its angular position. To simplify

the expression, we rotate the frame of reference, and measure the angular position θ of the

spiral’s points starting from the angle π
2 . In our case, our spirals are defined for any angular

position θ ∈ [0;π], where, because of symmetries, robots cannot move more than half a circle

around their target point. Using the relation for φσ(α), we now approximate our spiral as:

r (θ) := rπ

(
1−exp

(
− θ
σ

))
. (8.4)

The typical shape of the spiral, with rπ = 1, is depicted in Fig. 8.3. In our case, we need to let

each robot compute rπ, from its initial position (r0,θ0), where θ0 = ar cmi n(α0, π2 ). This is

achieved by putting r0 and θ0 in Eq.(8.4), and by extracting rπ. We finally find:

rπ = r0

1−exp
(
−θ0
σ

) . (8.5)
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Figure 8.3 – Typical shape of the spiral of Eq.(8.4), with rπ = 1. Here, we make the substitution
θ = ar cmi n(α, π2 ), meaning that both axes are simply switched.

With the expression of the spiral for the trajectories’ shapes, we can now obtain the trajectories

lengths from the initial position of each robot. The initial angular and radial positions of each

robot are first computed with respect to their target point:


r0 =

√
(x0 −Tx )2 + (y0 −Ty )2

θ0 = ar cmi n(arctan
y0−Ty

x0−Tx
, π2 ).

We then compute the length of the spiral following Eq.(8.4), from the initial position to the

target point, as:

Li (r0,θ0) =
∫ θ0

0

√
r (θ)2 +

(
d

dθ
r (θ)

)2

dθ,

which yields a lengthy but exact result, given by Eq.(8.6).

Li (r0,θ0) = r0

(
1

eθ0/σ−1
+1

)((
1− σ2 log

(p
σ2+1+1

)
p
σ2+1

)
−e−

θ0
σ

√
σ2

(
eθ0/σ−1

)2 +1+

σ2 log

(
e− θ0

σ

(
σ2

(
1−eθ0/σ

)+pσ2+1
√
σ2(eθ0/σ−1)2+1+1

))
p
σ2+1

−σsinh−1 (
σ−σeθ0/σ

))
.

(8.6)

With this analytical expression for the trajectory length of an ASV starting at any initial position,

we are able to adapt the individual speeds S1,i of each ASV. We let the approach speed of each

ASV depend on its trajectory length Li (r0,θ0) in order to let the ASVs meet their target point in
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the vicinity of a desired time Tgoal:

S1,i = S1,i (r0,θ0) = Li (r0,θ0)

Tgoal
. (8.7)

Link with Brownian Swarms

Eq.(8.3), defining our Braitenberg control mechanism, can be translated into a multi-agent

swarm dynamic, expressed in terms of differential equations. We identify the ASVs as Brownian

agents, evolving on the plane R2, and following the dynamic expressed in polar coordinates:


dri (t ) =−S1,i ·exp

(
− ar cmi n(αi (t ), π2 )

σ

)
,

dαi (t ) = (2D −1) S1,i

ri (t )

(
1−exp

(
− ar cmi n(αi (t ), π2 )

σ

))
.

(8.8)

Noise can be added to this dynamic, in order to encompass the actuators and sensors’ er-

rors, by adding independent White Gaussian Noise sources on either or both state variables.

This effectively allows us to express the swarm’s dynamic as a set of N Stochastic Differential

Equations (SDE). Conventional tools of dynamical systems theory can be used on the result-

ing nonlinear SDEs to study the probability distribution of the swarm’s position during the

approach.

Note that, similarly to the original Braitenberg control dynamics, the norm of the instanta-

neous speed of each agent remains constant through time:

vi (t ) = r (t )
d

d t
α(t )+ d

d t
r (t ) = S1,i ∀t .

Fig. 8.4 illustrates the initial position and final position of a swarm of N = 10 robots following

Eq.(8.8) without noise, up to time T = 10. Notice how the trajectories of the agents are very

close to the spiral shapes created from Eq.(8.4).

8.3.2 Computation of the Manipulation Trajectories

Once the ASVs have achieved CC around the vessel, the pushing phase starts. During this

second phase, the ASVs continue to follow Eq.(8.3), but adapt their forward speeds to trans-

late/rotate the vessel. To manipulate the vessel by controlling the individual ASVs’ forward

speeds, we restrict the vessel’s motion to circular arcs only, until it has achieved the desired
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Figure 8.4 – Initial (left) and final (right) positions, and trajectories, of a swarm of N = 10
agents following Eq.(8.8) without noise. Here, σ2 = 1

2 . Notice the trajectories following the
spiral-shape of Eq.(8.4).

final position and orientation. By construction, we can show that from its initial position, two

well chosen circular arcs always allow the vessel to end up at the desired final position given a

desired orientation. We prove this by computing the centers of the two circles the vessel will be

transported along. We let the vessel first travel an arc length α1 around the center {C1,x ,C1,y }

of a first circle C1. It then travels an arc length α2 around the center {C2,x ,C2,y of a second

circle C2.

We first note that C1,y = 0, since the vector {C1,x −x0,C1,y − y0} must be perpendicular to the

initial normal vector of the vessel. The normal vector of the vessel is defined as a unitary

vector, perpendicular to the vessel’s orientation (i.e., initially the normal vector of the vessel is

{1,0}). This ensures that the vessel’s normal vector is tangent to C1, since its orientation faces

the center of C1. We then express the constraints within our system:

1. We know that after the first arc α1, the orientation of the vessel is α1. After the second

arc, the final orientation must therefore verify:

h f =α1 +α2. (8.9)

2. Using the rotation matrix Mα =
(

cos(α) −sin(α)

sin(α) cos(α)

)
, we can compute the successive

positions of the vessel after traveling along each of the two arcs. After the first arc, the
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vessel ends up at the position {x1, y1}, with

(
x1

y1

)
:= Mα1 ·

(
x0 −C1,x

y0 −C1,y

)
+

(
C1,x

C1,y

)

=
(

C1,x · (1−cos(α1))

−C1,x · sin(α1)

)
.

(8.10)

From this intermediate position, the vessel then follows an arc length α2 around the

center of C2. The final position must equal {x f , y f }, which gives us a second relation:

Mα2 ·
(

x1 −C2,x

y1 −C2,y

)
+

(
C2,x

C2,y

)
=

(
x f

y f

)
. (8.11)

3. Finally, the vector {x1 −C2,x , y1 −C2,y } must be perpendicular to the vessel’s normal

vector after the first arc. This condition, similar to the one raising C1,y = 0, ensures that

at {x1, y1}, the ASV is simultaneously on both circles C1 and C2.

(
x1 −C2,x

y1 −C2,y

) initial normal vector

·

Mα1 ·
︷︸︸︷(

1

0

) =

(C2,x −C1,x ) · sin(α1)−C2,y ·cos(α1) = 0.

(8.12)

With these 4 equations, and 5 variables {α1,α2,C1,x ,C2,x ,C2,y }, we are left with one degree of

freedom. We choose to fix α1, and to compute the values of the other variables accordingly.

After solving Eqs(8.9)-(8.12), with α1 fixed, we end up with:



α2 = h f −α1

C1,x =−1
2 csc

(α1
2

)
csc

(α1+α2
2

)(
x f cos

(
α1 + α2

2

)+
y f sin

(
α1 + α2

2

))
C2,x = 1

2 csc
(α2

2

)
csc

(α1+α2
2

)(
x f cos

(α1
2

)+
sin

(α1
2

)
(y f cos(α1 +α2)−x f sin(α1 +α2))

)
C2,y = cos

(α1
2

)
csc

(α2
2

)(
x f cos

(α1+α2
2

)+
y f sin

(α1+α2
2

))

(8.13)
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Furthermore, we want to ensure that the initial push is made in the correct direction. Indeed,

we could initially find α1 > 0 and C1,x > 0. In this case, we would need to initially push the

vessel towards {y > 0}, which is not allowed. To correct this move, we would simply rewrite

α1 =α1 −2π, meaning that the robots will push the vessel in the correct direction, but for a

longer arc. Notice that this does not change the final position {x1, y1} after the first arc. We

must therefore check for these cases, and adapt α1 accordingly:

α̃1 :=


α1 −2π if signα1 = signC1,x ,

α1 otherwise.

(8.14)

Similarly, at the interface {x1, y1} between both circles, we need to ensure that the trajectory

is continuous. We also need to correct α2 if its value would mean the movement must be

instantly reverted when switching to the second arc. To obtain the condition, we set the frame

of reference at the position {x1, y1}, with the orientation α1:

(
C̃2,x

C̃2,y

)
= M−α1 ·

(
C2,x −x1

C2,y − y1

)
.

We then check the same condition as in Eq.(8.15) (same sign between α2 and C̃2,x ), to correct

α2:

α̃2 :=


α2 −2π if signα2 = signC̃2,x ,

α2 otherwise.

(8.15)

Fig. 8.5 shows an incorrect trajectory corrected using this method, enabling us to obtain a

smooth trajectory following only allowed translations/rotations under CC.

Figure 8.5 – Example trajectory where α1 must be corrected (left), and the corrected trajectory
using Eq.(8.15) (right). The initial and final states of the vessel are shown in black.
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Computation of the Pushing Speeds

Once we find the centers of the circles C1 and C2 for an acceptable trajectory, we let the speed

of each robot in the swarm depend on its distance to the center of the circle the vessel is

traveling around. Namely, if we let P (t) = {Px (t),Py (t)} be the instantaneous position of the

barycenter of the caged vessel at time t , we let the speed of the robot i at time t be:

Vi (t ) = ||Xi (t )−C ||
||P (t )−C || ·S2, (8.16)

with C the center of the circle the vessel is currently travel along, and S2 the desired average

speed of the vessel along the trajectory. Furthermore, we let the robots switch from C =C1 to

C =C2 when P (t ) ≈ {x1, y1} (Eq.(8.10)).

Optimal Trajectory in Fluidic Environment

For mobile robots evolving on the ground, a well-known result states that the shortest tra-

jectory under constraint of maximal curvature, and with selected initial and final tangents,

is a Dubins path Dubins (1957); Bui et al. (1994). Such a path always starts with a rotation

with maximal curvature (i.e., Sx
2 in our case), followed by a forward motion, and finally by a

second rotation with maximal curvature. This means that, on the ground at least, our circular

trajectories are always sub-optimal (i.e., equal or longer than the corresponding Dubins path).

But since our ASVs evolve in a fluidic environment, a Dubins path can prove to be difficult

to apply, due to the necessary rotations with maximal curvature. To apply a rotation with

maximal curvature Sx
2 to our vessel, we would need to use one of the end ASVs (i.e., the ASVs

caging the plank along its main axis) as the rotational pivot. This maneuver is easily managed

on the ground, but proves to be harder on water, where the force exerted by the vessel on the

pivot during the rotation will most likely move the pivot ASV. In this case, trajectories favoring

rotation with smaller curvature can increase the transport precision under CC.

8.3.3 Numerical Results

Fig. 8.6 shows selected consecutive states in a run with N = 10 ASVs. In the simulation, we

assume that the sum of the ASVs’ weights is equal to the individual weight of the vessel. This

helps synchronize the pushing, by preventing early arriving ASVs from being able to rotate

the vessel too fast on their own. The push phase can therefore only start when the whole

swarm is here to push the vessel together. The approach speeds of the ASVs are computed to

synchronize their arrival around Tgoal = 30 s. The arc length around the first circle is selected

to be α1 = 1, and the trajectory is computed in order to position the ASV at {x f , y f ,h f } =
{55,−95,0.1}.
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To better reflect reality, we add noise to the exact angular position of the agents at each

timestep, and add individual noise on their (x, y) position when it is updated in Eq.(8.3). The

noise sources are all White Gaussian Noise sources, with an individual variance of 0.05. The

control mechanism of Eq.(8.3) is updated at 50 H z. Notice that the arrival of the ASVs to the

vessel is very well synchronized.
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Figure 8.6 – Selected successive states of the system during a numerical simulation of the
approach and push phases. Here, a swarm of N = 4 ASVs (black dots) push the large vessel
(black rectangle) towards the final position {x f , y f ,h f } = {55,−95,0.1} (red rectangle).

Fig. 8.7 show the complete trajectories followed by a swarm of N = 8 ASVs to transport the

vessel to its final state, from its initial state {x0, y0,h0} = {0,0,0}. The considered trajectories

allow the plank to be transported to any position, even on the half-plane {y > 0}, as illustrated

in Fig. 8.7b.
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Figure 8.7 – Complete trajectories of a swarm of N = 8 ASVs (back dots), moving a vessel to its
final position (red rectangle). The vessel is initially positioned at {x0, y0,h0} = {0,0,0}. The two
circles’ centers, and the intermediate switching point, are depicted as black crosses.

8.4 Results

8.4.1 Experimental Setup

In this section we evaluate the proposed control mechanism employing our indoor laboratory

experimental testbed : multirobot Coherent Structure Testbed (mCoSTe). The mCoSTe is an

indoor laboratory experimental testbed that consists of a 3m ×3m ×1m flow tank and a fleet

of micro-autonomous surface vehicles (mASVs). The mASVs are differential drive surface

vehicles, approximately 12 cm long, equipped with a micro-controller board, XBee radio

module, and an inertial measurement unit (IMU). Localization for the mASVs and the vessel

being manipulated is provided by an external motion capture system.

The considered control mechanism was successfully implemented on a swarm of N = 4 mASVs,

evolving on still water. The boats are tracked in real time by a collection of overhead cameras,

and their positions, headings, speeds and heading derivatives are read at a frequency of 20 H z.

The role of the vessel is played by a floating plank of 40cm ×15cm, with fins at both ends of

its length, limiting its movement along its main axis.

Since the boat propellers’ rotation speeds cannot be linearly translated into a forward speed

(as opposed to wheeled mobile robots), Eq.(8.2) is used to control the boats’ headings during

the approach phase. The boats’ headings and forward speeds are updated at a frequency of

10 H z, using the gathered tracking data. A couple of controllers acting on the boats’ headings

(PD controller) and forward speeds (P controller) are also updated at 10 H z to ensure a proper

application of the underlying dynamic.

During the approach, the optimal approach speed of each boat is updated at each iteration

(d t = 0.1 s), to synchronize the arrival of all the boats. The targets are re-attributed at each
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iteration, to ensure a minimal probability of collision between the boats. The targets are

attributed to the nearest boats to minimize path crossings between boats. The push phase

only starts when all the boats are arranged in CC around the plank. This stop phase is needed,

since a single early arriving boat can move the light plank easily, which would have a harmful

effect on the approach of the other boats.

Once the CC is obtained, the desired final state of the plank {x f , y f ,h f } is computed in the

current frame of reference of the plank. The resulting trajectory is computed to transport

the plank toward the desired position under CC. During the push phase, the 2 pushing boats

control the plank’s orientation along the computed trajectory, ensuring the plank faces the

current circle center. The end boats, caging the plank along its x axis, remain in the plank’s

vicinity to correct its possible deviations along its main axis.

Once in range of the final position, all boats stop their motors. The plank continues its

movement, driven by its inertia. Since the plank is held under CC, a stopping maneuver

cannot be made by the boats to ensure the plank is stopped precisely on target.

8.4.2 Experimental Results

Fig. 8.8 presents successive states in an experimental run with N = 4 boats. During this

experimental run, the following values are set for the parameters of the control mechanism:

{
σ= 1 Tgoal = 80 s

α1 = 1 {x f , y f ,h f } = {55,−95,0.1}.

The initial position of the boats (black dots) and the plank (black rectangle) is depicted in

Fig. 8.8a, along with the targets along the plank’s side (colored crosses). In Fig. 8.8b, the boats

have just arrived to their targets, and have stopped to synchronize the beginning of the push

phase. At this moment, the final position and orientation of the plank is computed from its

current state (red rectangle), and the corresponding trajectory is computed. The two circle

centers, along with the intermediate switching point, are computed (black crosses) (Fig. 8.8c).

The boats then start moving the plank under CC along the computed trajectory, and switch

once the plank has just passed the intermediate point (Fig. 8.8d). As soon as the final position

is in range (20cm) of the plank, the boats stop their motors, and let the plank derive to its final

position (Fig. 8.8e). The plank, still moving under its inertia, derives toward its final position

(Fig. 8.8f).

Fig. 8.9 presents still frames from the video recording the run depicted in Fig. 8.8.

A series of experimental runs was performed to test the repeatability of the considered control

mechanism. The minimal distance from the plank’s center to the desired final position

{x f , y f } was computed for each run, along with the angle error at that precise instant. The
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Figure 8.8 – Key successive states during an experimental run of the presented control mecha-
nism with N = 4 boats. The trajectories (colored lines) of the boats (black dots), are depicted,
along with the plank’s current position (black rectangle) and its final desired state (red rect-
angle). During the approach phase, the boats’ targets along the plank’s side are plotted as
colored crosses. During the push phases, the circle centers and intermediate switching points
are illustrated as black crosses.

corresponding measured errors are illustrated in Fig. 8.10, along with their respective mean

over the 12 experiments. The mean distance error and its standard deviation read 4.88cm ±
1.8cm, while the mean orientation error and its standard deviation read −0.26r ad ±0.44r ad .

8.5 Conclusions and Perspectives

The control mechanism presented in this paper is relevant to solve the problem of manipulat-

ing an object in a fluidic environment. It allows simple non-holonomic ASVs to distributively

arrange and grasp an object under CC. Despite the fact that this grasping method reduces

the set of acceptable translations and rotations, the object can always be transported to any

position on the Euclidean plane. Numerical and experimental results are very good, as we test

the manipulation of a rectangular object, representing a large vessel for instance.

The computed trajectories followed by the object toward its final position are known to be

sub-optimal, compared to the corresponding Dubins path, but appear to be more stable on
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(a) (b)

(c) (d)

Figure 8.9 – Key successive states during an experimental run of the presented control mecha-
nism with N = 4 boats. Initial position of the boat (black rectangle); final desired state (red
rectangle). The circles centers, and the intermediate switching point, are depicted as blue
crosses. Caging position obtained by the boats after the approach phase (8.9a). Start of the
pushing phase (8.9b), switch between both circles (8.9c), and stopping point of the boats
(8.9d).

the surface of a viscous fluid. Future works will include the comparison between object manip-

ulation using both trajectories in terms of time consumption, stability during manipulation,

and precision of final placement.

8.6 New Contributions of Chapter 8

• We devise a distributed control mechanism, enabling the manipulation of a floating

object by a swarm of boats The fluidic environment constrains the set of admissible

transport trajectories, which are analytically calculated. We numerically and experimen-

tally validate the model, using a swarm of 4 robotic boats.

• This examplifies a case of distributed swarm dynamic, with stigmergic interactions (i.e.,

agents influence the environment, which itself affects their dynamics).

• Publication: This chapter is reproduced from the preprint version of the accepted
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Figure 8.10 – Minimal error on the position (red) and corresponding error on the orientation
(blue) during the 12 experimental trials. The respective mean errors are depicted as dotted
lines.

conference paper Sartoretti et al. (2016), with slight modifications to fit the present

dissertation.
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Conclusion and Perspectives

Like many researchers, we developed during the last years a growing fascination for the

emergence of collective spatio-temporal patterns in swarms of autonomous and heteroge-

neous agents. Even very elementary individual rules, supplemented with interactions with

neighboring fellows (introducing intrinsic nonlinearities), can produce highly stable global

patterns. This observation raises numerous challenging questions, which can be summarized

into the key question Q: What individual dynamic and what type of interactions generate

an a-priori given collective spatio-temporal behavior ? Devoted to this topic, a rich and wide

interdisciplinary literature corpus ranging from pure mathematics to actual experimentations

is available. Too often, at least to our opinion, wide gaps remain open between pure theo-

retical studies and actual implementations. One of our basic goal in this work is to illustrate,

via new elementary swarms models, how this gap can be bridged. Anybody addressing the

question Q opens a rich Pandora box of challenging technical issues like: the role played

by i) the dimensionality of the agents state space, ii) the range and the nature of mutual

interactions, iii) the swarm heterogeneity, iv) the ubiquitous presence of noise in the agents

dynamics, and still many others. The plurality of issues displayed in this short and surely

non exhaustive list shows that universal answers to this key question cannot be expected.

This leads very naturally to the strong temptation of focusing on specific case studies and

to then proceed directly via computer simulation. Clearly, numerical simulations offer the

possibility to virtually model any relevant situations, whereas imposing oneself the discipline

of getting analytical descriptions creates strong limitations, which is often apprehended as a

crippling drawback. Nevertheless and at the expense of reducing the modeling freedom, we

opt to gain deeper scientific insights of swarm dynamics, that only come out when analytical

approaches are consented. Adopting this methodological constraint for the modeling, we felt

very soon the need to distinguish between homogeneous and heterogeneous swarms, being

naturally aware that the later describe the generic situation. As always when highly complex

system are to be discussed via an analytical approach, one has to get rid of refinements and

simplify, idealize, stylize to ultimately come out with minimalist models. This lead us to start

by considering homogeneous situations, therefore giving in to fully generic situations. As large

homogeneous swarms of agents share some (but clearly not all) dynamic features with gas

of interacting particles, we realize that analytical tools and concepts developed for statistical

physics (and in particular the concept of mean-field dynamics) are very powerful - this is

exemplified at several occasions in this work. Nevertheless, one has to be cautious. By essence,
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such statistical physics approaches inherently possess strong modeling limitations. Indeed,

one should be aware that gas particles do not have autonomous decision capability, a feature

that basically characterizes agents. Proceeding to higher complex issues, we then focus of

heterogeneous swarms with relatively limited populations, a topic which, to the best of our

knowledge, remains far less visited. Here again, our goal to propose analytical models lead us

to introduce a new taxonomy step for slightly heterogeneous swarms. We separate dynamics

subject to hard control dynamics where leaders drive the dynamics, and dynamics with soft

control where singular infiltrated (shills) agents influence the whole population (shills are not

perceived by their fellows as being singular). Among potential frameworks suitable for het-

erogeneous swarms, simplicity lead us to explore the possibilities to use recent mathematical

results, obtained for rank-based Brownian motions and from feedback particle filtering. All

swarms models studied so far share the characteristic that agents mutually interact directly.

However, in numerous situations, agents interact stigmergically, that is to stay, they interact

indirectly via their individual influences on their common environment. This is the topic

approached in our last chapter where, again, the possibility to simultaneously perform the

analytical, the simulation and the actual implementation approaches is illustrated using a

small swarm of robotic boats.

A steadily growing demand to build partly (or fully) decentralized systems able to autonomously

perform predefined complex tasks in changing environment stimulates a booming activity in

swarm robotics research. To gain maturity and applicability in this area, it is more and more

essential to minimize the relevant inter-agents information flows needed to reach collective

goals and to maximize the resilience under randomness.

To our appreciation, the soft control approach and its fascinating connections with biologi-

cal/ethological models is promised to a bright future. While, the idea that one or a group of

controllable infiltrated agents can influence a whole society is a classical feature in politics,

sociology and ethology, it still remains under-explored in the engineering of multi-agents sys-

tems. This new approach connecting living and engineering worlds brings together hard and

soft sciences is an entirely new paradigm. Intertwining the influence of robots and animals is

a domain that remains widely open.
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A Chapter 2 - Multi-agent tracking tool

To determine the states of every single agent in our experiments, we developed a multi-agent

tracking tool based on computer vision techniques and the Kalman filter . This task was

particularly challenging due to the very inhomogeneous lighting conditions in the acquired

videos (mainly because of the central light source). This acquisition setup is composed of an

overhead digital camera equipped with a wide angle lens (Canon EF-S 10-22mm f/3.5-4.5 USM,

mounted on a Canon EOS 7D body) . Our multi-agent tracking tool has been developed in

C++ using the GNU compiler collection (GCC 4.6.3) and standard computer vision algorithms

included in the open source computer vision library (OpenCV, v. 2.3.1-7, http://opencv.org/).

The employed technique follows three steps:

1. The image foreground is extracted for further processing using a precomputed mean

background.

2. The Gaussian scale-space representation of the extracted foreground IF (x, y) containing

the agents was convolved with a Gaussian kernel, as L(x, y,σ) = G(x, y,σ)∗ IF (x, y),

where, in a two-dimensional space, the Gaussian function is given by

G(x, y ;σ) = 1

2πσ2 e−(x2+y2)/2σ2
(A.1)

and σ is the standard deviation. The outcome of this convolution at a specific scale

is strongly dependent on the relationship between the sizes of the blob structures in

the image domain. Since our background is characterized by high pixel values and the

blobs dimensions are known, every agent can be characterized by a local extrema of the

resulting Gaussian scale-space representation L(x, y,σ).

3. Assuming that the initial frame does not present any false positives, every single detected

blob in the initial frame represents an agent (see Figure 2.7, left). The detected spatial

locations of the agents are used as inputs for the Kalman filter Kalman (1960), where
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the initial speeds of the agents are assumed to be zero. The estimates of the system

states are based on the initial conditions and the sequence of the detected blobs along

the experiments. Since the radius of the cylindrical robots are known, as well as their

directions and linear speeds, a new measurement is easily casted as a good candidate

input for the Kalman filter or as a new input for the designed regressive filter.

In this work, the agents are assumed to follow non-uniform translational motions, with a

constant acceleration between consecutive frames. The uncertainties associated with the

measurements of the positions induced by different lighting conditions are treated as white

noise. The states xi
k of the i-th agent at time k as well as the measurement zi

k are described by

linear SDE in the image domain:

xi
k =Φxi

k−1 +wk−1

zi
k = H xi

k + vk

(A.2)

where xi
k ∈ℜ4, zi

k ∈ℜ2.

wk−1 and vk are WGN sources, respectively representing the process and measurement noises.

They are assumed to be mutually statistically independent, and to be drawn from zero-mean

multivariate Gaussian distributions with covariances Q and R. The covariances’ matrices can

be described as a function of the experimental parameters, such as the lighting variability

across the experiments, the number of agents, etc. However, in our experiments, they were

assumed to be constant. The evolution of the current state vector xi
k over time is described by

the transition matrixΦ derived from the non-uniform translational motion equations

Φ=


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , (A.3)

where ∆t is equal to 0.1 s, as the videos were acquired at a constant frequency equal to 10 Hz,

the time elapsed between consecutive frames was assumed to be constant.

H is a 2×4 transformation matrix that related the predicted state vectors xi
k into the measure-

ment domain:

H =
[

1 0 0 0

0 1 0 0

]
. (A.4)

Remark: The videos of all the experiments can be found online, at http://www.youtube.com/

channel/UCCgwiDNHoyG9RJ2_pdyewmg.
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B Chapter 4 - Details of Calculations

For the readers ease we introduce notations and collect formulas useful for the computation

of the conditional probability density.

B.0.1 Collection of useful formulas

sinh(x + y) = sinh(x)cosh(y)+cosh(x)sinh(y),

cosh(x + y) = cosh(x)cosh(y)+ sinh(x)sinh(y).

∫
R

e−ax2−2bx−c d x =
√
π

a
e

b2−ac
a , a > 0

∫
R

cosh[xα]e−
(x−µ)2

γ d x =p
πγcosh[µα]e

1
4γα

2
(B.1)

∫
R

x cosh[xα]e−
(x−µ)2

γ d x =p
πγ

[αγ
2

sinh(µα)+µcosh(µα)
]

e
1
4γα

2
(B.2)

∫
R

x sinh[xα]e−
(x−µ)2

γ d x =p
πγ

[αγ
2

cosh(µα)+µsinh(µα)
]

e
1
4γα

2
(B.3)
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Appendix B. Chapter 4 - Details of Calculations

From sections 9.24 and 9.25 of Gradshteyn and Ryzhik (1980), we extract:

D−B (x) = e−
x2

4

Γ(B)

∫
R+

e−x ζ− ζ2

2 ζB−1dζ, (R(B) > 0) (see Gradshteyn and Ryzhik (1980), 9.241/2)

(B.4)


YB (x) := 1

2 [D−B (x)+D−B (−x)] =
√

2
π

e− x2
4

Γ(B)

∫
R+ cosh(x ζ)e−

ζ2

2 ζB−1 dζ,

d 2

d x2 {YB (x)} =
[

x2

4 + (
B − 1

2

)]
YB (x), (B ≥ 0), (see Gradshteyn and Ryzhik (1980), 9.255/1)

(B.5)

B.0.2 Quadratures

Let us define the couple of quadratures:

Ji (m, s,B) =
∫
R

xi YB (x)e−
(x−m)2

2s d x, i = 0,1. (B.6)

0th-order moment - J0(m,B)

Using the integral representation given in Eq.(B.5), we can write:

J0(m, s,B) = ∫
R

{
YB (x)e−

(x−m)2

2s

}
d x

=
√

2
π

1
Γ(B)

∫
R+ ζ[B−1]e−

ζ2

2

{∫
R cosh(ζx)e−

(x−m)2

2s − x2

4 d x
}

dζ

J0(m, s,B) =
√

2
π

e
− m2

2(2+s)

Γ(B)

∫
R+ ζ[B−1]e−

ζ2

2

{∫
R cosh(ζx)e−

(2+s)
4s

(
x− 2m

2+s

)2

d x
}

dζ

Now we use Eq.(B.1) with γ= 4s/(2+ s) and µ= 2m/(2+ s) to get

J0(m, s,B) = 2

√
2

π

√
πs

(2+ s)

e−
m2

2(2+s)

Γ(B)

∫
R+
ζ[B−1]e−

ζ2

2

[
2−s
2+s

]
cosh

[
2mζ

2+ s

]
dζ
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Let us introduce the renormalization η := ζ
√

2−s
2+s , which implies

J0(m, s,B) =
√

2

π
2

√
πs

2+ s

e−
m2

2(2+s)

Γ(B)

[√
2+ s

2− s

]B

e
+ m2

(4−s2) e
− m2

(4−s2)︸ ︷︷ ︸
=1

∫
R+
η[B−1] cosh

[
2mηp
4− s2

]
e−

η2

2 dη.

(B.7)

Finally, using the definition Eq.(B.5), we end up with:

J0(m, s,B) = 2

√
πs

2+ s

[√
2+ s

2− s

]B

e
m2 s

2(4−s2) YB

(
2mp
4− s2

)
. (B.8)

First order moment - J1(m, s,B)

From the definitions Eqs.(B.4) and (B.6), we can write:

J1(m, s,B) :=
∫
R

{
x YB (x)e−

(x−m)2

2s

}
d x

From the previous equation and the definition of J0(m, s,B) given in Eq.(B.6), we can write:

d
dm J0(m, s,B) = ∫

R

{[
(x−m)

s

]
YB (x)e−

(x−m)2

2s

}
d x = 1

s J1(m, s,B)− m
s J0(m, s,B).

This is equivalent to the relation:

J1(m, s,B) = mJ0(m, s,B)+ s

[
d

dm
J0(m, s,B)

]
. (B.9)

Using Eqs.(B.8) and (B.9), the conditioned expectation reads:

E(x|Zt ) = J1(m.b,B)
J0(m,s,B)

∣∣∣
t
= m + s

[
d

dm

(
log

{
J0(m, s,B)

})]∣∣∣
t
= 4

4−s2 m(z)+ 2sp
4−s2

fB

(
2m(z)p

4−s2

)
(B.10)
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