
Distributed Learning for the Decentralized Control
of Articulated Mobile Robots

Guillaume Sartoretti1, Yunfei Shi2, William Paivine1, Matthew Travers1, and Howie Choset1

Abstract— Decentralized control architectures, such as those
conventionally defined by central pattern generators, indepen-
dently coordinate spatially distributed portions of articulated
bodies to achieve system-level objectives. State of the art
distributed algorithms for reinforcement learning employ a
different but conceptually related idea; independent agents
simultaneously coordinating their own behaviors in parallel
environments while asynchronously updating the policy of a
system- or, rather, meta-level agent. This work, to the best of the
authors’ knowledge, is the first to explicitly explore the potential
relationship between the underlying concepts in homogeneous
decentralized control for articulated locomotion and distributed
learning. We present an approach that leverages the structure
of the asynchronous advantage actor-critic (A3C) algorithm
to learn decentralized control policies on a single platform.
Our primary contribution shows an individual agent in the
A3C algorithm can be defined by an independently controlled
portion of the robot’s body, thus enabling distributed learning
on a single platform for efficient hardware implementation.
We show how the system is trained offline using hardware
experiments implementing a state-of-the-art controller. Our
experimental results show that the trained agent outperforms
the compliant control baseline by more than 40% in terms
of steady progression through a series of randomized, highly
cluttered evaluation environments.

I. INTRODUCTION

Due to their high degrees of freedom, articulated mobile
robots such as snake robots excel at locomoting through a
large variety of environments by leveraging their ability to
conform to the shape of surrounding terrain [1]. For such
robots, recent results have shown that a decentralized control
architecture can improve locomotion through unstructured
and cluttered environments [2], [3]. Decentralized control
is achieved by partitioning the robots’ body into spatially
distributed portions, which can then be coordinated by a
set of coupled central pattern generators [4], [5]. In deep
Reinforcement Learning (RL), new state-of-the-art methods
are based on a similar idea and distribute the learning task
to several agents which asynchronously update a common,
global policy. In this paper, we present a learning approach
that leverages the general structure of the state-of-the-art
asynchronous distributed learning algorithms [6] as a natural
means to learn decentralized control policies for a single
platform. In particular, we focus on the A3C algorithm
among all asynchronous distributed learning algorithms [6]

1G. Sartoretti, W. Paivine, M. Travers, and H. Choset are with the
Robotics Institute at Carnegie Mellon University, Pittsburgh, PA 15213,
USA. {gsartore,wjp,mtravers}@andrew.cmu.edu,
choset@cs.cmu.edu

2Y. Shi is with the Department of Electrical Engineering
at The Hong Kong Polytechnic University, Hong Kong.
yunfei.shi@connect.polyu.hk

Fig. 1. Analogy between the A3C meta-agent containing multiple workers
(top), and a snake robot divided into independent control windows (bottom).

because it allows us to learn a stochastic policy (rather than
a deterministic one such as a Q-table), which is usually more
robust to the many sources of noise and uncertainty that are
integral to any hardware implementation [7]. Our primary
contribution shows a low-level worker in the A3C algorithm
can be defined as one of the independently controlled por-
tions of the robot’s body (Figure 1).

Existing learning-based approaches often consider loco-
motive tasks at the robot-level [8], [9], [10]. These ap-
proaches usually train an agent to select actions that will
simultaneously affect all the degrees of freedom of the robot,
and which is most likely sampled from a large-dimensional
action space. Therefore, these approaches usually require
large amount of experiences to converge to good/near-
optimal policies. Recent advances in the field of deep re-
inforcement learning (RL) have highlighted the benefits of
relying on multiple independent agents to learn a common,
optimal policy in a distributed–and thus more time-efficient–
manner. Some works have focused on learning homogeneous
decentralized controllers for locomotion [11], [12], but have
only considered centralized learning approaches; others have
focused on learning heterogeneous controllers in a distributed
manner [13], [14]. In either case, however, such learning
approaches did not take advantage of running multiple agents
to speed up learning. By exploring the fundamental link
between distributed learning approaches and decentralized
control architectures, our approach is able to quickly learn
near-optimal decentralized policies on a single platform, for
an efficient hardware implementation.

The paper is outlined as follows: In Section II, we sum-
marize the general shape-based controller for locomotion,
whose feedback controller we seek to replace by a trained
agent. Section III outlines the reinforcement problem struc-
ture, as well as the agent structure used in this work. We

describe the training procedure of our agent in Section IV.
We then validate the learned policy experimentally on a
snake robot, and discuss the results in Section V. Concluding
remarks and future works are finally presented in Section VI.

II. BACKGROUND - DECENTRALIZED SHAPE-BASED
CONTROL FOR LOCOMOTION

In this section, we briefly summarize some results
from serpenoid locomotion, as well as their use for low-
dimensional shape-based compliant control of sequential
mechanisms. Additionally, we overview recent results that
highlight the benefits of decentralized control of articulated
robots during locomotion. In this paper, the fact that the con-
sidered decentralized control mechanism is common across
the independent parts of the robot is leveraged to teach agents
a common policy in a distributed, time-efficient manner.

A. Serpenoid curves

For an N-jointed snake-like robot, locomotive gaits can be
parameterized by two sine waves propagating through the
two planes (lateral and dorsal) of the snake [15], [1], [2].
One wave controls joints that rotate in the dorsal plane of
the snake, while the other wave controls the lateral joints:{

θlati (t) = θlat0 +Alat sin(ωlatS slati − ωlatT t)

θdori (t) = θdor0 +Ador sin(ωdorS sdori − ωdorT t+ φ),
(1)

where θlati and θdori are the commanded joint angles on
the lateral and the dorsal plane, θlat0 and θdor0 the angular
offset, Alat and Ador the amplitude of the curvatures, φ the
phase shift between the two planes sine waves. ωlatT and ωdorT

are the temporal frequencies, while ωlatS and ωdorS describe
the spatial frequencies of the waves, which determines the
number of waves on the snake robot’s body. slati ∈ {0, 2 ·
ls, . . . , N · ls} and sdori ∈ {ls, 3 · ls, . . . , (N − 1) · ls} are
the distances from the head of the module i, where ls is the
length of one module.

These parameters are used to define different open-loop
joint trajectories for locomotion, i.e., gaits [16]. In this work,
we consider the planar slithering gait, for which Ador =
θdor0 = 0 in Eq.(1).

B. Shape-based Compliant Control

Shape-based control makes use of shape functions, as
a method to reduce the dimensionality of high-degree-of-
freedom systems [3]. A shape function h : Σ → RN
determines θ(t) as a function of a small number of control
parameters. Those parameters lie in the shape space Σ,
which is usually of a lower dimension than RN . In our
case, we consider the case when the serpenoid curve Eq.(1)’s
amplitude and spatial frequency can be dynamically set. The
shape function h(A,ωS) = θ(t) of our system is simply
the serpenoid curve Eq.(1), with the two control parameters
being the amplitude and spatial frequency, while the other
parameters are fixed:

h : Σ = R2 7→ RN

hi(A(t), ωS(t)) = θ0 +A(t) sin (ωS(t) si − ωT t) .
(2)

In the state-of-the-art compliant controller for locomo-
tion [3], A(t) and ωS(t) (now time-dependent) are deter-
mined by the output of an admittance controller [17]. This
controller allows the robot to adapt these two serpenoid
parameters, with respect to a set of external torques µext(t) ∈
RN , that are measured at each joint along the snake’s
body. This controller enables the robot to comply with its
surroundings, by adapting its shape to external forces. The
admittance controller for β =

(
A(t), ωS(t)

)T
reads:

M β̈(t) +B β̇(t) +K (β(t)− β0) = F (t), (3)

where M,B,K ∈ R2×2 respectively represent the effective
mass, damping and spring constant matrices of the system;
F (t) is the external torques µext(t) transformed from the
joint space into the shape space (detailed below). The
considered admittance controller Eq.(3) enables the desired
control parameters β to respond to an external forcing F (t)
with second-order dynamics, acting as a forced spring-mass-
damper system. In the absence of external forces, the control
parameters will converge back to their nominal values β0 =(
A0, ωS,0

)T
. In this (centralized) controller, where all joints

share the same control parameters A(t) and ωS(t), the joints’
angles θi(t) are then computed at each time t from Eq.(1).

The shape function Eq.(2) is used to map the external
torques measured along the snake’s body, by the use of the
associated Jacobian matrix J(h) ∈ R2×N :

J(h) =

∂h1(A,ωS)
∂A · · · ∂hN (A,ωS)

∂A

∂h1(A,ωS)
∂ωS

· · · ∂hN (A,ωS)
∂ωS

 (4)

External torques are mapped from the joint space to the
shape space, via:

F (t) = J(h)|(A(t),ωS(t)) · µext(t), (5)
which is used to update the two-dimensional shape-based
compliant controller Eq.(3).

In this paper, we seek to replace the admittance controller
Eq.(3), which iteratively adapts the shape parameters based
on external readings, by a trained agent. In order to simplify
the agent’s policy and learning process, we leverage the di-
mensionality reduction offered by the use of shape functions
to keep the agent’s state space low-dimensional. That is, we
train our agent to reason about and make action in the shape
space of the considered robot.

C. Decentralized Control

Decentralized control extends previous works on shape-
based locomotion [2]. It uses activation windows, positioned
along the backbone curve of the snake, in order to create
independent groups of neighboring joints, in which torques
are sensed and motion parameters are adapted. That is, only
the joints covered by the same window are coupled, isolating
them from other joints in the snake. This framework allows
each separate portion of the snake to react independently
against local forcing. Any impact occurring locally in a
specific section of the body activates a reacting reflex in the
individual section only, resembling biological reflexes where
muscle contractions are produced by local feedback [18].

Independent motion parameters for each windows are
defined by using sigmoid functions:

β(s, t) =

W∑
j=1

βs,j(t)

[
1

1 + em(sj,s−s)
+

1

1 + em(s−sj,e)

]
, (6)

where m controls the steepness of the windows, W is the
number of windows, and βs,j(t) the values of the serpenoid
parameters in window j at position s along the backbone
of the snake. Window j spans the backbone of the robot
over [sj,s; sj,e] ⊂ [0; 1]. In this work, windows are anchored
between node points of the serpenoid curve Eq. (1). Note
that the snake’s spatial frequency (determining the number
of sine periods along the snake’s body) influences the number
and positions of amplitude windows along the backbone [2].

Recent results have shown that some form of control
decentralization is advantageous for a blind snake that has to
move through an unknown terrain, so that different portions
of the snake can react independently [2]. Moreover, these
results have considered the case where windows are not fixed
to the snake’s backbone, but are moved along the snake at
the same velocity as the serpenoid wave, in order to pass
information back down the body. In this paper, we consider
the state-of-the-art decentralized control of the snake with
sliding windows, while shape parameters in each window
are updated by a trained agent.

III. POLICY REPRESENTATION

In this section, we detail the structure of the deep learning
meta-agent, as well as that of the lower-level worker agents.
Specifically, we look to the A3C algorithm to distributively
learn a common stochastic policy [6], which will then be
followed by the group of joints in each independent window.
In a sense, the A3C meta-agent can represent the whole
robot, while the low-level worker agents act as the windows,
each selecting local adaptation in the shape parameters and
learning from local interactions with the environment, as
depicted in Figure 1. Only the global reward, measuring the
forward progression of the robot based on the set of actions
selected by all the workers, is shared among all workers.

A. State Space

The state s is a 7-tuple of shape-based quantities. It con-
tains the current shape parameters β(s, t) of a window on the
snake (i.e., amplitude and spatial frequency), as well as their
nominal values β0. Additionally, the state features the current
external torque readings µext(s, t) for the same window, after
projection into the shape space by the Jacobian of the system.
Finally, the state needs to feature some information about the
cyclic nature of the serpenoid gait. To this end, we include
the modular time quantity [0; 1] 3 τ(t) = t mod Ts

Ts
, with

Ts = 2π
ωT

the period of the serpenoid curve Eq.(1). The 7-
dimensional state vector ηj(t) for window j reads:

ηj(t) = 〈τ(t), βj(t)
T , µext(j, t)

T , βT0 〉. (7)

Fig. 2. Policy (Actor) and Value (Critic) network used to approximate
their respective functions. Each deep network is fully connected with two
hidden layers and ReLU’s at the output, except for the output of the actor
layer which uses a softmax function to estimate the stochastic policy.

B. Action Space
The admittance controller Eq.(3) lets the shape parameters

evolve with continuous increments. In this work, we look to
discretizing the possible increments in the shape parameters,
as a means to reduce the dimensionality of the action space.
Specifically, we let an action be a 2-tuple a = 〈aA, aω〉,
with aA ∈ {−∆A, 0,+∆A} and aω ∈ {−∆ω, 0,+∆ω}.
The resulting action space contains 9 discrete actions (3 ×
3), which simultaneously update both shape parameters by
applying the selected increments:

β(j, t+ dt) = βj(t) + aj(t), (8)
with aj(t) the action selected by agent j ∈ 1, ...,W .

C. Actor-Critic Network
We use two deep neural networks with weights ΨA,ΨC

to approximate the stochastic policy function (Actor) and the
value function (Critic). Both Actor and Critic networks are
fully connected with two hidden layers. The output of each
layer of the Actor network passes through a rectifier linear
unit (ReLU), except for the output layer that estimates the
stochastic policy using a Softmax function. We also use a
ReLU at the output of each layer of the Critic network to
introduce some non-linearity. The network structure is shown
in Figure 2.

Six workers, which correspond to the six independent
windows along the backbone of the snake1, are trained
concurrently and optimize their individual weights using
gradient descent. Each worker calculates its own successive
gradients during each episode. At the end of each episode,
each worker updates the global net and collects the new
global weights.

We used an entropy-based loss function introduced in [19]
to update the policy:
fπ(ΨA) = log [π(at | st; ΨA)] (Rt − V (st; ΨA))

+κ ·H (π(st; ΨA)) ,
(9)

The advantage is calculated using (Rt − V (st; ΨA))
where Rt is the estimated discounted reward over time
t. H (π(st; ΨA)) is the entropy factor used to encourage
exploration in training and κ ∈ R helps manage exploration
and exploitation. The value loss function reads:

fv(ΨC) = (Rt − V (st; ΨC))
2
, (10)

The stochastic policy is optimized using policy gradient.
During training, we calculate the gradients of both functions
and optimize the functions using the Adam Optimizer [20].

1As mentioned in Section II-C, the current shape of the snake influences the number and placement of the independent windows along the backbone of the snake. However, for
the implementation of the decentralized controller, we cap the number of windows to 6. This cap has been selected, because the number of windows along the backbone of the
snake has never experimentally exceeded 5. If less than 6 windows are positioned along the snake’s backbone at a given time, the other windows are assumed to be composed
of 0 modules and experience no external torque. Their shape parameters are additionally assumed to be the nominal ones β0.

Fig. 3. Structure of the A3C Meta-Agent, with global weights for the Actor-Critic network. Each internal agent (worker) updates its local weights based
on shared rewards during local interactions with the environment, and regularly pushes its gradients to the global networks. Each worker draws its state
from that of each window on the snake robot. Rewards are calculated in response to a vector of the 6 agents’ actions that is enacted on the robot.

D. Shared Rewards

Different low-level workers have individual input states,
actions and new states corresponding to independent win-
dows. However, we propose that workers learn based on
shared rewards for the combination of their actions. That
is, a shared reward is calculated based on the current pro-
gression of the robot, measured from its initial position at
the beginning of the current episode X0,i:

rt = tanh (λr · ‖X(t)−X0,i‖2) , (11)

with X(t) the current position of the robot in the world
and λr a scaling factor. Note that the reward is normalized by
using the tanh function, in order to avoid unwanted spikes
in rewards, e.g., when the robot suddenly boosts forward due
to dynamics effects.

We expect shared rewards to allow the joint actions of
all agents to be valued simultaneously, in order to better
train them for a collaborative locomotion task. The global
structure of the A3C meta-agent is illustrated in Figure 3.

IV. LEARNING

To effectively learn the policy Ψ using real robot hardware,
the state-action space must ideally be densely sampled in
the region of realistic parameters. However, using randomly
seeded values to initialize Ψ would likely induce the need
for thousands of trials to collect enough data to thoroughly
sample this space, which is generally not feasible when
learning on hardware (as opposed to running thousands of
simulated scenarios). In earlier works, replaying experience
from a database to train the learning agent has proven to
be successful in both stabilizing and improving the learned

policy [21]. We use elements of this idea to train our learning
agent more effectively.

A3C is inherently an on-policy learning algorithm, which
can be used to train an agent by freely allowing it to
sample its state-action space. If A3C is used off-policy, the
gradient updates in the algorithm cannot be theoretically
guaranteed to be correct in general. However, in this work,
we experimentally show that A3C can be used to learn
off-policy from data sampled by a near-optimal policy. We
believe that this can be the case, since sampling the region
of the state-action space close to the near-optimal policy
generally allows for approximate, yet beneficial updates to
the policy. To this end, we propose to train the agent by
replaying past experiences, collected from the state-of-the-
art compliant controller.

In order to build the experience replay database, we
performed 310 trials of the snake robot in a randomized
peg array, in order to record both actions which result in
positive and negative reward values for each state. In the
compliant controller, three 2 × 2 diagonal matrices (i.e., a
total of 6 parameters) M , B, and K, control the mass,
damping, and spring constant of the system. For each trial,
different values for the diagonal terms of M , B, and K are
drawn at random from a uniform distribution over [12 ; 5]. The
reward is calculated at each step using Eq.(11), by relying
on an overhead motion capture system to record the position
of the snake from tracking beads placed along the snake’s
backbone. For each time step, the state and action is recorded
as described in Sections III-A-III-B. Each trial is run for
approximately 15 seconds in length.

Time to Traverse [Cycles/m] (Lower is better)

Average

Average

Learned Policy
Compliance

1 2 3 40

Fig. 4. Experimental results, comparing the performance of both controllers
during the 10 trial runs in terms of serpenoid gait cycles needed to progress
one meter. Lower values are better (i.e., larger forward progression per gait
cycle). The learning-based controller (in black) can be seen to outperform
the state-of-the-art compliant controller [2] by more than 40%.

After collecting the 310 trials of the compliant controller
in randomized peg arrays (e.g., Figure 5), we stored the
data from each trial in a single experience database. We
then assigned a single window to each agent, which was
kept constant across all training runs. During training, each
agent asynchronously selected a random run, and then a
random starting point in the run. The agent then learned from
an episode of 89 action-state-reward steps before randomly
selecting a new episode. Leveraging the symmetric nature of
the serpenoid curve, we chose 89 steps to match the length
of half of a gait cycle (given our choice of dt). That is, this
choice of episode length should provide agents with enough
temporally-correlated experiences to connect episodes in a
smooth and meaningful manner, and thus learn an efficient
global policy. Each of the agents then sampled episodes
until 50, 000 had been drawn. At this point, we stopped the
training process and obtained the learned policy.

The learning parameters used during offline training read:

∆A = 0.005 ∆ω = 0.012 λr = 100

γ = 0.995 αA = αC = 0.0001 κ = 0.01,

with γ the discount factor for the policy update, and
αA, αC the learning rates of the Adam optimization step
for the Actor/Critic networks. The full offline learning code
used in this work is available online https://github.
com/gsartoretti/Deep-SEA-Snake, along with the
database used for offline learning.

V. EXPERIMENTAL VALIDATION

In order to test the validity of our learning approach, we
trained a meta-agent to adapt the shape parameters of a
snake robot in a decentralized manner. We implemented the
decentralized controller of Section II-C on a snake robots and
ran experiments in randomized unstructured environments,
in order to compare the average forward progression of the
robot when the shape parameters are updated by the trained
agent or the compliant controller Eq.(3).

A. Experimental Setup

We implemented two versions of the decentralized con-
troller Section II-C, using 1) the learned policy, and 2) the

compliant controller Eq.(3) to adapt the shape parameters.
These controllers were tested on a snake robot, composed
of sixteen identical series-elastic actuated modules [22]. The
modules were arranged such that two neighboring modules
were torsionally rotated 90 degrees relative to each other. The
deflection between the input and output of a rubber torsional
elastic element is measured using two absolute encoders,
allowing us to read the torque measured at each module’s
rotation axis. Only the 8 planar modules were active, as only
planar gaits were tested. A braided polyester sleeve covered
the snake, reducing the friction with the environment, and
forcing the snake to leverage contacts to locomote. Robot
displacement data was collected with an overhead 4-camera
OptiTrack motion capture system (NaturalPoint Inc., 2011).

B. Experimental Results

To compare the efficacy of both controllers, we calculate
the number of gait cycles needed to traverse one meter and
the variance of this number over 10 runs, as established
in [2]. This metric removes the potential variations due to
running the gaits with differing temporal frequencies, thus
only scoring the controller’s kinematic abilities. Additionally,
the variance of the forward progression over the runs serves
as an indicator of the repeatability of the controller. For each
run, the same peg array was used for both the compliant
controller and the learning-based controller. Additionally, for
each pair of runs, the snake was placed in identical starting
location as to ensure that both controllers were tested with
the same initial configurations.

Both controllers were run with the same temporal fre-
quency and time step size. We used the following empirically
established optimal parameters for the compliant controller,
with time step dt.

M =

[
1.5 0
0 2

]
B =

[
3 0
0 1

]
K =

[
4 0
0 1

]
β0 =

[
π
4

3π

]
ωlatT = 1.8 dt = π

160

Over the 10 trial runs, the learning-based controller
achieves an average of 2.43 [cycles/m] on average, with
a variance of 0.092, compared to the compliant controller,
which achieves 3.41 [cycles/m] on average, with a variance
of 0.42. The results of the compliant controller closely
match previous results presented in [2], [3]; in fact, our
scoring of the compliant controller seems to be slightly
better. The results are compelling in that they show a distinct
increase in the forward progression for the learned policy
over the admittance controller. These results are summarized
in Figure 4. The learned policy outperforms the compliant
controller by a significant amount, while the variance is
decreased, thus implying that the learning-based controller
is also more repeatable. Figure 5 shows how the learning-
based controller adapts the shape parameters in each window
during an example trial, in order to adapt to the local
configuration of pegs by relying on local force sensing. The
videos of the presented experimental results are available
online https://goo.gl/FT6Gwq.

https://github.com/gsartoretti/Deep-SEA-Snake
https://github.com/gsartoretti/Deep-SEA-Snake
https://goo.gl/FT6Gwq

Fig. 5. Example frames sampled from one of the trials, showing the
behavior of the learning-based controller in the peg array. Note how the
amplitude and frequency of the waves in each of the windows of the snake
change to fit the peg array.

VI. CONCLUSION

In this paper, we consider the problem of adapting the
shape of an articulated robot in response to external sensing,
in order to optimize its locomotion through unstructured
terrain. To this end, we cast the problem of adapting the
shape parameters of the robot in response to external torque
feedback as a Markov decision problem (MDP). To solve this
MDP, we propose to use the A3C algorithm, a distributed
learning method whose structure closely matches the decen-
tralized nature of the underlying locomotion controller. We
train an agent offline based on experience gathered from a
state-of-the-art controller, in order to guide the sampling of
the state-action space toward regions of efficient locomotion.
The learned policy is then implemented on a snake robot, and
the performance is shown to outmatch the current state of the
art by more than 40%, on a set of randomized environments.

The proposed approach leverages the decentralized struc-
ture of the underlying robot control mechanism, in order to
learn a common policy in a more time-efficient manner. This
suggests that many articulated robots can be controlled effi-
ciently by controlling some of their independent parts (e.g.,
groups of joints, limbs, etc.) in a distributed manner, while
fundamentally implementing the same control mechanism in
each part. In this context, we propose to leverage the sum of
local experience that can be gathered from each part, and rely
on a distributed learning algorithm such as A3C to quickly
obtain a global policy for the whole robot.

In future works, we will investigate the possibility to
implement the proposed approach to online learning. Ex-
perience can be gathered by all the workers (i.e., one per
independent part of the robot), and stored in an experience
database, that can then be used to regularly improve the
global policy online. Second, we are interested in applying
this approach to other types of robots. In particular, a similar
approach could be used to distributively learn a policy for
a walking robot, by matching low-level A3C workers to the
different limbs of a legged robot.

REFERENCES

[1] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and scripted gaits for modular snake
robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, 2009.

[2] J. Whitman, F. Ruscelli, M. Travers, and H. Choset, “Shape-based
compliant control with variable coordination centralization on a snake
robot,” in CDC 2016, December 2016.

[3] M. Travers, C. Gong, and H. Choset, “Shape-constrained whole-
body adaptivity,” in International Symposium on Safety, Security, and
Rescue Robotics, 2015.

[4] L. Righetti and A. J. Ijspeert, “Pattern generators with sensory feed-
back for the control of quadruped locomotion,” IEEE International
Conference on Robotics and Automation, pp. 819–824, 2008.

[5] A. Crespi and A. J. Ijspeert, “Amphibot ii: An amphibious snake
robot that crawls and swims using a central pattern generator,” in
Proceedings of the 9th international conference on climbing and
walking robots (CLAWAR 2006), no. BIOROB-CONF-2006-001, 2006,
pp. 19–27.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[7] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforce-
ment learning with deep energy-based policies,” arXiv preprint
arXiv:1702.08165, 2017.

[8] X. B. Peng, G. Berseth, and M. V. D. Panne, “Terrain-Adaptive
Locomotion Skills Using Deep Reinforcement Learning,” vol. 35,
no. 4, pp. 1–12, 2016.

[9] R. Yamashina, M. Kuroda, and T. Yabuta, “Caterpillar robot loco-
motion based on Q-Learning using objective/subjective reward,” 2011
IEEE/SICE International Symposium on System Integration, SII 2011,
pp. 1311–1316, 2011.

[10] K. Ito and F. Matsuno, “A Study of Reinforcement Learning for the
Robot with Many,” no. May, pp. 3392–3397, 2002.

[11] E. Haasdijk, A. A. Rusu, and A. Eiben, “Hyperneat for locomotion
control in modular robots,” in International Conference on Evolvable
Systems. Springer, 2010, pp. 169–180.

[12] G. Baldassarre, S. Nolfi, and D. Parisi, “Evolution of collective
behavior in a team of physically linked robots,” Applications of
evolutionary computing, pp. 207–212, 2003.

[13] D. J. Christensen, U. P. Schultz, and K. Stoy, “A distributed and
morphology-independent strategy for adaptive locomotion in self-
reconfigurable modular robots,” Robotics and Autonomous Systems,
vol. 61, no. 9, pp. 1021–1035, 2013.

[14] P. Maes and R. A. Brooks, “Learning to coordinate behaviors.” in
AAAI, vol. 90, 1990, pp. 796–802.

[15] S. Hirose, Biologically Inspired Robots: Serpentile Locomotors and
Manipulators. Oxford University Press, 1993.

[16] D. Rollinson and H. Choset, “Gait-based compliant control for snake
robots,” in IEEE International Conference on Robotics and Automa-
tion. IEEE, 2013, pp. 5138–5143.

[17] C. Ott, R. Mukherjee, and Y. Nakamura, “Unified impedance and
admittance control,” in IEEE International Conference on Robotics
and Automation, 2010, pp. 554–561.

[18] A. Prochazka, D. Gillard, and D. J. Bennett, “Positive force feedback
control of muscles,” Journal of neurophysiology, vol. 77, no. 6, pp.
3226–3236, 1997.

[19] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“Reinforcement learning through asynchronous advantage actor-critic
on a gpu,” 2016.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[21] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, “The
importance of experience replay database composition in
deep reinforcement learning,” Deep Reinforcement, pp. 1–9,
2015. [Online]. Available: https://pdfs.semanticscholar.org/091d/
1712b97c0353b9a79e8563e7f174a8fd5450.pdf{%}5Cnrll.berkeley.
edu/deeprlworkshop/papers/database{ }composition.pdf

[22] D. Rollinson, Y. Bilgen, B. Brown, F. Enner, S. Ford, C. Layton,
J. Rembisz, M. Schwerin, A. Willig, P. Velagapudi, and H. Choset,
“Design and architecture of a series elastic snake robot,” in IEEE
International Conference on Intelligent Robots and Systems, 2014, pp.
4630–4636.

http://arxiv.org/abs/1412.6980
https://pdfs.semanticscholar.org/091d/1712b97c0353b9a79e8563e7f174a8fd5450.pdf{%}5Cnrll.berkeley.edu/deeprlworkshop/papers/database{_}composition.pdf
https://pdfs.semanticscholar.org/091d/1712b97c0353b9a79e8563e7f174a8fd5450.pdf{%}5Cnrll.berkeley.edu/deeprlworkshop/papers/database{_}composition.pdf
https://pdfs.semanticscholar.org/091d/1712b97c0353b9a79e8563e7f174a8fd5450.pdf{%}5Cnrll.berkeley.edu/deeprlworkshop/papers/database{_}composition.pdf

	Introduction
	Background - Decentralized Shape-Based Control for Locomotion
	Serpenoid curves
	Shape-based Compliant Control
	Decentralized Control

	Policy Representation
	State Space
	Action Space
	Actor-Critic Network
	Shared Rewards

	Learning
	Experimental Validation
	Experimental Setup
	Experimental Results

	Conclusion
	References

