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Abstract— Inspired by the locomotor nervous system of
vertebrates, central pattern generator (CPG) models can be
used to design gaits for articulated robots, such as crawling,
swimming or legged robots. Incorporating sensory feedback
for gait adaptation in these models can improve the locomotive
performance of such robots in challenging terrain. However,
most CPG models to date have been developed exclusively
for open-loop gait generation for traversing level terrain. In
this paper, we present a novel approach for incorporating
inertial feedback into the CPG framework for the control of
body posture during legged locomotion on steep, unstructured
terrain. That is, we adapt the limit cycle of each leg of the
robot with time to simultaneously produce locomotion and body
posture control. We experimentally validate our approach on
a hexapod robot, locomoting in a variety of steep, challenging
terrains (grass, rocky slide, stairs). We show how our approach
can be used to level the robot’s body, allowing it to locomote
at a relatively constant speed, even as terrain steepness and
complexity prevents the use of an open-loop control strategy.

I. INTRODUCTION

In this work, we focus on the problem of controlling the
body posture of legged robots, extending their locomotive
ability to steep, unstructured terrain (shown in Fig. 1). Pre-
vious works have looked at legged locomotion on complex
terrain, but have generally focused on more engineered so-
lutions, such as precise foothold planning [1] when a terrain
map is available, or reactive posture correction separately
from locomotion [2], [3], [4]. In this work, we present a
new method to directly incorporate inertial feedback into the
bio-inspired central pattern generator (CPG) framework, in
order to implement reactive posture correction directly as
part of the locomotion.

Nature provides an effective solution to the complex
problem of coordinated control in legged locomotion. Legged
animals of varying sophistication subconsciously navigate
extreme terrain with ease. In animals, CPGs are neural
networks located in the spinal cord that produce signals to
drive the rhythmic motions required for locomotion [5], [6].
Although CPGs do not rely on sensory inputs to produce
locomotive outputs, these outputs are adapted based on
proprioceptively-sensed environmental information [7], [8].
That is, sensory input is used to adapt the gait produced by
the CPG in real time by inhibiting or extenuating certain gait
characteristics.
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Fig. 1: Hexapod robot climbing down a rocky slope. The mounted
camera is only used for point-of-view video recording.

In the context of robotics, CPGs are modeled as a system
of coupled oscillators that controls joint motion. Such models
have been widely used as a tool for gait generation and
decentralized control of legged robots. For legged robots
on level ground, CPGs have been used for open-loop gait
generation to great success [9]. A few works have investi-
gated closed-loop CPG implementations based on sensory
feedback [10], [11]. However, CPG-based modelling gener-
ally still lacks generic methodologies for integrating sensory
feedback to adapt the locomotion [11], [12].

In this paper, we present a method for adapting CPG
parameters based on inertial feedback to obtain stable lo-
comotion in unstructured terrain. Specifically, based on the
robot’s body position, orientation and height, our approach
adapts the limit cycles of the coupled oscillators in the joint
space to ensure stable locomotion. We demonstrate how, by
levelling its body using inertial feedback as described, a
legged robot’s center of gravity (COG) is positioned more
centrally within its support polygon, allowing a legged robot
to traverse unstructured environments and climb up or down
steep terrain without any a priori knowledge or other types
of sensory feedback, such as vision. Additionally, in cases
where a robot is equipped with a vision system, levelled-
body locomotion can help gather clear visual feedback for
autonomous operations or for user controlling the robot via
remote camera feed. By relying on the CPG framework, our
approach can be easily adapted to different legged robots and
with different gaits through simple parameter changes.



This paper is structured as follows: Section II provides
background on the CPG framework and describes our CPG
model. Section III describes how the CPG’s limit cycle can
be adapted to achieve stability based on inertial feedback.
In Section IV, we detail our specific implementation and
experimental setup, and validate our model experimentally
on a hexapod robot. Section V discusses the experimental
results, while Section VI summarizes our work and offers
suggestions for future work.

II. CPG MODELING

CPGs are usually expressed as a set of coupled oscillators,
i.e., a set of coupled ordinary differential equations. In the
joint space of a n-legged robot, let x(t) = [x1(t), ..., xn(t)]
represent the angles of the shoulder joints of each leg in the
axial plane, and y(t) = [y1(t), ..., yn(t)] represent the angle
of the shoulder joints in the sagittal plane.

In this work, we model the nominal CPG to which inertial
feedback is added on [11], where the base CPG model reads:


ẋi(t) = −ω · yi(t) + γ

(
µ2 −

√
xi(t)2 + yi(t)2

)
· xi(t)

ẏi(t) = +ω · xi(t) + γ
(
µ2 −

√
xi(t)2 + yi(t)2

)
· yi(t)

+(λ
∑
j Kijyj(t)),

(1)
where µ defines the radius of the circular limit cycle, ω
defines the speed of the gait cycle, γ defines the forcing
to the limit cycle, λ defines the coupling strength, and K,
the coupling matrix [11], defines the gait by setting the phase
relationship between legs.

In CPGs, the limit cycle defines a closed path in the
joint space, which ultimately influences the trajectory of the
robots’ end-effectors (feet/arms). In this work, we modify
Eq.(1) to consider a limit cycle defined by the superel-
lipse [13], [14], which reads:

H(x, y) =
∣∣∣x
a

∣∣∣d +
∣∣∣y
b

∣∣∣d , (2)

where a and b define the major and minor axes of the limit
ellipse (i.e., the maximum magnitude attained by x and y,
respectively) and d defines the curvature. Specifically, d = 2
provides an elliptic limit cycle, whereas d > 2 provides
a more rectangular limit cycle with sharper corners as d
increases (an example comparing d = 2 and d = 4 is
shown in Fig. 2). We believe that such a rectangular-looking
limit cycle seems better suited for walking in unstructured
environment. By inducing a clean, vertical trajectory of the
end effector when stepping on/off the ground, this cycle
limits the chances of the robot’s feet getting caught by
rocks/debris on the ground. In general, this family of limit
cycles allows for independent control of step length, height,
and shape through the selection of a, b, and d, respectively.

We adapt the CPG model shown in Eq.(1) to employ
a general limit cycle H(x, y) by relying on our previous
work [15], and obtain:

Fig. 2: CPG convergence to differently-shaped limit cycles (depend-
ing on d) from different initial positions (x0, y0) (different colors).
The limit cycle reads Eq.(2) with a = 1, b = 2, γ = 2, and ω = 5.


ẋi(t) = −ω · ∂Hyi + γ

(
1−H(xi(t), yi(t))

)
· ∂Hxi

ẏi(t) = +ω · ∂Hxi
+ γ
(

1−H(xi(t), yi(t))
)
· ∂Hyi

+(λ
∑
j Kijyj(t)),

(3)
with ∂Hζ = ∂H

∂ζ (xi(t), yi(t)).
In order to extend the CPG in Eq.(3) by incorporating

inertial feedback for body control, we consider the offsets
cx and cy as the center of the limit cycle by defining:

Hc(x, y) =

∣∣∣∣x− cxa

∣∣∣∣n +

∣∣∣∣y − cyb

∣∣∣∣n . (4)

By using Hc(x, y) with leg-specific offsets cx,i and cy,i,
we achieve the following modified CPG equations:


ẋi(t) = −ω · ∂Hyi + γ

(
1−Hci(xi(t), yi(t))

)
· ∂Hxi

ẏi(t) = +ω · ∂Hxi
+ γ
(

1−Hci(xi(t), yi(t))
)
· ∂Hyi

+(λ
∑
j Kij(yj(t)− cy,j),

(5)
with ∂Hζ =

∂Hci

∂ζ (xi(t), yi(t)).
In this work, the offsets cx,i, cy,i introduced in Eq.(5) will

be used to achieve body control during the locomotion of the
robot while preserving the step heights and forward speed.
More specifically, the cy,i’s are adapted with time to achieve
body posture control by updating the vertical angle of the
robot’s shoulders, thus causing each leg to operate in a lower
or higher range relative to the body. The cx,i’s are only set
initially to adjust the spread of the legs by selecting the angle
of the robot’s shoulders in the axial plane. In either case, note
that the limit cycles are only translated in the joint space of
the associated leg, meaning that the limit cycles’ shape and
scale are left unchanged.



III. INERTIAL POSTURE CONTROL

In this section, we present our approach to body posture
control, which adapts the limit cycle of each leg with time
based on inertial feedback. We first present our method for
computing the end-effector error, such that when corrected
the body will have achieved a desired orientation. We then
detail our approach to adapting the vertical CPG offsets from
the end-effector error.

A. Computing CPG Offsets Using end-effector Error

Let P ∈ SO(3) be the orientation of the body in the
world frame, which can be obtained from inertial sensors
on the robot. Let R ∈ SO(3), the world-frame rotation
which positions the robot’s body to a desired target roll-
pitch orientation given by T ∈ SO(3) in its body frame (in
order to preserve its current heading).

Without limiting the generality of this derivation, we
assume that the robot’s heading is collinear with the y-
axis of its body frame. We first need to align T with the
current heading of the robot. To this end, we first look for
the normalized, planar heading vector of the robot in the
world’s XY plane, which reads:

zy =

(
−i 1 0

)
·
(
P ·
(
0 1 0

)T)∥∥∥(−i 1 0
)
·
(
P ·
(
0 1 0

)T)∥∥∥
2

= ei θz (6)

From the yaw angle θz of zy in the world frame, we can
finally express the SO(3) transformation, R, which brings
the robot’s body from its current pose, P , to its target pose
in the world frame, as

R =

target pose in world frame︷ ︸︸ ︷
Rz(θz) · T ·P−1 = Rz(θz) · T · PT . (7)

with Rz(θz) =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 ∈ SO(3). In

particular, we are interested in keeping the robot’s body level,
i.e., T = I3 ∈ SO(3) (the identity matrix), we finally simply
obtain R = Rz(θz) · PT .

Relying on the robot’s forward kinematics, we obtain the
end-effector positions r ∈ R3×n in the robot’s body frame:

r =

x1 · · · xn
y1 · · · yn
z1 · · · zn

 . (8)

The corrected end-effector positions, r̃, are then obtained
by first translating the end-effector positions into the world
frame, before applying the rotation R to achieve the desired
body orientation:

r̃ = R · (P · r). (9)

The z-components of r̃ are then adjusted to ensure that
the body height, defined as the vertical distance between the
geometric center of the body and the estimated ground plane,
remains constant. We define e to be the error in end-effector
position of each leg in body frame, which reads

Fig. 3: Hexapod leg joint configuration.

e = PT · (r̃ − r). (10)

Using the well-known kinematics equation,

ṙ = Jθ̇, (11)

expanded as follows,ẋ1 · · · ẋn
ẏ1 · · · ẏn
ż1 · · · żn

 =


∂x
∂θ1

· · · ∂x
∂θm

∂y
∂θ1

· · · ∂y
∂θm

∂z
∂θ1

· · · ∂z
∂θm

 ·


˙θ1,1 · · · ˙θ1,n
...

...

˙θm,1 · · · ˙θm,n

 ,
(12)

where ṙ is the end-effector velocity in cartesian space, J
the linear Jacobian, θ̇ the angular speed of the joints, n the
number of legs present on the robot, and m the number of
joints composing each leg. Approximating Eq.(12) for small
∆t, we can estimate the error in joint angles ∆θe ∈ Rm×n:

e

∆t
≈ J · ∆θe

∆t
⇐⇒ ∆θe ≈ J†e (13)

where e is the error in end-effector position given by Eq.(10),
and J† is the Moore-Penrose pseudoinverse.

Note that, in Eq.(10), the end-effector positions are rotated
in the body frame. Therefore, the body’s position in the world
frame will be translated, as the legs are re-arranged. This
correction is truly beneficial: on steep terrain, as the body
is levelled, it will also be translated closer to the slope, and
naturally be re-positioned over the support polygon created
by the legs. This posture control mechanism, crucial when
climbing steep terrain, helps stabilize the robot’s locomotion
(as demonstrated in Section V).

B. Adaptation of CPG Parameters for Body Posture Control

Eq.(13) allows us to translate the current end-effector error
e(t) into instantaneous joint offsets ∆θe(t). In particular,
the first two rows of ∆θe(t) are of interest, as they directly
influence cx and cy respectively.



Since the proposed body control aims at keeping the
robot’s heading constant in the world frame, it follows that
the first row of ∆θe(t) is composed of zeros (no change in
cx). That is, the body rotation R in Eq.(7) is in the null-
space of the most proximal joints of each leg. However, by
integrating the second component of ∆θe(t) with time, we
can adapt cy(t) with time from its initial value cy0 :

cy(t) = cy0 +

∫ t

0

∆θe(t) dt. (14)

We additionally incorporate ∆θe2,i(t) (the second row of
∆θe from Eq.(13)), the instantaneous vertical increment in
cy,i, into the CPG Eq.(5), which finally reads:
ẋi(t) = −ω · ∂Hyi + γ

(
1−Hci(t)(xi(t), yi(t))

)
· ∂Hxi

ẏi(t) = +ω · ∂Hxi + γ
(

1−Hci(t)(xi(t), yi(t))
)
· ∂Hyi

+(λ
∑
j Kij(yj(t)− cy,j) + ∆θe2,i(t).

(15)
with ∂Hζ =

∂Hci(t)

∂ζ (xi(t), yi(t)).

IV. HARDWARE EXPERIMENTS

In this section, we begin by describing the specifications
of the hexapod robot used for our experimental validation.
Then, we detail how we initialize the CPG parameters, and
how we define joint angles for each leg based on the output
of the CPG model. Finally, we present experimental results
that compare open-loop to stabilized locomotion.

A. Robot Specifications

We use a modular hexapod robot as our experimental
platform [16]. Each leg of the hexapod, shown in Fig. 4,
consists of three modular joints: a proximal joint aligned
with the yaw axis, and intermediate and distal joints aligned
with the roll axis. The two most proximal joints act as the
shoulder of the robot.

The robot’s body is a rectangular prism with length,
width, and height dimensions of 27cm, 17cm, and 7cm,
respectively. Legs may extend from the body approximately
44cm horizontally or 32cm vertically.

The robot is blind, meaning that no on-board vision system
is used to close the loop; on-board sensing is provided by
the joint modules themselves, each containing an IMU and
encoders [17].

B. CPG Implementation

Since a hexapod robot is used, an alternating tripod gait is
chosen for its prevalence as a locomotive gait in insects, and
for its static stability [18]; three legs always remain on the
ground, forming a constant, large support polygon. In this
sense, the stability of the robot in unstructured terrain relies
only on the integrity of environment footholds. To implement
this gait within the CPG framework, we use the following
coupling matrix in Eq.(15)

Fig. 4: Hexapod leg numbering convention.

K =


0 −1 −1 1 1 −1
−1 0 1 −1 −1 1
0 1 0 −1 −1 1
1 −1 −1 0 1 −1
1 −1 −1 1 0 −1
−1 1 1 −1 −1 0

 . (16)

Given the selected tripod gait, we define the estimated
ground plane based on the positions of the lowest tripod,
which is given by either r3,(1,4,5) or r3,(2,3,6) in Eq.(8).
This allows us to measure the body height of the robot and
calculate e in Eq.(10).

We initialize constant offsets, cx0
and cy0 on the center of

the CPG limit cycle on a leg-by-leg basis:

cx0
=
[
π
4

π
4 0 0 −π4 −π4

]
cy0 =

[
π
16

π
16

π
16

π
16

π
16

π
16

] . (17)

It should be noted in the proposed approach, cx(t) = cx0

throughout the run. That is, since cx defines the spread of the
legs, adapting it with time would decouple the legs’ phases
and may destabilize the gait.

The remaining CPG parameters are initialized as follows:

γ = 40, λ = 1
4 , a = π

18 , b = π
6 . (18)

Note that since the values of x and y are used directly to
assign joint angles to the proximal and intermediate joints,
a and b are in radians.

Joint angles are set based on the CPG outputs as follows:
θ1,i = xi

θ2,i = max(yi, cy,i)

θ3,i = f(θ1,i, θ2,i)

. (19)

As shown in Eq.(19), the x-outputs from the CPG deter-
mine θ1,i, the angles of the proximal joints. Similarly, the
y-outputs describe θ2,i, the angles of the intermediate joints,



Locomotion on a 12° Rocky Incline
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Fig. 5: Performance of stabilized trials (blue) and open-loop trials
(red); average values are shown in gray with overlaid standard
deviations. Locomotive speed greatly improves when robot body
orientation is controlled.

with one exception: we assume that yi < cy,i defines the set
of legs that are on the ground, and so, we set θ2,i = cy,i to
ensure a constant body height throughout the stance phase
(limit-cycle clipping, as shown in the setting of θ2,i in
Eq.(19)). For implementation purposes, we make sure that
the joint angle correction does not diverge (due to noise in
pose estimation from onboard inertial sensors that may build
up with time), by adding a small, constant dissipation to the
origin:

∆θe = ∆θe − α · θe, (20)

where α ∈ R governs the dissipative term.
The closed-form inverse kinematics function f(θ1,i, θ2,i)

is used to determine θ3,i, the angle of the distal joint. This
ensures that, as the proximal and intermediate joints move,
the end-effector remains at a constant, desired distance from
the body. Given this architecture, we allow the intermediate
joint to control the body orientation, while the distal joint
ensures an ideal, linear end-effector trajectory aligned with
the robot’s heading. In this sense, we distribute the differ-
ent stability/locomotion constraints among the degrees-of-
freedoms of each leg, to ensure that stability and locomotion
do not interact adversarially. This constraint distribution also
reduces the computational complexity, by allowing us to
directly use the outputs of the CPG (x and y) for the two
shoulder joints, while only solving an IK problem for the
distal joint (closed-form solution in our case).

C. Experimental Results

We rely on the average forward locomotive speed of
the robot, as the metric to measure the efficacy of the
proposed stabilization method. Our goal is to keep the robot’s
body level (i.e., T = I3 in Eq.(7)) while locomoting in
different terrain (planar or unstructured) of varying steepness.
Locomotive speed comparison between the stabilized and the
open-loop controllers were conducted on a twelve-degree
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Fig. 6: Comparison of the average forward locomotive speed on
flat terrains of different steepness, under both controllers (Stabilized
vs. Open-Loop). Each data point is averaged from 5 experiments.
Notice how the Open-loop controller’s speed decreases as the
steepness of the terrain increases, whereas the stabilized controller
allows the robot to locomote at a constant speed until its breaking
point, where the frictional force is no longer great enough to
support locomotion (for this terrain, 25 degrees).

slope, featuring randomly-placed and -oriented rocks that
varied in elevation from approximately 5cm to 20cm. A
twelve-degree slope provided a suitable comparison between
methods, as its steepness is appropriate for examining both
stability and locomotive speed (i.e., it is neither so steep that
the open-loop controller will be unable to progress nor so
shallow that body stability is no longer as essential).

An overhead camera was used to capture the robot’s
movement up the slope; feature-based tracking was used
in OpenCV to record the position of the robot with time,
and determine its average forward speed, and thus overall
locomotive performance.

Figs. 5 and 6 present our experimental results. Specifically,
Fig. 5 documents the average speed and orientation error of
the hexapod during each of the twelve trials on a twelve-
degree, rocky incline. Six trials serve as the control group,
lacking CPG-incorporated sensory feedback (red); another
six employ the described inertial stabilization strategy that
aims at levelling the robot’s body (blue). Additionally, the
mean speeds and standard deviations for both the control
and stabilized groups are shown (gray). Fig. 6 compares the
forward velocity of the robot in trials with and without CPG-
incorporated inertial stabilization on planar slopes (no rocks)
of varying constant steepness.

As previously indicated, choosing a limit cycle with d = 4
allows the end-effector to lift vertically (as opposed to an
elliptic cycle which couples forward and vertical movement),
limiting the chances of the robot’s feet getting trapped in
deep crevices within the terrain. Therefore, in unstructured
environments, we employ a limit cycle with d = 4 (Fig. 5);
on planar terrains, we use a limit cycle with d = 2 (Fig. 6).
Videos of the trials, as well as additional videos of stabilized
climbing in outdoor environments (rock slides, stairs, and
sloped grass) are available online at https://goo.gl/
w9JybR. Fig. 7 presents a series of frames showing the
progression of the robot through such environments.

https://goo.gl/w9JybR
https://goo.gl/w9JybR


Fig. 7: Sequence of frames of the hexapod robot locomoting through various environments. Using our approach, the robot is able to climb
steep grass (around 20 degrees), climb down a similarly-steep rocky slope, and climb up stairs. Full video: https://goo.gl/awwYfT

V. DISCUSSION

Inertial-based body control for levelling the robot’s body
improves locomotive performance in two ways. First, as
shown by Fig. 5, for a given navigable terrain, locomotive
speed greatly increases compared to that produced by an
open-loop gait. Additionally, as shown by Fig. 6 inertial-
based body control for stabilization enables locomotion
on significantly more extreme slopes, which an open-loop
locomotive model would be unable to navigate – either due
to end-effector slippage or tipping.

It is important to point out the obvious trade-off between
locomotion speed and stability; as speed increases, stability
inherently diminishes. Locomotion speed is directly propor-
tional to the angular speed parameter ω in the CPG Eq.(15).
The speed at which significant degradation in stability occurs
largely depends both the roughness and integrity of the
terrain. In the trials shown by Fig. 5, we prioritized stability
over climbing speed (small ω).

Locomotive performance increases for several reasons
when a body stabilization strategy is employed. First, lev-
elling the body of the robot reduces load on the lateral,
proximal joints that are responsible for propelling the body
forward. Specifically, levelling the robot’s body places the
axes of rotation of these joints in parallel with the grav-
itational force, meaning that they need not overcome a
component of the gravitational force. This allows the robot
to maintain a relatively constant locomotive speed regardless
of the slope or complexity of the terrain presented.

Second, levelling the body naturally positions the body’s
COG more centrally within the support polygon formed by
grounded legs as shown in Fig. 8. In addition to preventing
the robot from tipping over, this positioning of the COG
distributes the weight of the body evenly between the legs.
An even weight distribution ensures that the normal force
exerted on the end-effector of each grounded leg remains
significant, minimizing end-effector slip. End-effector slip
is problematic for a variety of reasons, mainly because
it introduces rapid changes in body position which can
drastically disrupt stable locomotion. In particular, uneven
end-effector slip – when the end-effectors on one side of the
robot have better ground contact – can reorient the robot. In
this case, redirecting the robot can prove difficult, especially
if slippage persists.

Third, this body orientation prevents the robot from tipping
while stepping onto or off of an obstacle; with a body
stabilization strategy, if the robot is able to step onto an
object, it will be able to stabilize. This is especially important

Fig. 8: Comparison of the robot’s COG position relative to its
support polygon in cases where the body is levelled via body control
(right) and no body control is applied (left). Note how, when no
body control is applied, the robot’s COG is outside its support
polygon and, thus preventing it from climbing by tipping backwards.

when the terrain is unstructured. While the slope may appear
navigable, the local slope in cases where the terrain is
unstructured can greatly exceed the general trend, due to
crevices or holes as well as other vertical obstacles.

Finally, it is crucial to realize that with stabilization the
hexapod traversed unstructured terrain of up to 30 degrees
(locally sometimes much steeper) in field testing – greatly
out-performing what is achievable with an open-loop control
strategy. The trials presented in Fig. 6 provide a comparison
between the open-loop and stabilized control strategies for a
given planar surface, and in no way indicate the maximum
slopes navigable. A planar surface provides a relatively-
consistent test environment, which ensures a fair comparison
between the open-loop and stabilized trials. However, the
shortcoming of a planar surface is that it lacks the footholds
present in unstructured terrain that can eliminate end-effector
slip. Therefore, even though the COG may remain well
within the support polygon on an extreme slope, the frictional
force between the end-effector and planar surface is often not
sufficient for locomotion. Nevertheless, the results in Fig. 6
demonstrate that keeping the COG well within the support
polygon is vital for navigating steep terrain.

VI. CONCLUSION

In this paper, we present a method for stable locomotion
in unstructured terrain that integrates inertial feedback for
body posture control directly within the CPG framework.
We show that by extending the limit cycle of the CPG to
the superellipse family, we can generate different limit cycle
shapes solely by selecting a single parameter, to produce
a variety of end-effector trajectories that are suitable for
various environmental conditions. In this CPG model, we
detail how to devise joint offsets from inertial feedback and

https://goo.gl/awwYfT


highlight the beneficial adaptability of the resulting inertial-
based CPG controller for stable locomotion and climbing in
steep, unstructured terrain.

We implement our approach on a high-DOF hexapod
robot. Experimental results demonstrate how body posture
control improves locomotion by centering the robot’s body
inside its support polygon, and by smoothing out sudden
perturbations (e.g., end-effector slips). In trials on steep,
rocky slopes, we show how the proposed body posture
control beneficially impacts locomotive speed and allows a
robot to traverse steeper and more challenging terrain, where
open-loop locomotion otherwise fails.

In order to improve locomotive ability, future work will
explore the addition of an onboard vision system attached
to the body, and the use of visual feedback directly into the
CPG model. Doing so would allow some of the remaining
CPG parameters (e.g., limit cycle dimensions) to be adapted
directly through recognizing the size and orientation of
obstacles in the path of the robot.
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