
Distributed Reinforcement Learning for Multi-
Robot Decentralized Collective Construction

Guillaume Sartoretti1, Yue Wu1, William Paivine1,
T. K. Satish Kumar2, Sven Koenig2, and Howie Choset1

1 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15203, USA
gsartore@cs.cmu.edu,

WWW home page: http://www.sartoretti.science
2 University of South California, Los Angeles, CA 90007, USA

Abstract. This paper extends the state-of-the-art single-agent asyn-
chronous advantage actor-critic (A3C) algorithm to enable multiple agents
to learn a homogeneous, distributed policy, where agents work together
toward a common goal without explicitly interacting. Our approach re-
lies on centralized policy and critic learning, but decentralized policy
execution, in a fully-observable system. We show that the sum of expe-
rience of all agents can be leveraged to quickly train a collaborative pol-
icy that naturally scales to smaller and larger swarms. We demonstrate
the applicability of our method on a multi-robot construction problem,
where numerous agents need to arrange simple block elements to build a
user-specified structure. We present simulation results where swarms of
various sizes successfully construct different test structures without the
need for additional training.

Keywords: multi-agent system, collaboration, distributed learning

1 Introduction

Fig. 1. TERMES robots and testbed (cour-
tesy of Petersen et al. [1]).

Recent years have seen massive leaps
forward in single-agent artificial in-
telligence, in particular in deep-
reinforcement learning (deep-RL) [2,
3, 4, 5]. A large community has been
focusing on multi-agent reinforcement
learning (MARL), interested in ex-
tending these single-agent approaches
to multi-agent systems. However, natural extensions of single-agent approaches
fail when applied to multi-agent problems [6, 7, 8]. The joint MARL problem
can rarely be solved [9, 10, 11], mainly due to high-dimensional state-action
space that has to be explored by agents. In this context, the community has
been striving for distributed solutions [12, 13, 14, 15]. In this paper, we propose
a fully-distributed, scalable learning framework, where multiple agents learn a
common, collaborative policy in a shared environment, that can then be deployed
on an arbitrary number of agents with little to no extra training.



2 Guillaume Sartoretti et al.

Policy π(s) Value V(s)

Network

Input state

Global Net

Worker 1

Policy Value

State from
Agent 1

Network 

Worker 2

State from
Agent 2

Network 

Policy Value

Worker 3

State from
Agent 3

Network 

Policy Value

Worker 4
State from
Agent 4

Network 

Policy Value

Worker 5
State from
Agent 5

Network 

Policy Value

Worker 6
State from
Agent 6

Network 

Policy Value

Agents' 
Rewards

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6

s1' New State: s2' s3' s4' s5' s6' 

Action:
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Shared
Environment

Meta­Agent

Fig. 2. Structure of the proposed shared learning framework, with 6 agents contained
in a meta-agent (similar to the A3C meta-agent) interacting with a shared environ-
ment. The global Actor-Critic network is stored in the meta-agent. Each internal agent
(worker) draws its current state from the shared environment, and selects an action to
be performed next. Individual agents’ actions are performed synchronously, in any or-
der, and yield individual rewards. Each worker regularly pushes gradients to the global
networks, after which it pulls the most recent weights from the global net.

We focus on a multi-robot construction problem, inspired by Harvard’s TER-
MES project [1, 16], where simple robots must gather, carry and place simple
block elements to build a user-specified 3D structure (see Fig. 1). This prob-
lem, cast in the RL framework, is a very difficult game with sparse and delayed
rewards, as robots need to build scaffolding to reach the higher levels of the
structure to complete construction. We use a fully decentralized architecture,
where each agent runs an identical copy of the policy without explicitly com-
municating with other agents, and yet a common goal is achieved. The policy
is learned centrally, meaning that all agents contribute to it during training
(Fig. 2). Once learned, the policy can be implemented on an arbitrary number
of agents, and lets each agent view others as moving features in the system. To
this end, we extend the single-agent asynchronous advantage actor-critic (A3C)
algorithm [2] to let multiple agents learn a homogeneous, collaborative policy in
a shared environment.

In our recent works, we have studied the applicability of distributed ap-
proaches to multiple agents learning a homogeneous policy in a single environ-
ment [17]. However, in this previous work, agents could not observe each other as
part of each other’s state, and learning was performed offline based on recorded
experience from a conventional controller. In this work, our main contribution
is to extend this framework to online learning of scalable, collaborative policies
in a fully-observable system.

This paper is structured as follows: in Section 2, we provide a short back-
ground on multi-agent learning and on the A3C algorithm. Section 3 presents
the multi-robot construction problem, and casts it in the RL framework. Sec-
tion 4 details the online learning process. In Section 5, we present and discuss
our numerical results. Finally, we provide concluding remarks in Section 6.



Distributed RL for Multi-Robot Decentralized Collective Construction 3

2 Background

2.1 Single-Agent Asynchronous Distributed Learning

In early 2016, Mnih et al. proposed a novel single-agent learning approach for
deep reinforcement learning [2], taking advantage of multi-core architectures to
obtain near-linear speed-up via distributed learning. In these now state-of-the-art
methods, the learning task is distributed to several agents that asynchronously
update a global, shared network, based on their individual experiences in inde-
pendent learning environments. That is, these methods rely on multiple agents
to distributively learn a single-agent policy. A general meta-agent stores a global
network, to which the worker agents regularly push their individual gradients
during training, after which they pull the most recent global weights that aggre-
gate the lessons learned by all agents.

The increase in performance is mainly due to the fact that multiple agents,
experiencing different situations in independent environments, produce highly-
decorrelated gradients that are pushed to the global net. Additionally, agents in
independent environments can better cover the state-action space concurrently,
and faster than a single agent (e.g., a deep Q-learning agent [18, 5, 19]). Among
these asynchronous methods, the A3C algorithm, extending the standard Ad-
vantage Actor-Critic learner to asynchronous distributed learning, was shown to
produce the fastest learning rate in a very stable manner [2]. In this algorithm,
the global net has two outputs: (i) a discrete stochastic policy, and (ii) a value
(the critic), estimating the long-term cumulative reward from the current state.

2.2 Multi-Agent Learning

The first and most important problem encountered when transitioning from
the single- to multi-agent case is the curse of dimensionality: most joint ap-
proaches fail as the dimensions of the state-action spaces explode combinatori-
ally, requiring an absurd amount of training data to converge [6]. In this context,
many recent works have focused on decentralized policy learning [12, 13, 14, 15],
where agents each learn their own policy, which should encompass a measure of
agent cooperation at least during training. One way to do so is to train each
agent to predict the other agents’ actions [13, 14]. In most cases, some form
of centralized learning is involved, where the sum of experience of all agents
is used toward training a common aspect of the problem (e.g., network output
or value/advantage calculation) [12, 14, 15]. When centrally learning a network
output, parameter sharing can be used to let agents share the weights of some
of the layers of the neural net and learn faster and in a more stable manner [12].
In actor-critic approaches, for example, the critic output of the network is often
trained centrally with parameter sharing, and can be used to train cooperation
between agents [12, 14]. Centralized learning can also help when dealing with
partially-observable systems, by aggregating all the agents’ observations into a
single learning process [12, 14, 15]. Many of these approaches rely on explicit
communication among agents, to share observations or selected actions during
training and sometimes policy execution [13, 14, 15].



4 Guillaume Sartoretti et al.

3 Multi-Robot Construction

3.1 Problem Statement and Background

The problem outlined in this paper is inspired by the TERMES project, started
in Harvard, which focused on multi-robot construction of complex structures
(see Fig. 1). The TERMES testbed [1, 16] consists of small autonomous mobile
robots and block sources of approximately the same size as the robots. Robots
need to gather blocks from the sources to collaboratively build a user-specified
structure. In this work, we only consider the problem in simulation.

In the original framework, valid actions for each robot included turning 90
degrees left or right, moving one location forward, and picking up/putting down
a block in front of themselves. In this work, however, we allow agents to move, as
well as pick up/place blocks in the four main compass directions around them.
We leave all other rules defining valid actions unchanged. That is, robots can
move to an adjacent location iff doing so would move the robot vertically not
more than one block up or down. Additionally, robots can pick up/put down a
block under the condition that it is (or, once placed, becomes) a top block, on
the same level as the robot itself. Each robot can carry at most one block.

The original Harvard TERMES robots coordinated using simple local rules
based on robots’ behaviors and stigmergy, which only allowed them to con-
struct simple structures [1]. Later, in our previous work, we developed a bet-
ter single-robot planning method [20], which we then generalized to multi-robot
planning [21]. However, our conventional planning method is domain-dependent,
centralized, and non-optimal. The planner attempts to minimize the total num-
ber of block operations (rather than common objectives such as the makespan),
and restricts the robots’ movements to the edges of the spanning tree of the grid,
sometimes resulting in longer paths than necessary. Furthermore, the design of
this planner heavily relied on human-based domain knowledge of the problem.

3.2 Multi-robot Construction as a RL Problem

State Space We consider a discrete 3D representation of the agents’ states (and
of the world state). That is, for each agent, we directly encode information about
the current state of the world in 3D tensors of the same dimensions as the discrete
3D world grid. In order to demonstrate our approach, while keeping training time
reasonable, we first focus on a simple 10× 10× 4 world (x,y,z). Similar to recent
approaches which learned to play games from raw images [3, 5, 4], we decompose
the world state into different channels to simplify the learning task for the agents.
Specifically, the state si of agent i is a 5-tuple of binary tensors:

– Current position: A one-hot tensor (single 1 at the current position of agent i).

– Agents’ positions: A binary tensor showing the positions currently occupied
by agents in the world (agent i included).

– Blocks’ positions: A binary tensor expressing the positions of all the blocks.



Distributed RL for Multi-Robot Decentralized Collective Construction 5

– Sources’ positions: A binary tensor showing the positions of all the block
sources. Sources are always positioned at the ground level of the world, and
no agent/block can ever be found/placed on top of them, thus representing
a “tower” of blocks agents can pick from.

– Structure plan: A binary tensor expressing the user-specified structure’s plan.

We observed that, by separating information into different channels rather than
placing them all into a single world tensor, agents seem to learn faster and
obtain a more stable policy. We believe that this is due to the fact that, with
the proposed state space, agents are able to learn a single type of information
from each binary channel of the state tuple. However, note that the resulting
learning task is nontrivial, since agents need to merge information from different
channels together into making decisions. That is, agents still take sequential
decisions from raw data, even though these data have been pre-processed into
different channels (similar to color channels in an image).

Action Space As commonly done in such discrete grid worlds, we rely on a
discrete action set for each agent. The 13 possible actions are four “move” ac-
tions (move North/East/South/West), four “pick up” actions (N/E/S/W), four
“place” actions and one “idle” action. Note that, at any time in the simulation,
an agent only really has access to at most 9 actions, since agents carrying a block
can only place a block and not pick up an additional block, and vice-versa.

As detailed further in Section 4, agents learn which actions are valid based on
their current state; however, due to the fact that agents’ actions are executed in
any order (concurrent threading), an agent may sometimes pick an action that
has become impossible to be performed due to an other agent’s action. In such
cases, nothing happens and the agent remains idle for one time step.

Reward Structure In order to minimize the amount of domain knowledge
introduced in the learning task, we propose a minimalist, symmetric reward
structure. A base action cost r0 (in practice, r0 = −0.02) incentivizes agents to
complete the desired structure as fast as possible. During the building phase (i.e.,
until the structure is completely built), agents get a positive/negative reward
±r1 (in practice, r1 = 1) for placing/picking a correct block (i.e., a block placed
at a position featured on the user-specified structure plan), but no penalty for
placing/picking incorrect blocks. During the cleanup phase (i.e., when agents
should clean up scaffolding blocks), agents additionally get a positive/negative
reward for picking/placing incorrect blocks (blocks that are not part of the plan).

Moreover, since agents cannot place blocks on higher levels of the world before
building a ramp to access these levels, we propose to adapt the positive/negative
rewards associated with placing/removing higher correct blocks. That is, we
observe that to place a block at the n-th level of a simple tower of blocks,
agents need to build a ramp (or rather, a staircase) of height n − 1 to make

the n-th level reachable. This ramp will be made out of n(n−1)
2 blocks, which

may all be incorrect blocks (in the worst-case scenario). Therefore, to incentivize



6 Guillaume Sartoretti et al.

agents to build such a ramp, we propose to multiply the reward associated with
picking/placing the n-th level block by n2. The resulting reward structure is
summarized in the following table:

Building phase Cleanup phase
Action Correct (n-th level) Incorrect Correct (n-th level) Incorrect
Pick r0 − r1 · n2 r0 r0 − r1 · n2 r1
Place r0 + r1 · n2 r0 r0 + r1 · n2 −r1
Move r0

Actor-Critic Network In this work, we use centralized learning with shared
parameters, for both the actor and critic networks, but fully decentralized policy
execution. We use the 9-layer convolutional network pictured in Fig. 3. First, 5
3D convolution layers compress the input dimension from 3D to 1D to connect
to the next 2 fully-connected (fc) layers. The output of the last fc layer is then
fed into a long-short-term memory (LSTM) cell with output size 512. Residual
shortcuts [22] connect the input layer to the third convolutional layer, the third
layer to the first fc layer, and the first fc layer to the LSTM. The output layer
consists of the policy neurons with softmax activation, and a value output pre-
dicting the reward. We also added a feature layer connected to the LSTM [3],
to train the agent on whether it is carrying a block and whether the structure
has been completed.

To prevent invalid outputs, e.g. trying to place a block when the agent does
not have a block at hand, we adapted the way we calculate the reward for the
actor. At time step t, let π(at|st; θ) be the policy estimation for action a (actor)
and V (st; θv) the value estimation (critic) with parameters θ, where st represents
the state and at represents the action. We update the policy according to [2]:

Lt(θ
′) = log

(
π(at|st; θ′)A(st, at; θ, θv)

)
, (1)

where A(st, at; θ, θv) refers to the advantage estimate:
k−1∑
i=0

(
γirt+i

)
+ γkV (st+k; θv)− V (st; θv). (2)

We also minimize the log-likelihood of the model selecting invalid actions:

Lv(θ) =
∑

a
log
(
P
(
Q(s, a; θ) = 1|ya = 0

))
, (3)

where ya = 0 if action a is invalid. By minimizing this additional loss function,
the model successfully learns to avoid selecting invalid actions.

Fig. 3. Nine-layer deep convolutional neural network used for policy estimation.



Distributed RL for Multi-Robot Decentralized Collective Construction 7

4 Online Learning

We train multiple agents in a shared environment, randomly initialized at the
beginning of each episode. Episodes last 1000 time steps, and training updates
occurs every 100 time steps. Initial blocks are placed at random in the envi-
ronment, and the initial agents’ positions are also randomized. Additionally, we
randomize the goal structure at the beginning of each episode, to train agents
to build any structure. The only constant during training is the positions of the
sources. The full training code is available online at https://goo.gl/9bZFXn.

During training, the Boltzmann action-selection strategy [23], often used to
encourage exploration, did not seem to suffice for this task. Therefore, we push
agents to explore the state-action space more intensively, by picking a valid ac-
tion uniformly at random, every time the state predictor “has block” (estimating
whether the agent is currently carrying a block) is incorrect. This mechanism
is mostly active during early training, since this output is quickly learned and
achieves a near-100% prediction accuracy. Since actions are chosen at random,
value learning is disabled when agents pick random actions (since learning would
not be on-policy then, as requested in the actor-critic framework). Finally, we
concurrently train several groups of Na = 4 agents in Ne = 4 different environ-
ments, to speed up training.

For the first part of training (first 52000 episodes), we trained agents using
experience replay [24], to help them further decorrelate their learning gradients.
We create an experience pool of the most recent Na = 4 episodes for each
agent. During a training step, each agent draws an experience sample from a
randomly selected epoch (100 time steps) of its pool and learns from it. After
52000 episodes, as rewards started to plateau, we stopped training, and resumed
it without experience replay. We also decreased the learning rate (half the initial
one), a standard practice that allows more precise convergence. At this point, we
also started initializing 50% of the episodes with a world featuring a fully-built
randomized structure and extra blocks, to more specifically train agents to clean
up blocks after completing the construction. This approach did not allow agents
to learn to clean up perfectly (as discussed in the next Section), but nevertheless
improved their cleanup abilities compared to mid-training.

Fig. 4. Goal structures used to estimate the performance of the trained policy.

https://goo.gl/9bZFXn


8 Guillaume Sartoretti et al.

5 Simulation Results

5.1 Results

Training is performed on a desktop computer, equipped with an AMD Thread-
ripper 1950X (32 cores) clocked at 3.4GHz, 32Gb RAM and 2 NVIDIA 1080Ti
GPUs. Up to two training instances can be run in parallel, each being assigned
16 cores (one per agent) and one GPU. The training time is very long: it took
a little less than 9 days to learn the final policy. This is mainly due to the GPU
being the resource bottleneck when learning with so many cores, a problem
exacerbated by the additional synchronization between agents during training.

To validate the trained policy, we systematically investigated its capacity to
construct any user-input structure from an empty or randomly initialized world,
as well as to scale to smaller/larger swarm sizes. To these ends, we selected 6
structures that test various aspects of the construction problem (Fig. 4), such as
building wide areas, tall structures, tall towers, walls. For every structure, and
for every swarm size, we run 100 trials on randomly initialized empty and 100
trials on initially nonempty worlds. Each trial is capped at 1000 time steps. Dur-
ing testing, we measure the number of steps needed to construct the structure,
and the percentage of test cases in which the structure was successfully built
(construction accuracy). If the structure was constructed, we further measure
the cleanup accuracy (percentage of scaffolding removed after the structure was

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 [
it
e

r]

C
o

n
s
tr

u
c
ti
o

n
 A

c
c
u

ra
c
y
 [

%
]

1 2 3 4 6 8 10 12 16 20

Number of Agents

250

500

750

25

50

75

100
Plan Construction Performance [Maps 3-4]

Empty

Nonempty

1 2 3 4 6 8 10 12 16 20
250

500

750

25

50

75

100
Plan Construction Performance [Maps 1-2-5-6]

Fig. 5. Construction times (in time steps, capped at 1000 per trial) and plan construc-
tion accuracy, based on swarm size, averaged over i) the 4 test structures that yield
similar, good performance (top), ii) the 2 test structures that yield similar, poorer per-
formance (bottom). For each structure, averages are shown for 100 trials with random
initial agent positions, once from empty worlds (plain line) and once from randomly
initialized worlds (dotted).



Distributed RL for Multi-Robot Decentralized Collective Construction 9

Empty

Nonempty

1 2 3 4 6 8 10 12 16 20

Number of Agents

25

50

75

100

C
le

a
n
u
p
 A

c
c
u
ra

c
y
 [
%

]
5

10

C
o
m

p
le

ti
o
n
 A

c
c
u
ra

c
y
 [
%

]

Plan Completion Performance

Fig. 6. Cleanup and completion (construction+cleanup) accuracy, wrt. swarm size,
averaged over all test structures. Average over 100 trials with random initial agent po-
sitions, from empty worlds (plain) as well as from randomly initialized worlds (dotted).
The decrease in completion accuracy naturally follows that of the cleanup accuracy.

completed), and report the completion accuracy (percentage of trials with full
construction and cleanup).

We first note that all structures are not equal under the construction time
and accuracy metrics. Most structures (4 out of 6) are completed with a mean
accuracy quickly reaching close to 90% while the construction time decreases, as
the number of agents is increased (until a bottleneck point). However, structures
3 and 4 perform significantly worse than the other structures on these metrics,
and we separate their results from that of the four other structures in Fig. 5.
When attempting to build structure 3, agents struggle to complete the base layer
of the pyramid, as their instinct is to reach for the top levels of the structure as
soon as possible (higher rewards), often leaving holes in the pyramid’s base that
cannot be filled afterwards. Similarly, the top layer of the cube structure 4 is a
big challenge for agents, which exhibit difficulties building scaffolding along all
faces of the cube to fully complete it, and sometimes seem to take adversarial
action with respect to one another.

However, under the cleanup and completion accuracy metrics, all structures
seem to yield similar results, which are aggregated in Fig. 6. There, we see that
agents are consistently able to cleanup around 60− 75% of the scaffolding, but
have a very low success rate (2− 3% only) at completing the plan (construction
and full cleanup). We believe, however, that a more specialized training process
could be investigated to improve the agents’ cleanup performance. Example good
and bad results, starting from empty or randomly initialized worlds, and with
various swarm sizes are available at https://goo.gl/C7r6uf.

5.2 Comparison with Conventional Planning

We further compared the results of our learning-based approach to that of
our previous work, which relied on a (conventional) tree-based planner [25].
Our previous approach focused on finding the shortest sequence of block place-
ments/removal needed by a single agent to complete the user-input structure
from an empty world. Note that the minimal number of block placements needed
to construct a structure does not depend on the number of agents.

https://goo.gl/C7r6uf


10 Guillaume Sartoretti et al.

To compare both approaches, we computed the minimum amount of block
placements needed to complete each of our six test structures, using the single-
agent conventional planner described in [25]. In parallel, for each structure, we
ran trials of our learned policy from an empty world, with a single agent whose
initial position is randomized. The agent follows the trained multi-agent policy
(initially learned on a swarm of four agents), and we measure the number of
block placements needed to construct the structure. We average the result over
100 successful trials, i.e., trials where the structure was constructed within 2000
time steps. The results are summarized in the following table:

Structure Conventional Planner [25] Learned Policy (mean ± std)
1 36 114± 26
2 36 207± 53
3 56 154± 21
4 33 215± 32
5 48 197± 24
6 18 228± 44

Our learning-based approach results in far more blocks being placed during
the construction of the structure. This makes sense, since the learned policy is not
trained to minimize the number of block placements/removal. In the learning-
based approach, agents are trained to maximize their rewards, i.e., the placement
of correct (higher) blocks, at the cost of sometimes unnecessary or redundant
scaffolding. In fact, we believe that, as the swarm size grows, agents may actually
benefit from building redundant scaffolding to reach the higher levels of the
world. That is, more scaffolding can allow agents to concurrently reach the higher
levels of the world, thus reducing the inherent bottleneck associated with the use
of a single, “optimal” ramp (i.e., minimal number of placed blocks).

5.3 Discussion

Our distributed learning approach successfully generates reasonable construc-
tion plans using little domain knowledge of the task. Additionally, compared to
previous approaches which only considered initially empty worlds[16, 25], agents
are able to learn how to use blocks initially present in the world to build the
structure faster (as displayed in Fig. 5). Most importantly, our approach in-
herently allows scalability to different agent swarms, as the different agents are
completely independent, and do not require explicit interactions or a central-
ized planner. As shown in Fig. 5, the trained policy can essentially be “copied”
onto an arbitrary number of agents (robots), which will then work together to
construct the plan efficiently. Even though training was only ever performed us-
ing four agents, the learned policy was able to generalize to other swarm sizes,
despite never having experienced any situation with a different swarm size. As
shown by the resulting robust, population-independent policy, this approach has
great advantages in situations where the number of robots is unknown or where
a centralized planner cannot be used. In particular, our approach makes the



Distributed RL for Multi-Robot Decentralized Collective Construction 11

Fig. 7. Example frames along the construction of test structure 3 (Fig. 4), by a team
of 8 agents (and respective time steps). Green-/red-edged cubes are correct/incorrect
blocks, solid green/pink cubes are agents/sources.

swarm robust to the failure of an arbitrary number of robots, while maintaining
construction accuracy.

However, our approach also has its limitations: more actions are needed for
plan completion and more scaffolding is built than with an optimized centralized
planner. In addition, fully cleaning up the world remains a challenge for the
agents. As mentioned above, a more specialized training process could train
agents to better clean up scaffolding. Additionally, since the number of remaining
scaffolding blocks is usually low, we believe that conventional planners could also
be an option to finalize the cleanup process. Finally, and despite the relatively
high versatility of our approach in the majority of testing scenarios, we observe
that some structures requiring a more “strategic” sequence of actions from an
early construction stage cannot be constructed with a high accuracy.

6 Conclusion

In this paper, we present an extension of the A3C algorithm, which allows multi-
ple agents to distributedly learn a collaborative policy in a shared environment.
This policy, once learned, sees other agents as moving features in the environ-
ment, around which an agent needs to act in order to complete the collective
construction task. In this distributed framework, agents do not cooperate per se
(no joint action selection), but learn to work together toward a common goal, in
the absence of explicit communications (but in a fully-observable system). We
apply this approach to a distributed construction problem where multiple robots
must coordinate their actions to gather and place blocks to build a user-specified
structure. There, we show that the resulting homogeneous collaborative policy
allows agents to construct arbitrary structures, and naturally scales to other
swarm sizes while upholding construction accuracy. However, agents seem to
struggle with fully cleaning up the scaffolding needed during construction.

In future works, we would like to investigate the re-usability of our neural
network to different world dimensions. For now, the current approach requires
fully retraining the policy if the world size changes. However, we believe that
some of the layers could be reused when the world dimensions are increased,
which could drastically reduce the additional training time and make our ap-
proach more scalable with the world size. Finally, we believe that our distributed
approach can be extended to other multi-agent problems of the same subclass,
including collaborative manipulation and multi-agent path planning.



Bibliography

[1] Petersen, K., Nagpal, R., Werfel, J.: TERMES: An Autonomous Robotic
System for Three-Dimensional Collective Construction. In: International
Conference on Robotics: Science and Systems (RSS) (2011)

[2] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,
Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement
learning. In: Proceedings of the International Conference on Machine Learn-
ing, pp. 1928–1937 (2016)

[3] Lample, G., Chaplot, D.S.: Playing FPS Games with Deep Reinforcement
Learning. In: AAAI, pp. 2140–2146 (2017)

[4] Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video
prediction using deep networks in atari games. In: Advances in Neural
Information Processing Systems, pp. 2863–2871 (2015)

[5] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 (2013)

[6] Buoniu, L., Babuška, R., De Schutter, B., Srinivasan, D., Jain, L.C., Buoniu,
L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: An
overview. of Studies in Computational Intelligence 310, 183–221 (2010).
DOI 10.1007/978-3-642-14435-6 7

[7] Neto, G.: From single-agent to multi-agent reinforcement learning: Founda-
tional concepts and methods. Learning theory course (2005)

[8] Schwartz, H.M.: Multi-agent machine learning: A reinforcement approach.
John Wiley & Sons (2014)

[9] Lau, Q.P., Lee, M.L., Hsu, W.: Coordination guided reinforcement learning.
Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems pp. 215–222 (2012)

[10] Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning.
Icml pp. 227–234 (2002). DOI 10.1109/ADPRL.2007.368202

[11] Le, H.M., Yue, Y., Carr, P.: Coordinated Multi-Agent Imitation Learning.
arXiv preprint arXiv:1703.03121 (2017)

[12] Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent con-
trol using deep reinforcement learning. In: International Conference on
Autonomous Agents and Multiagent Systems, pp. 66–83. Springer (2017)

[13] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Ad-
vances in Neural Information Processing Systems, pp. 6382–6393 (2017)

[14] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Coun-
terfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926
(2017)

[15] Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to com-
municate with deep multi-agent reinforcement learning. In: Advances in
Neural Information Processing Systems, pp. 2137–2145 (2016)

https://dash.harvard.edu/bitstream/handle/1/12379539/TERMES%20An%20Autonomous%20Robotic.pdf
https://dash.harvard.edu/bitstream/handle/1/12379539/TERMES%20An%20Autonomous%20Robotic.pdf
http://proceedings.mlr.press/v48/mniha16.pdf
http://proceedings.mlr.press/v48/mniha16.pdf
http://www.cs.cmu.edu/~dchaplot/papers/aaai17_fps_games.pdf
http://www.cs.cmu.edu/~dchaplot/papers/aaai17_fps_games.pdf
http://papers.nips.cc/paper/5859-action-conditional-video-prediction-using-deep-networks-in-atari-games.pdf
http://papers.nips.cc/paper/5859-action-conditional-video-prediction-using-deep-networks-in-atari-games.pdf
https://arxiv.org/pdf/1312.5602.pdf)
http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/10_003.pdf
http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/10_003.pdf
http://www.cs.utah.edu/~tch/CS6380/resources/Neto-2005-RL-MAS-Tutorial.pdf
http://www.cs.utah.edu/~tch/CS6380/resources/Neto-2005-RL-MAS-Tutorial.pdf
http://www.ifaamas.org/Proceedings/aamas2012/papers/1B_1.pdf
https://users.cs.duke.edu/~parr/icml02.pdf
https://arxiv.org/pdf/1703.03121.pdf
https://pdfs.semanticscholar.org/06d4/214c031aaf42c511708b8b7e2f49682c16fd.pdf
https://pdfs.semanticscholar.org/06d4/214c031aaf42c511708b8b7e2f49682c16fd.pdf
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments.pdf
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments.pdf
https://arxiv.org/pdf/1705.08926.pdf
https://arxiv.org/pdf/1705.08926.pdf
http://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning.pdf
http://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning.pdf


Distributed RL for Multi-Robot Decentralized Collective Construction 13

[16] Koenig, S., Kumar, S.: A Case for Collaborative Construction as Testbed
for Cooperative Multi-Agent Planning. In: Proceedings of the ICAPS-17
Scheduling and Planning Applications Workshop (SPARK) (2017)

[17] Sartoretti, G., Shi, Y., Paivine, W., Travers, M., Choset, H.: Distributed
Learning for the Decentralized Control of Articulated Mobile Robots. In:
accepted to ICRA 2018, Brisbane, Australia, May 21-25, 2018 (2018)

[18] Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observ-
able mdps. CoRR, abs/1507.06527 (2015)

[19] Van Hasselt, H., Guez, A., Silver, D.: Deep Reinforcement Learning with
Double Q-Learning. In: AAAI, pp. 2094–2100 (2016)

[20] Kumar, S., Jung, S., Koenig, S.: A Tree-Based Algorithm for Construction
Robots. In: Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS) (2014)

[21] Cai, T., Zhang, D., Kumar, S., Koenig, S., Ayanian, N.: Local Search on
Trees and a Framework for Automated Construction Using Multiple Iden-
tical Robots [Short Paper]. In: Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
1301–1302 (2016)

[22] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image
Recognition. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

[23] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. 1998.
A Bradford Book (1998)

[24] Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience re-
play. arXiv preprint arXiv:1511.05952 (2015)

[25] Kumar, T.S., Jung, S.J., Koenig, S.: A tree-based algorithm for construction
robots. In: ICAPS (2014)

http://idm-lab.org/bib/abstracts/papers/icaps-workshop17.pdf
http://idm-lab.org/bib/abstracts/papers/icaps-workshop17.pdf
https://www.researchgate.net/publication/322478083_Distributed_Learning_for_the_Decentralized_Control_of_Articulated_Mobile_Robots
https://www.researchgate.net/publication/322478083_Distributed_Learning_for_the_Decentralized_Control_of_Articulated_Mobile_Robots
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/download/11673/11503
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/download/11673/11503
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewFile/7946/8052
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewFile/7946/8052
http://idm-lab.org/bib/abstracts/papers/aamas16b.pdf
http://idm-lab.org/bib/abstracts/papers/aamas16b.pdf
http://idm-lab.org/bib/abstracts/papers/aamas16b.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf
https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/1511.05952.pdf

	Distributed Reinforcement Learning for Multi- Robot Decentralized Collective Construction

