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Abstract—Motion planning for mobile robots with many
degrees-of-freedom (DoF) is challenging due to their high-
dimensional configuration spaces. To manage this curse of di-
mensionality, this paper proposes a new hierarchical framework
that decomposes the system into sub-systems (based on shared
capabilities of DoFs), for which we can design and coordinate
motions. Instead of constructing a high-dimensional configuration
space, we establish a hierarchy of two-dimensional spaces on
which we can visually design gaits using geometric mechanics
tools. We then coordinate motions among the two-dimensional
spaces in a pairwise fashion to obtain desired robot locomotion.
Further geometric analysis of the two-dimensional spaces allows
us to visualize the contribution of each sub-system to the
locomotion, as well as the contribution of the coordination among
the sub-systems. We demonstrate our approach by designing
gaits for quadrupedal robots with different morphologies, and
experimentally validate our findings on a robot with a long
actuated back and intermediate-sized legs.

I. INTRODUCTION

High degree-of-freedom (HDoF) mobile robots offer ad-
vantages over conventional wheeled vehicles in difficult-to-
negotiate terrains [3, [17, 21, 25]. However, the benefit of
many degrees of freedom also poses a challenge: how to
coordinate all of the DoFs to produce purposeful motion.
One approach to address this so-called curse of dimension-
ality is to couple groups of the DoFs into a one or two
DOFs thereby producing a lower dimensional configuration
space [ [LOL 15} [16} 24, 2| 16]. We term lower dimensional
systems as sub-systems. Sub-systems can be formed based on
observations of biological systems, empirical experiments, or
intuition. The approach described in this paper first plans for
motions within every sub-system, and then for coordination
among the sub-systems. Specifically, we propose a hierarchical
framework to decompose the motion planning problem in
the full configuration space of a robot, into i) a series of
simpler motion planning problems in the low-dimensional
spaces associated with the different sub-systems, and ii) the
coordination of these sub-systems.

Our framework relies on a motion planning approach, geo-
metric mechanics (GM), which offers powerful tools to design,
visualize, and analyze a wide range of locomotor behaviors [4}
7., [14]. We rely on GM tools to visually design the motion of
each subsystem with respect to our locomotive goals (here, to
maximize stride displacement), and to design the coordination
of pairs of sub-systems. By relying on a coordinate-descent-
like approach, we then optimize locomotion by iterating over
every pair of sub-systems until convergence. Once this process
has converged, we further show how GM tools allows us to
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Fig. 1.  Three link swimmer with four cubic legs CAD diagram of the
robot (a) top and (b) side view. The upper back and lower back are actuated
by two AX12 servos (labeled as 1 and 2) and the legs are actuated by X1.320
servos. The legs have rectangular shape (24x24x45 mm) and the body is
always in contact with ground via blocks (55x12x45 mm) attached to the
body segments. (c) Physical model.

visualize the contribution of each sub-system to locomotion, as
well as that of the coordination of every pair of sub-systems.

We applied our framework to study the motion of
a quadrupedal robot with a long articulated body and
intermediate-sized legs (Fig. [I)), a morphology incorporating
features from both lizards and snakes. There, we show how our
framework provides insight into the role of leg contacts and
body undulation in quadruped locomotion. Previous work has
shown that the undulation of an elongated body improves the
stride length of animals and robots [[L1} 27, 8]. There are two
commons modes of body undulation: standing waves (lizard-
like) [11, 27], and traveling waves propagated from head to
tail (snake-like) [8]]. In the first mode, the body curvature is
maximized to increase the self-propulsion generated by leg-
ground interaction. In the other mode, the body undulation
can generate self-propulsion even without legs. Interestingly,
we find that the optimized whole-body motion (i.e., motion
in the full configuration space) for our robot is a hybrid
combination of the lizard- and snake-like modes, such that
the self-propulsion from leg-ground contact and that from
body-ground contact are properly coordinated. We validate our
theoretical predictions through a series of experiments where
a 10-DoF robot locomotes on granular material.

The paper is structured as follows: Section [M] introduces
geometric mechanics and presents our framework to design
whole-body motion; Section [III] applies our methods to study
the motion design of a robot with a long articulated body
and four legs; Section [IV] discusses the significance and
conclusions of our work.
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Fig. 2. Example height functions and gaits in different shape spaces

(a) The height function in a Euclidean shape space corresponds to motions
of an 8-link snake robot slithering in the forward direction on the surface
of 6mm plastic particles. The purple circle represents the optimal gait in the
corresponding shape space. (b) The height function in a torus shape space
corresponds to the forward motion of a robot with a long actuated body and
intermediate-sized leg on the surface of ~ 1 mm poppy seeds. The solid purple
curve represents a sample gait in the corresponding shape space. Orange lines
represent the assistive lines to form closed loops with the gait path in the
unfolded torus shape space. The area in the solid purple shadow represents
the area where the gait path and the assistive lines form a clockwise loop;
the area in the dashed purple shadow represents the area where the gait path
and the assistive lines form a counterclockwise loop. Red, white and black
indicate positive, zero and negative values in height function respectively.

II. METHOD

A. Review of geometric mechanics

In this section, we provide a concise overview of the
geometric tools needed for this paper. For a more detailed
and comprehensive review, we refer readers to [4} [7, [14].
The gait design tools of geometric mechanics separates the
configuration space of a system into two spaces: the position
space and the shape space. The position space denotes the
location of a system relative to a world frame, and the shape
space denotes the internal configuration (internal shape) of the
system. Geometric mechanics seeks to establish a functional
relationship between velocities in these spaces; this functional
relationship is often called a connection, and it shares many
properties with the Jacobian of a robotic manipulator.

1) Kinematic reconstruction equation: Principally, in kine-
matic systems where there is no drift in the system, the
equations of motion [14] reduce to

&= A(r)r, (1)

where & = [, &, &7 € g denotes the body velocity in
forward, lateral and rotational direction; r denotes the internal
shape variables (joint angles); A(r) is the local connection
matrix that relates shape velocity 7 to body velocity &.
Eq.(T) is also called the kinematic reconstruction equation and
maps the changes in internal shape variables (joint angles) to
changes in group variables (position and orientation) of the
robot.

The interaction between a robot and an environment is often
difficult to model, which is typically the case when the system
locomotes on granular medium. In such a case, calculating
the local connection matrix A can be quite challenging.
Instead, we numerically derive A using resistive force theory

(RFT) [13, 22 [26] to model the contact. Prior work [8]
has shown that numerically derived local connections using
granular RFT can effectively predict movements in granular
media. In this paper, we model the robot-ground contact by
poppy seed RFT equations [27], from which we numerically
derive the local connections.

2) Connection vector fields and height functions: Each row
of local connection matrix A corresponds to a component
direction of the body velocity and therefore gives rise to a
connection vector field. The body velocities in the forward,
lateral and rotational directions are respectively computed as
the dot product of connection vector fields and the shape
velocity 7. A shape velocity 7 along the direction of the vector
field yields the largest possible body velocity, while a shape
velocity 7 orthogonal to the field produces zero body velocity.

A gait can be represented as a closed curve in the corre-
sponding shape space. The displacement resulting from a gait,
0x, can be approximated by

Ax

Ay | = A(r)dr. 2)
ox

Ad

According to Stokes’ Theorem, the line integral along a
closed curve Oy is equal to the surface integral of the curl of
A(r) over the area enclosed by Jx:

A(r)dr = // V x A(r)dridra, 3)
ox X

where Y denotes the area enclosed by Jx. The curl of the
connection vector field, V X A(7), is referred to as the height
function (Fig. [2h). The three rows of the vector field A(7) can
thus produce three height functions in the forward, lateral and
rotational direction, respectively.

With the above derivation, we simplify the gait design prob-
lem to drawing a closed path in Euclidean shape space. The
displacements can be approximated by the volume enclosed by
the gait path. For example, in Fig. 2h, we show an example
height function in Euclidean shape space corresponding to
the motion in the forward direction of an 8-link snake robot
slithering on the surface of 6mm plastic particles. The circle
(solid purple circle in Fig. Zh) enclosing the most volume
represents the gait with the largest forward stride displacement.

Although the review of geometric mechanics section is
limited in two dimensions, there has been recent work on
applying geometric mechanics to high-dimensional robot gait
design [5, 20]. Ramasamy and Hatton [20] extended geometric
mechanics to high dimensional shape space and proposed a
method to visualized the kinematics. Gong et al. [S] approxi-
mated the kinematics of complex locomotors using only two
shape variables with the proper shape basis functions.

3) Torus shape space: Often, a shape space can have some
cyclic structure. The shape space with both shape variables
being cyclic, (72), has a torus shape [12]. In Fig. , we
show an example height function in a torus shape space



corresponding to the forward motion of a quadruped robot
with the standing wave body undulation on the surface of ~ 1
mm poppy seeds. The shape variable, ® = [¢1, ¢2]T € T2,
has the cyclic structure, where one axis represents the phase
of the leg movement, and the other axis represents the phase
of the body undulation. While the gait path in (solid purple
curve Fig. 2p) is a closed curve in the torus shape space, there
is no obvious area enclosed by the gait path.

To form an enclosed area, we introduce the notion of two
assistive lines in the Euclidean parameterization of the torus
shape space. The assistive lines are defined as: Oy : ¢1 = 0,
(the solid orange line /; 4[5 in Fig. ), and Oxs2 : ¢o = 0, (the
solid orange line I3+ I4 in Fig. 2b). Note that the dashed line
I} is equivalent to the corresponding solid line /;, according to
the cyclic property of the torus shape space. In Fig. [2p, the
gait path (the solid purple curve) together with two assistive
lines (I, l2, 5, l4) encloses two areas in the torus shape
space (solid purple shadow area and dashed purple shadow
area). The net displacement can be approximated by the line
integral along two assistive lines plus the surface integral of
the enclosed area:

A(r)di’ =
Ix Ix1

/ / V x A(®)dpidgs, (4)
X—X1—X2

where ¥ — x1 — X2 denotes the area enclosed by the assitive
lines and gait path. Note that in Fig. 2p, the gait path and the
assistive lines form a clockwise loop in the lower right corner
(solid purple shadow area) and a counterclockwise loop in
the upper left corner (dashed purple shadow area). Taking the
handedness into account, the surface integral (third term on
RHS) in Eq.(@) should be computed as the surface integral of
enclosed area in the clockwise loop (solid purple shadow area
in Fig. 2b) minus the surface integral of enclosed area in the
counterclockwise loop (dashed purple shadow area in Fig. [2b).

To interpret the physical meaning of each term (RHS) in
Eq.@), we introduce the notation of two sets P, and P,
where P, and P, denotes the contribution from the horizontal
and vertical coordinate axis in the torus shape space. In our
example in Fig. Zp, P, represents the contribution from leg
movement and P, represents the contribution from standing
wave body undulation.

The physical meaning of the first term (RHS) in Eq.(@) is
the displacement solely resulting from motions in ¢, while
keeping ¢, constant at initial position, i.e. , Pac N P,, where
()¢ denotes the complement set. The physical meaning of
the second term (RHS) in Eq.(d) is the displacement solely
resulting from motions in ¢, while keeping ¢, constant at
initial position, i.e. , P, N PbC . The first two terms (RHS)
in Eq.@@) are constant and independent from any gait path we
choose. The physical meaning of the last term (RHS) in Eq.(#)
is the additional displacement resulting from the contribution
from coordination of ¢, and ¢o, i.e. , P, N P,.

Finally, we refer reader to [7] for detailed derivation and
proof of motion planning in torus shape spaces.

A(®)dD+ |  A(®)dD+

Ox2

B. Whole-body motion

1) Sub-system motion phase variable: In this section, we
construct a high-dimensional torus shape space, on which
we can design the whole-body coordination. Consider an
M-dimensional motion system and its shape variable r =
[ri, T2, .., Tar]T € RM. Assume there are N sub-systems.
We term the motion of a sub-system sub-system motion. Each
sub-system motion will form a closed loop gait path in the
shape space RM. The closed loop gait path in sub-system
motion ¢ € {1, 2,..., N} can be described by a function
fi : T' — RM such that » = f;(¢;), where ¢; € T' is
the gait phase variable of sub-system motion ¢. The whole-
body motion can be formulated as the superposition of the
sub-system motions gait paztg%

r= fi(¢)- (5)
=1

We define the sub-system motion phase variable as ® =
(1, B2, .., dn]T € TN. We can relate the @ to the shape
velocity * by the Jacobian matrix [23] Jp &:

n— | dfi(d1)  df2(d2) NN | $ = i
P [dhen dste N0 | § = J, 0, (6)
With Eq.(6) in hand, we can rewrite Eq.(I):
E=A(r)r
1=N i=N
= A fi(0))F =AY fi(¢i) Trad
i=1 i=1

=A(®)D (7)

where A’(®) is the new local connection matrix mapping the
differential of sub-system motion phase variable, &, to the
body velocity &.

A properly designed gait in the sub-system motion phase
variable space (IN-dimensional torus shape space) will then
lead to coordinated whole-body motion. That is, we simplify
the whole-body motion gait design problem in the original M-
dimensional Euclidean space RM to the N-dimensional torus
sub-system motion phase variable space TN .

2) Gait design: In this section, we will propose a method
to design a gait path in an N-dimensional torus shape space.
The gait path in the N-dimensional sub-system motion phase
variable space can be described by a gait function H : T! —
TN, such that: ® = [h1(¢0), hg(gbo), sy hN((bo)]T. P € T!
is the global gait phase of the motion in sub-system motion
phase variable space.

We assume that all the functions h; are homeomorphism
mapping, such that h~! ok is the identity mapping. Under this
assumption, all sub-system motions will operate at the same
frequency (more formally, the winding number of the gait path
must be [1, 1, ..., 1] in N-dimensional torus space).

While there are N functions in H, there are only N — 1
independent functions in H (dimension of ® € TV space
minus the dimension of ¢y € T space), allowing one
constraint equation on H. For simplicity, we fix hq(z) := z,
i.e., @1 := ¢o. Note that our method is permutation invariant.



For simplicity, in this work we assume that all the functions
in H are linear mapping, such that h;(z) = = + ¢;, where
¢; is the phase offset of the sub-system motion i. In these
cases, only the phase offsets between sub-system motions
are subject to optimization in the whole-body coordination
gait design. For more complex systems where linear mapping
cannot produce the effective whole-body coordination, the
mapping function prescription can be extended to sigmoidal,
quadrutic, cubic or other homeomorphism mappings.

We start the optimization with a naive initial guess on the
gait function H that all functions in H are identity mapping,
i.e., hi(z) = x. We then decompose the N-dimensional torus
shape space into N — 1 two-dimensional torus shape spaces
[0, ¢:]T, where i € {2, 3, ... N}. Next, we optimize one
independent function h; C H in the two-dimensional torus
shape space composed of [¢g, ¢;]7 € T?. Then, we take an
approach similar to coordinate descent methods, where at each
step, we optimize and update one function in H and iterate
among all the independent functions in H until convergence.
In the converged gait function H*, every independent function
hy C H* should be optimized in its corresponding two-
dimensional torus shape space composed of [¢g, ¢;]%.

The most challenging part in our proposed gait optimization
tool is to find the optimized mapping h; in the two-dimensional
torus shape space [¢g, ¢;]7. The detailed optimization steps
are presented in the remainder of this section.

To optimize each independent function h; C H, we
first relate the two-dimensional shape variable [¢, ¢;]7 to
the sub-system motion phase variable ® such that ® =
[h1(d0), ha(do), - hi1(0), Gis hiv1(do), oy hn(do)]”.
Next, we relate the differentials of ¢y and ¢; to the sub-
system motion phase variable differential by a Jacobian matrix

J & (45, ¢:]7"
. o
P =Ja (40, 07 | - ®)

7

With Eq.(8) in hand, we can rewrite Eq.(7) as

%o

§=A(®)® = A'([¢0 6] ) 140, 6 d

il

= Al (g0 0:]T) ZZ“ ©)

i

where Ag is the new local connection matrix. The subscript
H denotes that we need the gait function H to derive the local
connection matrix. The superscript [¢] denotes we separated h;
from H in deriving the local connection matrix.

Following the method discussed in Section [[I-A} we con-
struct the height function (given by V X A[;}*), with the help
of which we finally design the mapping h;.

3) Visualization: In this subsection, we develop the tools to
visualize the contribution from a specific sub-system motion
and the contribution from the coordination of two sub-system

motions. We define P; as the set denoting the contribution
from a sub-system motion ¢. The contribution from coordina-
tion between sub-system motion ¢ and j can be expressed as
PN P;.

In Section [lI-B2] we construct the local connection matrix
mapping the phase differentials $o and ¢; to the body velocity
&. Following the approach introduced in Section [[I-A] we can
approximate the net displacement as:

/ A (g0 6:]7) |
JOx (b

K3

- / A (o ¢a)T) |7
Ox1:¢0=0 _(bi_
Al ary |

of AR 0" o

' v x Al i;d dé;. (10
+//XX1X2 X Ap« ([P0 ¢:]" )doodd;, (10)

The physical meaning of each term (RHS) Eq.(T0) can be
interpreted in a similar manner to our analysis in Section
The physical meaning of the first term (RHS) in Eq.(I0)
is the displacement solely from the motion in sub-system ¢
while keeping ¢y constant at initial position. Note that all
other sub-system motions have been coupled to ¢o by H*
in our derivation of local connection matrix A ;I*. Keeping
¢o constant at initial position is equivalent to keeping all
other sub-system motions stopped at initial position. Thus,
the first term (RHS) in Eq.(I0) can then be interpreted as the
displacement solely from sub-system motion ¢, while keeping
all other motion systems stopped at initial position, i.e. ,
PN P[f], where P;) = PLUP,U...UP,_1UP,;1U...UPy.
The subscript [i] in P denotes that P is the union of the
contribution of all other sub-system motion except sub-system
motion ¢. Since only one sub-system motion is involved in the
first term (RHS) of Eq.(T0), it is then a pre-computed constant,
independent from the sub-system motion coordination.

The physical meaning of the third term (RHS) in Eq.(10)
is the additional displacement from coordination between sub-
system motion ¢ and all other sub-system motions, i.e., P; N
P[i].

Since P; = (PN P{) U (P;N Py), P; can be visually
analyzed by the surface integral over the height function
V X A[;}* plus a pre-computed constant.

Next, we develop the tool to visualize the contribution from
coordination of two specific sub-system motions ¢ and j, i.e.,
C; N Cj. In order to construct C; N C}, we first assign h; = 0
such that in this scenario, sub-system motion j is stopped.
Following our approach in section we construct a two-
dimensional shape variable [¢, ¢;] and relate it to the sub-
system motion phase variable ® (the superscript [7] denotes
that ¢; is not involved in ®U1) as:



U = [1i(¢o), ... hi_1(¢0), bis hiypr(o), ..oy
s B31(d0), 0, Wi (¢0), hi(do)]” (1)

Given Eq.(TT), we can relate the differential of ¢y and ¢;
to the sub-system motion phase variable differential U] by a
Jacobian matrix J 45 (b0, bi]T"

o

Sl — g ’
®i

@[J’],[(bm )T (12)

Note that motion associated with the sub-system motion
phase variable ®U in Eq.(12) does not include the motion in
sub-system j. Similar to Eq.(7), we can then relate it to the
shape velocity:

k=j—1
= A( Z Fr(or) + Z Fie(61))7
k=j+1
:Al(.I,[j])viD[j] :Al([¢0 ¢i]T)J§[j]7[¢O’ a7 ZO
[5][5] T éo
Az ([0 ¢4]7) | (13)
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where €191 denotes the body velocity (the superscript [4] in £bl
denotes that sub-s stem motion j is not coupled in the body
velocity) and A[ I denotes the new local connection. The
superscript [¢][;j] in A[ 1) denotes that we separated h; and h;

from H* in deriving AELI]* . With Eq.(T3), we can rewrite the

Eq.(@) as:

/ Az][J](d) ¢]T)

i

= [ Al (g0 )
9x1:¢0=0

7

+ / A ([0 617
Ox2:¢;=0

[i1L5] T |
- // X1—X2 VX AH* ([d)O ¢z] )d¢0d¢“ (14)

Similar to our analysis in Section [[I-B3] we can interpret
the physical meaning of the third term (RHS) in Eq.(T4) as
the additional displacement resulting from the coordination
between sub-system motion ¢ and all other sub-system motions
coupled to ¢ in Eq.(IT), where we assume that sub-system
motion j is stopped. In this way, we can express the physical
meaning of the third term (RHS) in Eq.(T4) as P;N (P} — F;).

Given Eq.(I0) and Eq.(T4), we can construct P; N P;. We
subtract the third term (RHS) in Eq.(T4) from the third term
(RHS) in Eq.(I0), we will have:
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Fig. 3.  The model for our robot and its sub-system motions. (a) The
shape variables of a robot with a long articulated body and four legs. The
body undulation joint angle, «;, and leg shoulder joint angle (3; are labelled.
Segments in solid ellipse are in contact with ground; segments in open ellipse
are in air. (b) Leg sub-system motion. The leg sub-system motion is prescribed
by a periodic variable ¢1. The row of eight boxes indicate the contact state
of the leg during the phase of the gait, where filled gray means contact and
open white means in the air. The blue curves indicate the leg shoulder joint
angles. (c) Upper back sub-system motion. The upper back sub-system motion
is prescribed by a periodic variable ¢2. (d) Lower back sub-system motion.
The lower back sub-system motion is prescribed by a periodic variable ¢3
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In this way, we can visualize P; N P; as the surface integral
over the constructed height function V x (AL, — Aldbl)
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III. EXAMPLE: GAIT DESIGN FOR A ROBOT WITH A LONG
ACTUATED BODY AND INTERMEDIATE-SIZED LEG

In this section we validate our theory by robot experi-
ments, by using a robophysical approach [19]. We first
test the whole-body motion resulting from the two common
approaches to design quadrupedal body undulation. We next
apply our proposed framework to design whole-body motion
and visualize the kinematics of whole-body coordination.
Finally, We verify that our theory prediction by robot experi-
ments and RFT simulation.

A. Experimental set-up

We built an open-loop, servo-driven, 3D-printed robot (450
g, ~40 cm long) with a long actuated body and intermediate-
sized legs (Fig[I), and test its performance on granular media
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Fig. 4. Height functions (a) The height function presenting the coordination
of snake-like body undulation and leg movement. The solid blue curve
represents the optimized gait path. (b) The height function presenting the
coordination of lizard-like body undulation and leg movement. The solid blue
curve represents the optimized gait path. (c1) The height function presenting
the coordination of upper back and leg movement. The solid blue curve
represents the optimized gait path. (c2) The height function presenting the
coordination of lower back and leg movement. The solid blue curve represents
the optimized gait path.

(~ 1 mm diameter poppy seeds). Each leg (front right FR,
front left FL, hind right HR and hind left HL) has two DoFs,
with one controlling the planar shoulder joint angle §; and
the other controlling the binary ground contact §;. The body
consists of three segments, connected by two independently-
actuated joints (upper back joint angle o; and lower back joint
angle aw), and maintains continuous contact with the ground
(Fig. B).

The robot executes a programmed set of movements (fol-
lowing the gait input) to walk on the loosely-packed poppy
seeds. Throughout the experiment, four Optitrack Flex13 cam-
eras record the positions of the infrared-reflective markers on
the robot. At the end of each experiment, the robot’s final
position is identified. A 3-axis gantry system moves to the
robot, picks it up and places it back to the starting position.
An air-fluidized bed erases the footprints and allows the seeds
to be reset into a loosely-packed state.

B. Sub-system motions

We decompose the motion of the robot into three sub-
system motions: the leg sub-system motion, the upper back
sub-system motion and the lower back sub-system motion.

1) Leg sub-system motion: We assume that the leg sub-
system motion follows a trot gait pattern, a typical leg move-
ments given from prior work [9]. The trot is a two-beat gait
with diagonally paired leg movement. The fore right leg is
always in phase with the hind left leg while fore left leg is
always in phase with the hind right leg. In Fig. Bp, we show
that shoulder joint angles and the leg contact patterns of all
legs are prescribed by a periodic variable ¢;.
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Fig. 5. Robot experiment and RFT simulation results (a) The primary data
of displacement from robot experiments (solid line with error bar) and RFT
simulation (solid line) plotted as a function of gait percentage over two gait
cycles for snake-like body undulation (blue), optimal body undulation (red)
and lizard-like body undulation (yellow). (b) The displacement is plotted as
a function of spatial phase. The red curve with error bar shows the robot
experiment results. The blue curve shows the RFT simulation results.

2) Upper back sub-system motion: We prescribe the upper
back joint angle, ay, as a sinusoidal function of the gait
phase ¢, as illustrated in Fig. Bk. While the upper back
motion system itself cannot generate effective locomotion, it
can improve the locomotion performance by coordinating with
the leg sub-system motion and the lower back sub-system
motion.

3) Lower back sub-system motion: Similar to upper back
sub-system motion, we prescribe the lower back joint angle,
a2, as a sinusoidal function of the gait phase ¢3, as illustrated
in Fig. Bd. While the lower back motion system itself cannot
generate effective locomotion, it can improve the locomotion
performance by coordinating with the leg sub-system motion
and the upper back sub-system motion.

C. Whole body motion gait design

The body undulation plays an important role in whole-
body motion. In some cases where the leg drag is dominating
(lizard-like locomotion), the body undulation will form a
standing wave to improve the self-propulsion by leg-ground
interaction [11, 27]. In other cases where the body drag is
dominating (snake-like locomotion), the body undulation will
form a traveling serpenoid wave to generate self-propulsion by
body-ground interaction [8]]. In this section, we will explore



the role of body undulation for a quadrupedal robot with a
long actuated body and intermediate-sized leg.

We assume all the mapping functions are linear, i.e. , ¢; =
@;+1;;, where 1);; is the phase offset between the sub-system
motion ¢ and j. We define the spatial phase as the phase shift
between the upper back and lower back, i.e., 1)23. The spatial
phase characterizes the wave pattern of the body undulation.

In our robot experiments, we find that the optimal spatial
phase, intermediate between lizard-like and snake-like, max-
imizes the displacement. The optimized whole-body motion
will leverage the self-propulsion of leg-ground contact and the
self-propulsion of body-ground contact.

1) Snake-like body undulation: The long actuated body
of the robot can generate self-propulsion from body-ground
interaction. Hatton et al. [8] studied the motion of three-
link swimmer on granular media, where the body undulation
follows the traveling serpenoid wave. We call the traveling
serpenoid wave body undulation snake-like body undulation.
In snake-like body undulation, we couple the upper and lower
back sub-system motions such that they form a traveling
serpenoid wave propagated from head to tail. Specifically, the
phase of lower back sub-system motion is 7/2 ahead of the
phase of upper back sub-system motion, i.e., the spatial phase
of snake-like body undulation is 155%%¢ = /2.

Next, we seek to coordinate the traveling serpenoid wave
body undulation with the leg movement, which is character-
ized by v;59%¢. Following the steps in section we can
calculate the height function on the shape space composed of
[#1, ¢2]T and then design the proper whole-body coordina-
tion gait. The height function and the optimized whole-body
coordination gait for snake-like body undulation is shown in
Fig fp. To summarize, in snake-like body undulation, we have
pinake = 0.75m, sreke = 1.25m and 559 = 0.57.

2) Lizard-like body undulation: The long actuated body
can, on the other hand, help to improve the self-propulsion by
leg-ground interaction. Zhong et al. [27] studied the motion
of a quadrupedal robot with a single DoF in the back. Ijspeert
et al. [[L1] showed that standing wave body undulation can be
coordinated with the leg movement during walking. We call
the standing wave body undulation lizard-like body undulation.
Although the lizard-like body undulation itself does not lead
to effective motion, it can be coordinated with leg movement
to improve locomotion performance.

In lizard-like body undulation, we couple the upper and
lower back such that they form a standing wave. Specifically,
lower back sub-system motion is always in phase with upper
back sub-system motion, i.e., ¢p2 = ¢3, such that spatial phase
,l/)l2i32ard =0.

Next, we seek to coordinate the standing wave body un-
dulation with the leg movement, which is characterized by
Ylzard Following the steps in section we can calcu-
late the height function on the two-dimensional shape space
composed of [¢1, ¢2]T and then design the proper whole-
body coordination gait. The height function and the optimized
whole-body coordination gait for lizard-like body undulation is
shown in Fig Eb To summarize, in lizard-like body undulation,

we have lFord = 1 ylizard — g and lizerd = 0.

3) Optimal body undulation: In this subsection, we con-
sider the upper back and lower back as two independent sub-
system motions. With the methods described in section
we can design the whole-body motion gait in the three-
dimensional sub-system motion phase space. Fig. Bt shows
the converged optimal gaits on their corresponding height
functions. .

In optimal body undulation, we have fzzmm“l = 1.13m,

gptimal — .88 and ¢gh"™* = 0.257. We observed that the
spatial phase in optimal undulation 157" is intermediate
between 153%¢ and wpbiFerd,

The theory-predicted optimal body undulation for our robot
is neither traveling serpenoid wave nor standing wave. Instead,
the intermediate spatial space in the spectrum, from lizard-
like to snake-like, will maximize the forward displacement.
To verify our theory, we sampled the spectrum and tested the
the resulting whole-body motion on the robot experiments and
RFT simulation. Both robot experiments and RFT simulation
agree well with our theory prediction.

D. Visualization

In order to visualize the contribution from each individual
sub-system motion, we present a Venn diagram for sub-system
motions in Table. |II There are three major sets: P4, contri-
bution from the leg movement (blue circle), P,,;,, contribution
from the upper back (red circle), and Pj,,,, the contribution
from the lower back (yellow circle). The intersection of three
sets create 4 additional regions (for a total of 7). The physical
meaning of each region is listed in Table.

Note that region 1, 3 and 6 are the contribution solely from
upper back, lower back and leg sub-system motion respec-
tively. The contribution solely from an individual sub-system
motion is a pre-computed constant, independent from any gait
we prescribe. Other regions, presenting the contribution from
coordination, are determined by the gait paths (characterize by
the phase offset 112, ¥13 and 123) we choose. In Table. [I, we
listed the dependence of each region on the phase offsets.

Following the steps in Section [[I-B3| we can visualize the
contribution from each region in Fig. [6} Note that in a motion
system with three sub-system motions, all the regions in Venn
Diagram can be visualized from the basic set operations. From
Fig.[6f and Fig.[6d, we observe that optimized body undulation
indeed lead to additional displacement by increasing the self-
propulsion from the leg-ground interaction, similar to the role
of lizard body undulation. On the other hand, Fig. [6p suggests
that the slight phase offset between upper back and lower back,
193 can lead to additional displacement by self-propulsion
from body-leg interaction, similar to the role of snake body
undulation.

E. Results

In our robot experiments, we recorded the displacement of
the robot as it implemented the different gaits. In Fig. [Sh, we
plotted the displacement as a function of gait percentage for
the snake-like, optimal body and lizard-like body undulation



Venn Diagram Region Definition Physical meaning Determined by

1 PN (Preg U Piow)¢ solely from UB -
2 (Pup N Piow) N ng from coordination of UB and LB a3

Upper back 3 Piow N (Preg U P,)°¢ solely from LB -
4 Piow N Preg N Py, whole body coordination 112 and Y13
5 (Preg N Prow) N Puc;, from coordination of LB and legs P13
6 Pieg N (Pup U Pioy)¢ solely from legs -
7 (Pieg N Piow) N Pﬁ) from coordination of UB and legs P1o

TABLE 1
DEFINITION AND PHYSICAL MEANING OF EACH OF THE REGIONS IN THE VENN DIAGRAM FOR OUR ROBOT.
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Fig. 6. Visualization of the contribution from individual motion sub system and the contribution from the coordination Each region in Venn diagram
can be visualized by the surface integral over the corresponding height function.

gaits. In Fig. 5p, we plotted the displacement as a function of
spatial phase. Both simulation and robot experiments suggest
that our theoretically calculated optimal spatial phase will lead
to largest displacement.

We observe that the optimal body undulation spatial phase
decreases from 7/2 to 0 for a robot with a long actuated
body and infinitesimal-sized leg (like a snake), a robot with a
long actuated body and intermediate-sized legs, and a robot
with a long actuated body and long legs (like a lizard).
Such spatial phase decreases could be associated with the
body size changes. We hypothesize that such changes are
associated with the evolution. This framework may provide
insight into the hypothesis on the correspondence between
form and function [18]].

IV. CONCLUSION

In this paper, we presented a new framework for design-
ing locomotion by coordinating motions of different sub-
systems, as well as visualizing the kinematics of the resulting
whole-body motion. Our framework allows us to design,
optimize, and visualize the whole-body motion. We applied
our framework to design a whole-body motion of quadrupedal
robots. A quadrupedal robot with a long actuated body and
infinitesimally small legs (snake-like) mainly utilizes its body-
ground interaction to generate self-propulsion. On the contrary,
the quadrupedal robot with a long actuated body and long

legs (lizard-like) mainly unitizes its leg-ground interaction
to generate self-propulsion. Our quadrupedal robot, with a
long actuated body and intermediate-sized legs, combines
both approaches to coordinate the self-propulsion from both
body-leg interaction and leg-ground interactions to generate
efficient locomotion. Our theory-predicted optimized whole-
body motion agrees well with the presented robot experiments
and RFT simulation.

Although this paper only considered cases where the hi-
erarchy had a depth of one (i.e., no sub-sub-systems), we
believe that our approach can be used recursively to optimize
locomotion for a robot decomposed into a deeper hierarchy
of sub-systems, sub-sub-systems, etc. Additionally, this frame-
work can also be applied to complex high-dimensional motion
systems where many sub-systems exist. In future work, we
will extend our work to study real-time motion planning in
response to possible sub-system failures. That is, when some
joints fail to be actuated, we envision that our framework
can design a new whole-body motion in response to these
new constraints. Additionally, we will investigate how our
framework can be used to analyze animal locomotion with
numerous sub-systems in complex environments.
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