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Abstract

This work focuses on multi-agent reinforcement learn-
ing (RL) with inter-agent communication, in which
communication is differentiable and optimized through
backpropagation. Such differentiable approaches tend
to converge more quickly to higher-quality policies
compared to techniques that treat communication as ac-
tions in a traditional RL framework. However, modern
communication networks (e.g., Wi-Fi or Bluetooth) rely
on discrete communication channels, for which exist-
ing differentiable approaches that consider real-valued
messages cannot be directly applied, or require biased
gradient estimators. Some works have overcome this
problem by treating the message space as an extension
of the action space, and use standard RL to optimize
message selection, but these methods tend to converge
slower and to inferior policies. In this paper, we propose
a stochastic message encoding/decoding procedure that
makes a discrete communication channel mathemat-
ically equivalent to an analog channel with additive
noise, through which gradients can be backpropagated.
Additionally, we introduce an encryption step for use in
noisy channels that forces channel noise to be message-
independent, allowing us to compute unbiased deriva-
tive estimates even in the presence of unknown chan-
nel noise. To the best of our knowledge, this work
presents the first differentiable communication learning
approach that can compute unbiased derivatives through
channels with unknown noise. We demonstrate the ef-
fectiveness of our approach in two example multi-robot
tasks: a path finding and a collaborative search problem.
There, we show that our approach achieves learning
speed and performance similar to differentiable com-
munication learning with real-valued messages (i.e.,
unlimited communication bandwidth), while naturally
handling more realistic real-world communication con-
straints. Content Areas: Multi-Agent Communication,
Reinforcement Learning.

1 Introduction
Reinforcement learning has recently been successfully ap-
plied to complex multi-agent control problems such as
DOTA, Starcraft II, and virtual capture the flag (Jaderberg et
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al. 2019; OpenAI 2018). Many multi-agent reinforcement-
learning (MARL) approaches seek to learn decentralized
policies, meaning each agent selects actions independently
from all other agents, conditioned only on information avail-
able to that particular agent (Bernstein et al. 2002; Gupta,
Egorov, and Kochenderfer 2017; Sartoretti et al. 2019; Foer-
ster et al. 2017). Such decentralized approaches offer major
scalability and parallelizability advantages over centralized
planning approaches. Computational complexity of decen-
tralized approaches scales linearly with the team size (as op-
posed to exponentially, as for typical centralized planners),
and action selection for each agent can occur completely in
parallel (Busoniu, Babuška, and De Schutter 2010). How-
ever, decentralized approaches pay for these benefits with
potentially sub-obtimal policies or lower degrees of agent
coordination. Particularly in partially-observable environ-
ments, a decentralized approach in which agents make deci-
sions based soleley on their own limited observations, can-
not make as informed decisions as a centralized planner,
which conditions all actions on all available information.

We consider MARL problems in which agents have the
ability to communicate with each other. This communica-
tion ability offers agents a way to selectively exchange in-
formation, potentially allowing them to make more informed
decisions, while still achieving the same scalability and par-
allelizability advantages of a purely decentralized approach.
However, the addition of communication abilities also in-
creases the difficulty of the learning problem, as agents now
have to make decisions not only about what actions to se-
lect, but also what information to send, how to encode it,
and how to interpret messages received from other agents.
This paper focuses on multi-agent RL with communication
that are readily applicable to real-world robotics problems.

In this paper, we present a novel approach to differen-
tiable communication learning that utilizes a randomized
message encoding scheme to make discrete (and therefore
non-differentiable) communication channels behave mathe-
matically like a differentiable, analog communication chan-
nel. We can use this technique to obtain unbiased, low vari-
ance gradient estimates through a discrete communication
channel. Additionally, we show how our approach can be
generalized to communication channels with arbitrary un-
known noise, which existing approaches to differentiable
communication learning have not been able to deal with.



2 Background
2.1 Multi-agent Reinforcement Learning with

Communication
Many past approaches to multi-agent reinforcement learn-
ing with inter-agent communication fall into one of two
general categories: 1) approaches in which communication
is treated as a differentiable process, allowing communica-
tion behavior to be optimized via backpropagation (differen-
tiable approaches) (Foerster et al. 2016; Sukhbaatar, Szlam,
and Fergus 2016; Mordatch and Abbeel 2017; Paulos et al.
2019), and 2) approaches in which messages are treated as
an extension to the action space, and communication behav-
ior is optimized via standard reinforcement learning (rein-
forced communication learning, RCL) (Foerster et al. 2016;
Lowe et al. 2017).

RCL approaches tend to be more general than differen-
tiable approaches(Lowe et al. 2017). This is because the
communication channel, and all downstream processing of
messages selected by agents, is considered to be part of the
environment, and is therefore treated as a black box. No as-
sumptions are made about what influence a particular mes-
sage may have on other agents or future state transitions.
RCL approaches therefore naturally handle unknown chan-
nel noise (Lowe et al. 2017). Additionally RCL naturally
handles discrete communication channels because RCL
does not require backpropagation through the communica-
tion channel, so message selection can be non-differentiable.

The downside of RCL’s generality is that it typically re-
quires significantly more learning updates to converge to a
satisfactory policy, compared to differentiable approaches
(Foerster et al. 2016). In RCL, agents are not explicitly pro-
vided with knowledge of how their message selection im-
pacts the behavioral policy of other agents, and must instead
deduce this influence through repeated trial and error. On the
other hand, differentiable approaches allow one to explic-
itly compute the derivative of recipient agents’ behavioral
policy or action-value function with respect to the sending
agent’s communication policy parameters. This allows dif-
ferentiable approaches to converge to better policies after
fewer learning updates compared to RCL.

One additional advantage to differentiable approaches is
that because the objective function used to optimize commu-
nication in general does not directly depend on communica-
tion behavior, it is possible to train communication behav-
ior via imitation learning, with no explicit expert demonstra-
tions of communication. This is useful when one can gener-
ate expert action demonstrations but not expert communica-
tion demonstrations, e.g., when a communication-unaware
centralized expert is present (Paulos et al. 2019).

Several differentiable approaches in the past have al-
lowed agents to exchange real-valued messages(Foerster
et al. 2017; Sukhbaatar, Szlam, and Fergus 2016). Differ-
entiable approaches that consider real-valued communica-
tion signals cannot naturally handle discrete communica-
tion channels, as a discrete channel is non-differentiable.
Some recent approaches have circumvented this problem
by using biased gradient estimators (Foerster et al. 2016;
Mordatch and Abbeel 2017; Lowe et al. 2017); however,

biased estimators typically require additional tuning pa-
rameters or more complex training techniques such as an-
nealing (Foerster et al. 2016; Mordatch and Abbeel 2017;
Jang, Gu, and Poole 2016). Moreover, biased gradient es-
timators lack the convergence guarantees of unbiased ones.
Additionally, to the best of our knowledge, existing differ-
entiable approaches cannot function with unknown chan-
nel noise, because the channel then represents an unknown
stochastic function whose derivatives are consequently un-
known. The fact that differentiable approaches are restricted
to channels with no/known noise limits their applicability to
real-world robotic systems.

3 Theory
In this section we explain our approach to differentiable
communication learning with a discrete communication
channel. We first focus on the case in which channel noise
is not present, and then expand our approach to the noisy
channel case. Throughout this paper, we assume centralized
training, meaning that all training data (agent observations
and ground-truth communication signals) can be thought of
as being sent to a centralized server where learning updates
are computed for each agent, as is done in many multi-
agent RL approaches, such as (Kraemer and Banerjee 2016;
Foerster et al. 2017; 2016). We feel that this is a reasonable
assumption, because often training takes place in a setting
in which additional state information is available than what
will be available to agents at execution time. However, we
also assume decentralized execution, meaning that at exe-
cution time (i.e., after the training has finished/converged),
agents do not need to transfer data among themselves or with
a centralized server, other than via the communication chan-
nels available to them within the environment.

3.1 Communication in a Discrete, Noise-Free
Channel

Consider a multi-agent reinforcement learning problem with
K agents. Assume that, at a given timestep, a particular
agent (Alice) is able to communicate to another agent (Bob)
via a noise-free discrete communication channel with ca-
pacity C (in bits). For now, we neglect details associated
with how agent policies are trained, and assume some sort of
gradient-based RL approach is used in which a loss function
is computed from data gathered during a set of agent experi-
ences, which is then differentiated with respect to agents’
policy parameters to compute a gradient update. This as-
sumption is sufficiently general to encapsulate most promi-
nent RL algorithms, such as Q-learning and variants of
policy gradient. Additionally, we do not specify what fac-
tors determine which agents can communicate, as this is
problem-specific. Here we are primarily concerned with how
gradients are backpropagated through the channel.

Because the communication channel is discrete, any mes-
sage m sent through the channel from Alice to Bob is taken
from a finite set of possible messages, i.e., m ∈ M , where
M = {m1, ...,m|M |}, and |M | ≤ 2C . If we wish to perform
differentiable communication learning in such an environ-
ment, we need to compute the derivative of the input of Bob



with respect to the output of Alice. However, the derivative
of the channel output with respect to the input is not well-
defined, making typical backpropagation impossible.

Existing approaches use a biased gradient estimator to cir-
cumvent this problem, such as the gumbell-softmax estima-
tor. We propose an alternative approach, described below, in
which Alice generates a real-valued communication signal
z, which is encoded into a discrete message by a stochas-
tic quantization procedure (randomized encoder). The re-
sulting discrete message m is sent through the communi-
cation channel and is received by Bob, who then uses this
discrete message to compute an approximation of the origi-
nal real-valued signal generated by Alice, ẑ, using a stochas-
tic dequantization procedure (randomized decoder) (fig. 1).
We show that the encoder/channel/decoder system is math-
ematically equivalent to an analog communication channel
with additive noise, allowing the partial derivative of Bob’s
reconstruction with respect to Alice’s communication signal
to be computed.

Randomized Encoder The purpose of the randomized en-
coder is to convert a real-valued output from Alice into a dis-
crete message that can be sent through the channel to Bob.
One simple approach would be to quantize z directly; how-
ever, the derivative of this operation then vanishes every-
where except at the boundaries of the quantization intervals,
where it is undefined, precluding the use of this simple idea
in a differentiable communication setting.

Instead, we propose the following non-deterministic
quantization method: for simplicity, assume z is scalar and
z ∈ [0, 1], however the encoding process can be easily gen-
eralized to vectors of arbitrary length. To encode z, we first
perturb it with noise ε, which is sampled independently at
each timestep from a uniform distribution centered at 0 with
width δ = 1

|M | , i.e., z′ = z + ε, where ε ∼ U
(
·;− δ2 ,+

δ
2

)
.

z′ now ranges from − δ2 to 1 + δ
2 . z′ is then quantized into

one of |M |+1 quantization intervals of width δ, spaced uni-
formly along the range of z′. The index of the quantization
interval is taken to be the discrete message, with the special
case that the last quantization interval is identified with the
first, so that there are exactly |M | possible values for m (fig.
2). In other words, the discrete message to be sent through
the channel is given by:

m =

⌊
(z + ε+ δ/2) (mod 1)

δ

⌋
.

Note that here m ∈ {0, ..., |M |− 1}, however this integer
representation can be converted to binary for use in a digital
communication channel.

Randomized Decoder The goal of the randomized de-
coder is to reconstruct z from m, denoted ẑ, such that ẑ can
be represented as a continuous, differentiable function of z,
and a noise source that is independent of z.

Upon receiving m, Bob computes the reconstruction as
ẑ = C(m)− ε, where C(m) denotes the center of the quan-
tization interval corresponding m, C(m) = δ(m + 1

2 ) (fig.
2). One special case exists in which the decoding process
yields ẑ < − δ2 , in which ẑ = 1 + C(m) − ε. In short, the
reconstruction is given by:
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Figure 1: Randomized encoder/channel/decoder: The real-
valued output z from agent Alice is converted into a discrete
message m by the randomized encoder, which additionally
takes random noise variable ε. The message m is then sent
through the channel to agent Bob, who decodes it into ẑ (a
reconstruction of z), using the randomized decoder, which
also takes ε as an input. Under the simple reparameteriza-
tion ẑ = z+ e, ẑ becomes a continuous, differentiable func-
tion of z, allowing gradients to be naturally backpropagated
through the discrete communication channel.

ẑ =

{
δ(m+ 1

2 ), if δ(m+ 1
2 ) > − δ2

1 + δ(m+ 1
2 ), otherwise.

(1)

We prove in the supplementary material that using the
particular encoding/decoding procedure detailed above, ẑ
can be reparameterized according to ẑ = z + e, where
e ∼ U(·;− δ2 ,+

δ
2 ). Under this reparameterization, the par-

tial derivative of ẑ with respect to z is precisely 1. The
encoder/channel/decoder system therefore becomes mathe-
matically equivalent to an analogous situation in which we
send real-valued z directly through an analog communica-
tion channel, that introduces additive noise to the signal, but
is nonetheless differentiable.

Note that Bob requires knowledge of the value of ε that
Alice used to encode m, which we do not send through the
channel. This is not a problem, because ε does not depend
upon z and we can therefore assume the agents agree ahead
of time upon a sequence of ε values to use for each timestep.
Practically, this would most likely amount to all agents us-
ing the same pseudorandom number generator with the same
seed. To generalize the complete encoding/decoding proce-
dure to cases in which z is a vector rather than a scalar, one
can apply the above procedure element-wise with a distinct
value of ε to each component of z.

3.2 Communication in a Discrete Channel with
Unknown Noise

Here we present a method for generalizing our approach to
channels with unknown noise. We define a noisy channel
to be on in which the output of the channel, m̂, is not nec-
essarily the same as the input m, but instead is distributed
according to some unknown distribution that we assume
can depend on the input to the channel and the state, i.e.,
m̂ ∼ P (·|m,S). We assume this distribution is completely
unknown to us. Consequently, the message reconstruction
error will no longer be distributed according to a known dis-
tribution, and can depend on z and S in unknown ways.

To make the difficulty introduced by unknown channel
noise more clear, we can express our message reconstruc-
tion in the following form:
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Figure 2: Randomized encoder and decoder: The real-valued
output z from agent Alice is first perturbed by random noise
ε, which is sampled from a zero-centered uniform distribu-
tion with width equal to the quantization interval to form z′.
z′ is then quantized into one of the |M | quantization inter-
vals, the index of which is taken to be the discrete message
m. The message m is finally sent through the channel to
agent Bob, who uses it to compute a reconstruction of z by
subtracting ε from the center of the quantization interval cor-
responding to m.

ẑ = h(z, α(z, S, β)),

where h is a known, deterministic function, α is an unknown
function representing channel noise, and β is some indepen-
dent noise source that does not depend on z or S. Differ-
entiating ẑ w.r.t. z, we see that the derivative contains an
unknown term, namely the derivative of α w.r.t. z:

∂ẑ

∂z
=
∂h(z, α)

∂z
+
∂h(z, α)

∂α(z, S)

∂α(z, S)

∂z
.

The only situation in which we could backpropagate
through the channel without knowing the exact form of α is
if we know α does not depend on z, which is not generally
the case for the procedure we’ve presented so far. However,
recall that what is actually sent through the communication
channel ism. Because we have a choice in how z is encoded
into m, we have some influence over the effect of channel
noise on z. In fact, we can use this capability to render re-
construction error completely independent of z, so that ∂ẑ∂z is
known. Consider the following procedure: z is encoded into
m in a manner similar to that detailed in 3.1. After this, a
one-to-one mapping is randomly generated from each mes-
sage to every other message in M , described by the permu-
tation sequence Q. m is then mapped according to Q to m̄,
which is sent through the channel. Here we will refer to this
step as the ”encryption” step, as it is effectively equivalent to
a simple form of encryption, which can be thought of as con-
cealing the value of m from the environment, thus limiting
the ways in which the decrypted message distribution can
vary with m. The recipient agent receives ˆ̄m, which it then
decrypts by mapping it according to Q−1 to an estimate of
m, which we denote m̂. This is then converted to ẑ via the a
randomized decoder similar to that described in 3.1 (fig. 3).

We make some slight modifications to our randomized en-
coder for use in noisy channels. We now take communica-
tion output z to be a vector on the unit circle. This repre-
sentation allows z to maintain exactly 1 bounded degree of
freedom; however, it allows us to eliminate the discontinuity
associated with the modulo used in the noise-free technique
described in 3.1, because a vector can vary smoothly even

encrypt decrypt

Noisy
Channel 

Figure 3: Encryption technique for channels with unknown
noise. After discrete message m is generated, it is encrypted
according to permutation sequence Q into m̄. m̄ is then
sent through the communication channel, which outputs ˆ̄m,
which is not necessarily the same as m̄. ˆ̄m is then decrypted
(mapped by Q−1 to form m̂, which can be thought of as
an estimate of the original message m. With these encryp-
tion/decryption steps, the apparent channel noise introduced
in the mapping form m to m̂ takes on a known form that
allows to compute unbiased gradients through the channel.

when its angle jumps from−π to +π. This modification will
be crucial for representing the communication channel as a
differentiable function in the presence of channel noise. We
again perturb z by random noise ε ∼ U(·;− δ2 ,+

δ
2 ). How-

ever, to maintain the unit circle constraint, ε is taken to be an
angular perturbation, which we apply to z by multiplication
with the 2-dimensional rotation matrix corresponding to ε,
denoted R(ε, to form z′ = R(ε)z. z′ is then quantized into
one of |M | quantization intervals, each one corresponding
to a particular angular range on the unit circle, to form dis-
crete message m. Because the range of angles of z′ is now
[−π,+π), the quantization intervals have width δ = 2π

|M | .
(fig. 4). In other words, m is given by:

m =

⌊
arctan2(z′2, z

′
1) + δ/2)

δ

⌋
,

where z′1 and z′2 are the first and second elements of z′ re-
spectively, and z′ = R(ε)z.

Following the quantization, m is then encrypted into m̄
by Q, which is then sent through the communication chan-
nel. Upon receiving output of the communication channel
ˆ̄m, Bob then decrypts ˆ̄m into m̂ (maps according to Q−1),
and estimates z according to:

ẑ = R(−ε)C(m̂),
where C(m) is the vector corresponding to the center of the
angular range represented by m.

In the presented communication procedure, there are two
sources of error that are introduced into Bob’s reconstruc-
tion of Alice’s real-valued communication output. The first
is due to the fact that we have a limit on information transfer
rate through the channel, placing a fundamental limit on how
precisely we can reconstruct z, even in a noise-free chan-
nel. This form of noise is present whenever the communi-
cation channel does not corrupt the discrete message, as de-
scribed in sec. 3.1, i.e., when ˆ̄m = m̄. In this non-corrupting
case, we claim (and show in the supplementary material),
that the angular error distribution of ẑ is uniform, indepen-
dent of z, and zero-centered, in particular ẑ = R(e)z, where
e|m̂ = ˆ̄m ∼ U(− δ2 ,+

δ
2 ). The second source of error is due

to channel noise, and comes into effect whenever the dis-
crete message is corrupted, i.e., ˆ̄m 6= m̄. In the
supple-



mentary material, we show that in this case, the angular er-
ror distribution is still zero-centered, but now has uniform
density everywhere except within the interval [− δ2 ,+

δ
2 ]. ẑ

can therefore be represented in the following way:
ẑ = R(e)z,

where e is distributed according to a mixture of the two dis-
tributions described above. In particular, we show in the sup-
plementary material that e is distributed according to:

Pe|z,S(e|z, S) =


1
δ (1− Pe(S)), − δ2 ≤ e < −

δ
2

1
2π−δPe(S), −π ≤ e < − δ2

1
2π−δPe(S), + δ

2 ≤ e < π

(2)

where Pe(S) = 1
|M |

∑
min∈M P (mout = min|S,min) is

the state-dependent average channel error rate, withmin and
mout representing the channel input/output, respectively.
Since e is independent of z with the introduction of our en-
cryption step, it is possible to compute the Jacobian repre-
senting the partial derivatives of ẑ with respect to z, regard-
less of the form of channel noise, given by: ∂ẑ∂z = R(e).

Similar to the noise-free case, to generalize the entire pro-
cedure to multi-elements messages (i.e., z is a collection of
unit-length vectors rather than a single vector), one can sim-
ply apply the above procedure to each element of z indepen-
dently, using unique values of ε and Q for each element.

4 Experiments
We compare the performance of our approach to a dif-
ferentiable communication learning approach with real-
valued messages, and a reinforced communication learn-
ing approach, on two simple but illustrative example tasks,
described below, with a noise-free communication chan-
nel. Additionally, we compare the performance of our
encryption-based, channel-noise-tolerant approach to the
same RCL approach, on the same two example tasks, but
introducing message-dependent channel noise.

4.1 Implementation Details
The actor-critic algorithm is used as the reinforcement learn-
ing algorithm for all experiments, with separate actor and
critic networks. Both actor and critic networks for all tasks
are composed of a convolutional stack followed by two
fully-connected layers. The policy networks used in the
search task also use a simple single-layer recurrent neural
network to help them remember areas they have previously
explored and therefore do not need to revisit. Because the
critic network is used only during training, we choose to give
it full state observability in all experiments. During training,
the policy networks are given only information they are will
have during execution time. For a given task, the same ar-
chitecture is used for both the differentiable and RCL ap-
proaches we test, except for differences to the message in-
puts and outputs necessitated by the differences between the
two approaches. In both tasks, we consider 2 agents that are
each able to send the other 40 bits of information at each
timestep. In both the differentiable and RCL approaches we
test, policy parameters are shared across agents, and each
agents’ action policies are represented as a categorical dis-
tribution over discrete actions. In our RCL approach, mes-
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Figure 4: Randomized encoder for channels with unknown
noise: the real-valued vector output z from agent Alice is
constrained to lie on the unit circle. It is then rotated by ran-
dom noise ε, which is sampled from a zero-centered uniform
distribution with width equal to the quantization interval to
form z′. z′ is then quantized into one of |M | quantization
intervals, each corresponding to a particular angular range,
and the index of which is taken to be the discrete message
m. In the case depicted above, m = m2.

sages between agents are strings of 40 bits, and the commu-
nication policy of each agent (from which a message is sam-
pled and sent to the other agent at each timestep) is repre-
sented as a collection of independent Bernoulli distributions
representing the probability of each corresponding message
bit being a 1. In our differentiable approach, agents output a
real-valued communication signal with 10 elements at each
timestep. Each element of this communication signal is then
discretized independently into one of 16 discrete message
elements, meaning each element can be thought of as a 4-bit
word (a nibble), allowing for a total of 1610 = 240 different
possible messages, equivalent to 40 bits.

4.2 Reinforced communication Learning
In our experiments involving RCL, we allow agents to ex-
change bitstring messages of length 40 at each timestep (i.e.,
we represent the communication policy of each agent as a
set of independent bitwise probabilities, each representing
the probability that the corresponding message bit is a 1).

4.3 Task 1: Hidden-Goal Path-Finding
The first example task is a path-finding problem in which
each agent must navigate to a randomly-assigned goal cell
in a 10x10 grid, and at each timestep is able to move up,
down, left, right, or remain stationary. Agents do not ob-
serve their own goals or the other agent’s location, but in-
stead observe only their location and the other agent’s goals;
thus, communication is necessary for agents to reliably find
their goals. In this task, agents’ policy networks are feed-
forward neural networks with no persistent state, meaning
they cannot remember past messages or observations, and
must therefore communicate at every timestep. In the noise-
free channel case, we compare a differentiable learning ap-
proach in which agents are able to exchange real-valued
messages (in the form of 10-element vectors in which each
element is bounded between 0 and 1), a reinforced com-
munication learning approach in which messages are bit-



strings, and our proposed differentiable learning approach
(described in Sect. 3.1) in which messages are composed of
10 discrete elements, each taking one of 16 possible discrete
values. In this case, messages sent by each agent are guaran-
teed to be received by the other agent at the next timestep,
completely unaltered. In the noisy channel case, we corrupt
messages with an asymmetric bit-flip noise as described in
Sect. 4.5. We compare the reinforced communication learn-
ing approach with the noise-tolerant variant of our proposed
differentiable approach (described in Sect. 3.2), where mes-
sages are converted to a 40-bit binary representation so the
same channel noise can be added.

We utilize a shared reward structure, in which agents both
receive the same total reward, computed as a sum of both
agents’ individual rewards. At each timestep, agents are re-
warded proportionately to how much closer to their goals
they become during that timestep, with an additional penalty
for every timestep the agents have not reached their goal, and
a penalty for each timestep agents choose not to move while
not at their goal location to encourage exploration, similar
to (Sartoretti et al. 2018a; 2018b).

Each agent’s policy network observes its own location and
the other agent’s goal in the form of two one-hot 10x10
matrices, which are fed into the convolutional stack of the
agent’s policy network. Additionally, each agent observes
the message generated by the other agent at the last timestep,
that is fed into the policy network as a separate input,
which is processed by a fully-connected layer before being
combined with the output of the convolutional stack. Each
agent’s critic network observes its location and goal, and the
other agent’s location in goal, again as one-hot matrices.

4.4 Task 2: Coordinated Multi-Agent Search
The second example task is a two-agent search problem in
which each agent is again assigned a goal location in a 10x10
grid. However, in this task, either agent can observe either
goal, but only when they are in one of the grid cells im-
mediately adjacent to the goal, or on the goal itself. This
limited observability is meant to simulate a sensor with a
finite field of view. In this task, to most effectively solve
the problem, agents should exchange information related to
their observations, in effect broadening each one’s sensor
footprint. Again, in the noise-free case, we compare differ-
entiable communication learning with real-valued messages,
reinforced communication learning with binary messages,
and our proposed differentiable approach with discrete mes-
sages, and in the case with channel noise, we compare rein-
forced communication learning with the noise-tolerant vari-
ant of our approach described in 3.2. We additionally com-
pare these approaches to a version of the task with no com-
munication among agents, to test the hypothesis that com-
munication improve performance.

The reward function for this task is the same as the reward
function used for the hidden-goal path-finding task. The ob-
servations to both the actor network and critic network are
also largely the same, with the exception that each agent’s
actor network now receives as input 4 matrices, representing
its location, its goal (if visible), the other agent’s location,
and the other agent’s goal (if visible).

4.5 Channel Noise Model
The channel noise model we use for both tasks is an asym-
metric bit-flip error model. Bits are flipped with unequal
probability depending on their value. The probability of a
particular message bit being flipped is taken to be indepen-
dent of all other bits. More specifically, in the hidden-goal
path-finding task, the probability of the ith message bit being
flipped is given by P (flipi|m̄i = 0) = 0.1 and P (flipi|m̄i =
1) = 0.05. In the coordinated multi-agent search task, the
bit-flip probability is given by P (flipi|m̄i = 0) = 0.02 and
P (flipi|m̄i = 1) = 0.01.

The noise was chosen to be asymmetric so that it would be
message-dependent, and therefore highlight the capability of
our approach to deal with channel noise that depends on the
message in arbitrary ways.

4.6 Results
In both example tasks, with and without channel noise, we
found that when either method was able to solve the task,
our proposed discrete differentiable communication learning
approach drastically outperformed RCL approaches. In the
noise-free hidden-goal path-finding task, our proposed tech-
nique was able to solve the task nearly as rapidly as a real-
valued differentiable approach that places no limit whatso-
ever on information transfer rate through the channel. Un-
surprisingly, in the path-finding task with channel noise, the
performance of our approach was somewhat degraded, re-
quiring more time to converge than in the noise-free case,
and attained worse final performance. However, our ap-
proach represents a significant improvement over RCL, the
only other approach we are aware of that is applicable to
such a noisy channel setting. In fact, RCL with noise com-
pletely failed to solve the task, likely due to the additional
variance being introduced into its policy gradient estimates.

In the coordinated multi-agent search task with no chan-
nel noise, our approach outperforms the communication-
free variant we tested, indicating that agents are using their
communication abilities to their benefit. There again, we
find that our approach outperforms RCL, which largely fails
to solve the task. The fact that RCL fails to solve the task
is not hugely unexpected, as (Foerster et al. 2016) observed
similar behavior in some experiments with their reinforced
inter-agent learning technique (a form of RCL). Interest-
ingly, the differentiable approach that used real-valued mes-
sages seemed to escape a local minimum that our discrete
differentiable approach became trapped in. It is possible that
the message discretization we used (16 possible values for
each message element) was too coarse, and therefore intro-
duced too much noise. Perhaps fewer message elements with
a finer discretization would have allowed our approach to
perform better on this task while keeping the required in-
formation transfer rates the same. We will investigate this
trade-off in future work.

In the coordinated multi-agent search task with channel
noise, both RCL and our proposed differentiable approach
struggle to make progress, and learning appears to be un-
stable. It is possible that additional tuning of the learning
algorithms could result in better performance on this task,
which we will determine in future work.
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Figure 5: Results for the Hidden-Goal Path-Finding Task.

5 Conclusions
In this paper, we presented novel approaches that allow dif-
ferentiable communication learning to be effectively applied
to realistic settings where such approaches were not previ-
ously applicable. Specifically, we presented a novel stochas-
tic encoding/decoding procedure, that can be used in con-
junction with multi-agent reinforcement learning, to allow
unbiased gradient estimates through a discrete channel. This
form of communication learning is made possible by the
fact that, with our proposed technique, the encoder/discrete
channel/decoder system becomes mathematically equivalent
to an analog channel with additive noise, through which
derivatives can easily be backpropagated. We additionally
extended our approach to allow gradient backpropagation
through a channel with unknown noise. To the best of our
knowledge, our differentiable communication learning ap-
proach is the first one that can handle such unknown noise.
We enabled this noise-tolerance by introducing an encryp-
tion step immediately before the message is sent through the
discrete channel, which forces apparent channel noise to be
independent of the communication signal being sent, mean-
ing it does not contribute to the gradient of the channel and
can therefore be ignored in gradient calculations.

We evaluated the effectiveness of our proposed techniques
in two example tasks, with and without channel noise, com-
pared to a reinforced communication learning approach, and
a differentiable approach using real-valued messages (where
applicable). We found that our approach outperforms the
RCL approaches we tested in all cases in which either al-
gorithm can solve the task. Additionally, we found that in
one of the two example tasks, our differentiable approach,
which uses a very coarse message discretization and a fairly
tight limit on channel capacity, performed nearly as well as
the real-valued differentiable approach we tested, which as-
sumes no limit on channel capacity. Our experimental re-
sults, along with the theoretical justification of our tech-
nique, indicate that our approach offers significant advan-
tages over existing approaches to multi-agent reinforcement
learning with communication, especially in cases with real-
istic discrete and noisy communication channels.
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Figure 6: Results for the Coordinated Search Task.

Ongoing work focuses on three natural extensions of our
presented approaches. First, we are applying our approach to
more complex and realistic problems, such as tasks involv-
ing many agents in environments with obstacles and other
impediments. We are also investigating the use of alternative
learning modalities, such as imitation learning, in our ap-
proach. Because agents learn to exchange messages that op-
timize some performance metric that depends on messages
only indirectly through the agent policies, expert demonstra-
tions can be used to train policies without explicit commu-
nication demonstration. Therefore, it is likely possible that
our approach could learn emergent communication behav-
ior solely through imitation of a centralized expert that does
not rely on communication, similar to (Paulos et al. 2019).

Second, we are also currently investigating how more
established encryption techniques, such as RSA (Rivest,
Shamir, and Adleman 1978), could be applied to our ap-
proach. For instance, while the type of encryption we use is
information-theoretically secure and therefore the environ-
ment is guaranteed to have no knowledge of the message we
are communicating, modern encryption techniques rely in-
stead on requiring third parties to do an enormous amount of
computation to decrypt the message. It may be sufficient to
use such non-information-theoretically secure but more ef-
ficient encryption techniques to make channel noise nearly
perfectly independent of the communication signal.

Finally, additional ongoing work explores how error cor-
recting codes could be utilized to decrease the amount of
noise introduced into agents’ communication inputs. Some
error-correction techniques, such as a cyclic redundancy
check, allow one to detect when an error has occurred in
message transmission. Because a large source of noise in
our technique results form cases in which the channel out-
puts an erroneous message, being able to detect such cases
with some probability, and neglect the erroneous messages,
could lead to an improvement in performance in situations
with channel noise.
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