
Simultaneous Policy and Discrete Communication Learning for
Multi-Agent Cooperation

Benjamin Freed1, Guillaume Sartoretti1, and Howie Choset1

Abstract— Decentralized multi-agent reinforcement learning
has been demonstrated to be an effective solution to large
multi-agent control problems. However, agents typically can
only make decisions based on local information, resulting in
suboptimal performance in partially-observable settings. The
addition of a communication channel overcomes this limi-
tation by allowing agents to exchange information. Existing
approaches, however, have required agent output size to scale
exponentially with the number of message bits, and have been
slow to converge to satisfactory policies due to the added
difficulty of learning message selection. We propose an inde-
pendent bitwise message policy parameterization that allows
agent output size to scale linearly with information content.
Additionally, we leverage aspects of the environment structure
to derive a novel policy gradient estimator that is both unbiased
and has a lower variance message gradient contribution than
typical policy gradient estimators. We evaluate the impact of
these two contributions on a collaborative multi-agent robot
navigation problem, in which information must be exchanged
among agents. We find that both significantly improve sample
efficiency and result in improved final policies, and demonstrate
the applicability of these techniques by deploying the learned
policies on physical robots.

I. INTRODUCTION

As the required complexity of robot-robot interactions in
domains such as autonomous transportation and manufac-
turing increases, so will the need for scalable and effective
multi-agent control strategies. Reinforcement learning has
shown great success recently in complex multi-agent control
problems [1], [2], allowing groups of agents to automatically
learn policies superior to hand-crafted controllers. Many
multi-agent reinforcement learning (MARL) approaches have
focused on completely decentralized policies, meaning each
agent selects actions independently of all other agents using
only local information from its own observations [3], [4], [5],
[6], [7]. Such decentralized policies offer major scalability
and parallelizability advantages over centralized planning
approaches, often at the cost of optimality or joint action
coordination. Because actions are selected independently, the
computational burden scales linearly with the team size (as
opposed to exponentially, as for typical centralized planners),
and action selection for each agent can occur in parallel [8].

One important drawback to decentralized MARL is that
each agent’s policy is conditioned only on its own ob-
servations, as opposed to all information available to the
group. This lack of information sharing results in suboptimal
policies and possibly poor performance at the group level [8].

Benjamin Freed, Guillaume Sartoretti, and Howie Choset are with the
Robotics Institute at Carnegie Mellon University, Pittsburgh, PA 15213,
USA. {bfreed,gsartore,choset}@cs.cmu.edu

Recently, this problem has been addressed by allowing agents
to selectively exchange information using a communication
channel, to supply each other with the information required
to make more informed local decisions, ultimately allowing
superior global performance [6], [9], [4], [10]. However,
this additional capability poses additional challenges, such
as how to select the best information to send, how to encode
it into a message, and how to interpret messages from
other agents. Past approaches generally fall into one of two
categories: 1) reinforced communications learning, in which
messages are treated as another possible action, and standard
RL approaches are applied to optimize message selection
[6], [10], and 2) differentiable communications learning, in
which sending and receiving agents are treated as one neural
network and are trained with backpropagation. [6], [9].

We chose to focus on reinforced communications learn-
ing, as it is more general than differentiable communica-
tions learning. Reinforced communications learning naturally
handles discrete, non-differentiable communication channels
with unknown channel noise [4]. We feel that discrete,
noisy channels are representative of many real-world robotics
applications, but, to the best of our knowledge, is currently
beyond the capability of differentiable communications ap-
proaches. There are, however, two significant problems
with past approaches to reinforced communications learning,
which we address in this work. The first is that, in past
approaches, message selection has been framed as a choice
of a single message from the entire set of possible messages
[6], [9], [4], [10], the size of which scales exponentially with
amount of message information. Practically, this means that
each agent’s output size must scale exponentially with the
number of message bits, which quickly becomes infeasible
for even modest message sizes. Secondly, adding communi-
cations learning increases the difficulty of the learning task
because trajectories are now sampled from a much larger
space (the joint state-action-message space as opposed to
just the joint state-action space), meaning more episodes are
required to adequately cover the space.

To address the scaling issue mentioned above, we propose
an independent bitwise message policy parameterization, as
described in Section III-A, from which individual message
bits are independently sampled. This parameterization allows
agent output sizes to scale linearly with the number of
message bits, rather than exponentially. We also present
a technique to combat the added difficulty of learning a
message policy by deriving an improved policy gradient
estimator (section III-B), which we theoretically prove yields
a lower variance message gradient contribution than a typical



policy gradient estimator. We evaluate the practical impact of
these contributions in a set of experiments involving a simple
but illustrative partially observable multi-agent control task
(section IV). Building from our prior work on distributed
learning of collaborative policies [11], [12], [13], agents
share policy parameters, allowing them to contribute learning
updates to the same parameter set, thereby improving learn-
ing efficiency compared to heterogeneous policies. We then
deploy simulation-trained policies onto a pair of autonomous
ground vehicles.

II. BACKGROUND

In this section, we detail how the problem of decentralized
control of a group of agents in an unknown environment is
modeled as a multi-agent Markov decision process (MDP).
We then extend this model to show how agents can utilize a
(possibly noisy or intermittent) communication channel made
available to them to exchange information.

A. Multi-agent Markov Decision Process

In the development of our theoretical results, we choose
to model the environment as an MDP containing M agents,
each selecting actions independently (a multi-agent MDP),
with full state observability. A multi-agent MDP is defined
by (S,A, P, r, ρ0, γ), where S is the state space, A is the joint
action space, consisting of every possible combination of in-
dividual agents’ actions, P denotes the state transition prob-
ability function, r denotes the reward function, ρ0 denotes
the initial state distribution, and γ ∈ (0, 1] denotes a discount
factor. At each timestep, agents select individual actions
according to independent state-conditioned policies, denoted
π(1)(a

(1)
t |st; θ1), ..., π(M)(a

(M)
t |st; θM ), where θi signifies

the parameters for the ith agent. We wish to find the policy
parameters θ = {θ1, ...θM} that maximize expected cumu-
lative reward, J = Ep(τ ;θ)[r(τ)] = Ep(τ ;θ)

[∑T
t=0 γ

tRt

]
,

where τ = {s0, a0, ..., sT , aT } denotes the trajectory (all
states encountered and action taken during an episode, where
an episode terminates when a terminal state is reached),
s0 ∼ ρ0, at ∼

∏M
j=1 π

(j)(a
(j)
t |st), st+1 ∼ P (·|st, at), and

Rt denotes the reward received at time t [14].
Our approach (described below for the case of full-

state observability) can be generalized to partially-observable
environments, where agents receive only local observations
rather than the complete state. This generalization can be
accomplished by conditioning agent policies on the entire
sequence of local observations available to that agent. Such
a decentralized partially-observable model is referred to as a
decentralized partially-observable Markov decision process
(dec-POMDP), and is described in more detail in [15]. We
assume a dec-POMDP world model in our experiments.

B. Multi-Agent MDP with a Communication Channel

We can extend the MMDP model to contain a commu-
nication channel that agents can use to pass messages to
each other. We assume that: 1) messages sent through the
channel do not directly influence the state of the environment.
2) The communication channel is discrete, and has finite

channel capacity. This modeling assumption is made to
reflect real-world communication networks, which typically
transfer digital information at a finite rate. 3) Messages
sent through the channel may be corrupted with arbitrary
unknown channel noise, and the set of agents in communica-
tion with a particular agent may change between timesteps.
4) Messages sent from a given agent will be received by
other agents at the following time step. This assumption is
introduced to model the latency in the channel, and can
be generalized to arbitrary delays. The communications-
enabled model we use is very similar to the dec-POMDP-
com model described in [7], however we do not assume an
explicit cost of communication, and instead assume this cost
is incorporated into the standard reward function.

In addition to an action policy, we now allow each agent
to maintain a message policy, or set of message policies,
indicating the probability with which an agent will sample
a particular message at a given the current observations.
Each (possibly noise-corrupted) message becomes an input
to an arbitrary set of other agents at the next timestep. For
simplicity, we generally consider that each agent maintains
one message policy, denoted P

(j)
m for the jth agent, and

sampled messages are sent to at most one other agent.
We show in the supplementary material how this may be
generalized to situations in which multiple message policies
are maintained, and each agent sends messages to multiple
other agents. At each timestep t for each agent j, we
sample an action a(j)

t ∼ π(j)(·|st,mrec,j
t ; θj) and a message

m
(j)
t ∼ P

(j)
m (·|st, a(j)

t ,mrec,j
t ; θj), where mrec,j

t denotes the
messages received by agent j at time t.

Denoting the joint action and joint message respectively
to be the set of all actions and messages selected at
a given time step, we can express the joint action pol-
icy as π(at|st,mrec

t ; θ) =
∏M
i=1 π

(i)
(
a

(i)
t |st,m

rec,i
t ; θi

)
,

and the joint message policy as Pm(mt|st, at,mrec
t ; θ) =∏M

i=1 P
(i)
m

(
m

(i)
t |st, a

(i)
t ,mrec,i

t ; θi

)
. As in the case without

messages, the objective function is the expected cumula-
tive episode rewards, however now we take the expecta-
tion across trajectories that contain messages, i.e. τ =
(a0, s0,m0, ..., .aT , sT ,mT ).

III. THEORY

We detail our approach to simultaneously learning multi-
agent behavioral and communication policies, including our
independent bitwise message policy, and an improved policy
gradient estimator. We would like to emphasize that while
we assume for simplicity that each agent maintains one
message policy, and samples exactly one message at each
timestep that is sent to at most one other agent throughout
this section, we detail in the supplementary material how our
approach can be generalized to the case in which each agent
maintains multiple message policies, and sends to multiple
different agents. This generalization allows our approach to
be applied to problems with any number of agents and any
communication topology. In this work, we do not address the
issue of how each agent selects recipients for its messages,



and instead assume that some mechanism for determining
message recipients is already in place, either as part of the
environment or as part of the agents’ action spaces.

A. Independent Bitwise Policy Parameterization

Existing approaches to reinforcement-learned communica-
tion frame message selection as a choice of a single message
from the set of possible messages M . In the Q-learning
approach taken by [6], a separate Q-value for each message
in M is learned, and at each timestep the message with the
highest Q value is selected. In the policy-gradient approach
taken by [10], messages are selected from a learned message
policy distribution over M . Both approaches require each
agent to have |A| + |M | outputs, where |A| denotes an
agent’s action-space size. Because |M | scales exponentially
with message size (measured in bits), such approaches are
not feasible for even a modest message sizes. For this reason,
we parameterize our message policy as a set of independent
probability distributions over each message bit. This allows
the size of each agent’s output to scale linearly with message
size, because only one additional output is required for
each additional message bit. One potential drawback to this
approach is that because each bit is sampled independently,
it does not capture the same level of dependency between
message bits as a fully joint message distribution would.
However, because a bitwise factorizable stochastic message
policy can represent any deterministic message policy, if one
assumes the optimal communication policy is deterministic
(which is likely the case, since a deterministic message policy
can be proven to allow agents to communicate more infor-
mation compared to a non-deterministic one), such a bitwise
message policy is capable of representing the optimal policy.
In other words, inter-bit dependencies are not necessary in
cases where the message policy converges to determinism. In
addition to the scalability advantage the independent bitwise
representation, in practice we observe a large increase in
learning efficiency compared to learning a full distribution
across M , probably owing to the drastically reduced output
dimensionality (fig. 3).

B. Policy gradient for MARL with Communication

In this section, we derive a policy gradient estimator for
MARL with communication. Additionally, we show how
one can take advantage of the property that messages only
influence the world via the actions of the recipient agent
at the next time step to derive a more accurate baseline
and therefore reduce the variance of our policy gradient
estimator, compared to what would be possible if messages
were assumed to have arbitrary influence on the environment.

For convenience, we introduce the following notion: The
augmented state, representing the concatenation of the state
at time t and all messages received at time t, will be
denoted s̄t = [st,m

rec
t ]. The augmented state visitation

frequency under joint policy π and joint message distribution
Pm will be denoted ρs̄ (s) =

∑T
t=0 γ

tp (st = s|π, Pm). For
convenience, ∇θj log π(j)(at|st,mrec

t ; θ) will be abbreviated

to ∇ log π, and ∇θj logP
(j)
m (mt|st, at,mrec

t ; θ) will be ab-
breviated to ∇ logPm.

Applying the policy gradient theorem [16], and treating
the joint action-message distribution P (at,mt|st,mt; θ) as
a traditional policy, we have that the gradient of the objective
function with respect to θj is:
∇θjJ = Eρs̄

[
∇θj log p(at,mt|st,mrec

t ; θ)Qπ(st, at,mt)
]
,

= Eρs̄
[(
∇θj log π(at|st,mrec

t ; θ)+

∇θj logPm(mt|st, at,mrec
t ; θ)

)
Qπ(st, at,mt)

]
,

= Eρs̄
[(
∇ log π(j) +∇ logP

(j)
m

)
Qπ(st, at,mt)

]
.

(1)
where Qπ(st, at,mt) = Eτ

[∑T
k=t γ

k−tRt|st, at,mt

]
is a

natural extension of the typical Q-function that now depends
additionally on the selected messages at time t.

This gradient can be approximated by the following unbi-
ased gradient estimator:

gj =
(
∇ log π(j) +∇ logP (j)

m

)
Q̂t(st, at,mt), (2)

where Q̂t(st, at,mt) =
∑T
k=t γ

k−tRt|st, at,mt. The vari-
ance of this estimator can be further reduced while keeping
it unbiased by subtracting a baseline from the sum of
future rewards [16], yielding the following gradient estimator
(where the arguments of Q̂t are omitted for brevity):

g′j = ∇ log π(j)
(
Q̂t − b(a,j)t

)
+∇ logP (j)

m

(
Q̂t − b(m,j)t

)
.

(3)
In general, to achieve an unbiased gradient estimator, the
action baseline b(a,j)t should not depend on the action, i.e.
should only depend on the state . However, recent work
showed that if the policy is factorizable, as is the case here
because each agent chooses actions (and messages) condi-
tionally independently from all other agents, the baseline for
each policy factor (in this case corresponding to each agent’s
policy) can be conditioned on the samples drawn from all
other policy factors [17]. As a result, each agent can have its
own action baseline, and that baseline can depend on all other
agents’ actions, as well as all other agents’ messages. In other
words, b(a,j)t can be of the form b

(a,j)
t = b(st, a

6=j
t ,m6=jt ),

where a6=jt and m 6=jt are the set of all actions and messages,
respectively, sampled at timestep t, excluding those of agent
j.

Taking advantage of similar conditional-independence
properties present in our communications-enable model, we
demonstrate that specifically in the case of multi-agent RL
with communication, it is possible to condition the mes-
sage baseline on much more information, while keeping
the resulting gradient estimator unbiased. Specifically, we
show that, because all actions, messages from other agents,
and rewards at time t are conditionally independent of the
message m(j)

t , as well as all actions and messages at time
t+ 1 except a(x)

t+1 and m(x)
t+1, where agent x is the recipient

of m(j)
t , the message baseline for agent j at time t can

take the form b
(m,j)
t = b(st, at,m

6=j
t , Rt, st+1, a

6=x
t+1,m

6=x
t+1),

while keeping the gradient estimator unbiased (see supple-
mentary material). This baseline is equivalent to one of the



form b
(m,j)
t = b(Rt, st+1, a

6=x
t+1,m

6=x
t+1), because the future

trajectory is independent of st, at, m
6=j
t given st+1, a6=xt+1

, and m 6=xt+1. Intuitively speaking, the utility of conditioning
baselines on additional information is that by doing so we
may hope to further reduce the variance of the gradient
estimator, because the baseline can be made to absorb more
of the fluctuations inherent to future rewards. This concept
is explored further in Section III-C.

C. Learned Value Function Baseline

In practice, it is common to use a learned value function as
a baseline. Such algorithms are known as actor-critic [18].
Typically, such baselines are functions of only the current
state, i.e. of the form b(st) = Eat [Qπ(st, at)] = V (s). Wu
et al. propose the following state-action-dependent baseline
for agent j (for an MDP that contains no messages) [17]:
b
(
s, a6=j

)
= E

a
(j)
t

[Qπ(st, at)].
We extend this approach to the case with messages, and

use the following for our action baseline:

ba,jt = Eτ
[∑T

k=t γ
k−tRk

∣∣∣st, a6=jt ,m6=jt

]
= E

a
(j)
t ,m

(j)
t

[Qπ(st, at,mt)] .
(4)

In a similar vein, we propose the following message baseline:

bm,jt = Eτ
[∑T

k=t γ
k−tRk

∣∣∣st, at,mt, Rt, st+1, a
6=x
t+1,m

6=x
t+1

]
= Rt + γE

a
(x)
t+1,m

(x)
t+1

[Qπ(st+1, at+1,mt+1)] .

(5)
where agent x receives agent i’s message from time t.

Defining the action and message advantage estimates for
agent j at time t as Âa,jt = Q̂t − E

a
(j)
t ,m

(j)
t

[Qπ(st, at,mt)]

and Âm,jt = Q̂t+1 − E
a

(x)
t+1,m

(x)
t+1

[Qπ(st+1, at+1,mt+1)], we
see that the message advantage for agent j at time t is
equivalent to the action advantage for agent x at the next
time step, i.e. Âm,jt = Âa,xt+1.

Expressed in terms of advantage estimates, the gradient
estimator then becomes:

g′j = ∇ log π(j)Âa,jt +∇ logP (j)
m γÂa,xt+1. (6)

The advantage of an action is a measure of how much ad-
ditional reward was achieved after its selection compared to
the expected future reward from following the current policy
from the current state. Because a message only influences the
future reward via the recipient agent’s action at the next time
step, it is intuitive that in evaluating a particular message,
we need only consider the advantage of the influenced
action, discounted by 1 time step. We analytically prove in
the supplementary material the contribution of the message
policy to this gradient estimator is lower variance than one
in which the same advantage estimate is used for both the
action and the message. Additionally, we show how such
an approach can be generalized to the case in which agents
send messages to multiple different recipient agents, possibly
sampled from multiple distinct message policies.

In practice, we found it feasible to use a neural network
to approximate these value functions. However, rather than

AGENT 1

AGENT 1 LOC
AGENT 2 GOAL

AGENT 2 LOC
AGENT 1 GOAL

AGENT 2

AGENT 1 LOC
AGENT 2 GOAL

AGENT 1 AGENT 2

AGENT 2 LOC
AGENT 1 GOAL

Fig. 1. Experimental setup. Top: two agents navigate in a grid world,
and observe their own location and the others agent’s goal. Agents do not
observe their own goal, and must therefore communicate it to each other.
Bottom: At each timestep, agents output an action and message policy,
based on their environmental observation and message input. An action and
message are sampled from the action and message policies, respectively, and
each agent’s message becomes an input to the other at the next timestep.

learning a complete Q-function and taking the expectation
with respect to a

(j)
t and m

(j)
t , we simply learned an ana-

log of a traditional value function V π,j(st, a
6=j
t ,m6=jt ) =

Eτ
[∑T

k=t γ
(k−t)Rk|st, a6=jt ,m6=jt

]
by regressing the dis-

counted sum of future rewards obtained in a rollout,
Q̂t(st, at,mt), against st, a

6=j
t , and m6=jt .

IV. EXPERIMENTS

We demonstrate the applicability of our approach to real
robotic systems using a simple but illustrative experiment, in
which robots must jointly learn behavioral and communica-
tion policies. In our experiment, two robots in a grid world
are each tasked with navigating to a randomly selected goal
cell, which remains static throughout an episode. Robots are
only able to directly observe their location, and their neigh-
bor’s goal. Therefore, the robots must exchange information
in order to arrive at their goals with probability higher than
what random exploration would allow. At each timestep,
agents select one out of five possible actions from their
stochastic action policy, corresponding to moving in the four
cardinal directions, or remaining stationary. Additionally,
agents both select a message from their stochastic message
policies, which becomes the input to the other agent at the
next timestep (fig 1). Robots have no persistent state, mean-



ing they cannot remember past observations or messages,
thus necessitating communication at each timestep.

To highlight the benefits of a fully reactive, online be-
havioral and communication policy, we run experiments in
which trained policies are deployed on physical robots. These
robots have actuation noise not present in our simulation
environment, such as delays in action execution; however, the
policy is able to deal with this noise without the additional
computational cost of replanning trajectories.

We use asynchronous actor-critic to train our agents in
simulation, and then deploy their learned policies to perform
real-time control of actual robots. For generality, in section
3 we assumed messages could depend on selected actions;
however in this experiment we selected messages indepen-
dently of actions. We compare the following four techniques:

1) Standard policy gradient, one-hot messages: the
same advantage estimates are used for messages and
actions, and one-hot messages are sampled from a
complete distribution over the message space.

2) Standard policy gradient, bitstring messages: the
same advantage estimates are used for messages and
actions, but the message policy is parameterized as a
set of independent distributions over individual mes-
sage bits.

3) Improved policy gradient, one-hot messages: sep-
arate advantage estimates are used for actions and
messages, as detailed in section 3.3, and one-hot mes-
sages are sampled from a complete distribution over
the message space.

4) Improved policy gradient, bitstring messages:
our full approach, incorporating both separate ac-
tion/message advantage estimates, and a message dis-
tribution parameterized as a set of independent distri-
butions over individual message bits.

Below we detail the specifics of the reward function used,
the neural network structure, the specifics of the learning
algorithms employed for each of the four cases, and the
observed results.

A. Reward Function
To ensure a collaborative joint policy is learned, we use

a shared reward function, in which agents are rewarded
according to the sum of individual rewards. We use a shaped
reward function, as we found that it outperformed a sparse
reward function. Individual rewards are computed in the
following manner:
• A penalty of -0.3 is imposed for every time step the

agent is not on goal
• A penalty of -0.1 is imposed if agents decide not to

move when they are not on goal, or select an invalid
action.

• A reward of 0.2 is given each timestep agents move
closer to their goal.

• A reward of 0 is given for every timestep that finishes
with the agent on goal.

The episode terminates either at the first timestep in which
both agents are resting on their goals or once the maximum

Environment
Observation

message
input

C
on
v

La
ye
rs

FC La
ye
r

action
policy

message
policy

Environment
Observation

Other's
Action

Policy Network

Value Network for Standard Gradient Estimator

Value Network for Improved Gradient Estimator

Environment
Observation

Other's
Action Value

Message
Input

FC La
ye
r

C
on
v

La
ye
rs

FC La
ye
r

FC La
ye
r

Value

C
on
v

La
ye
rs

FC La
ye
r

FC La
ye
r

Fig. 2. Policy and value network architectures. Each agent maintains
a policy and value network. The policy network (top) is responsible for
mapping an environmental observation and the neighboring agent’s message
to its action and message policies. The value network is responsible for
estimating the expected discounted future rewards given a state observation
and other inputs. There are two variants of the value network, used as
a baseline function in either the standard gradient estimator (center) or
improved gradient estimator (bottom). All network architectures process
environmental observations using a stack of convolutional layers, and
process the message input (and/or neighbor’s action) using a separate fully-
connected layer, which is then fused with the processed environmental
observation and passed through two more fully connected layers.

episode length of 256 timesteps is reached, at which point no
additional reward is given. The reward function is designed
so that it is guaranteed to be negative at every time step;
thus, the optimal strategy is for agents to find their goals
and end the episode as quickly as possible.

B. Neural Network Structure

Both agents maintain identical copies of two separate
neural networks, the policy network and value network (fig.
2). The policy network is responsible for outputting the
action and message policy distributions. The value network
is responsible for outputting a value estimate, which is used
as a baseline in the policy gradient estimates. Further details
on these networks are provided below.

1) Policy Network: The policy network takes two separate
inputs: an environmental observation, and the message from
the other agent at the last timestep. The environmental



observation consists of two 10x10 one-hot matrices, indi-
cating its position in the grid world and its neighbor’s goal,
and is processed by two convolutional layers into an inter-
mediate representation. The message input is sent through
one fully-connected layer before being concatenated with
the intermediate representation, which is then sent through
two additional fully-connected layers. The policy network
outputs: 1) the policy distribution, which is a normalized
vector of length 5, indicating the probability of selecting
each of the 5 actions, and 2) the message distribution,
which is either a 128-length normalize vector, indicating the
probability of each possible message, or a vector of length 7
containing elements that range between 0 and 1 and indicate
the probability that the corresponding message bit is a 1. The
two output sizes are chosen such that both result in the same
number of possible messages, and that number is sufficient
to uniquely identify one grid cell out of the 100 grid cells
in the environment.

The policy network parameters are updated according to
one of the following two gradient estimators, depending on
whether standard or improved gradient estimators are being
used:

Standard gradient estimator for the parameters of agent j:

gj =
∑T
t=0

[(
∇ log π(j) +∇ logP

(j)
m

)
(
Q̂t − V1(st, a

6=j
t ,m6=jt−1

))] (7)

Improved gradient estimator for the parameters of agent j:

g′j =
∑T
t=0

[
∇ log π(j)

(
Q̂t − V2(st, a

6=j
t )
)

+∇ logP
(j)
m γ

(
Q̂t+1 − V2(st+1, a

6=x
t+1)

)] (8)

where Q̂t denotes the discounted sum of future rewards
starting at time t (i.e. Q̂t =

∑T
k=t γ

(k−t)Rt), V1 and V2

respectively denote the value approximations according to
the first and second value network variants, as described
below, and x denotes the recipient of agent j’s message from
time t (which in this case is simply the other agent).

2) Value Network: The value network we employ to esti-
mate the value function is similar in architecture to the policy
network, but takes different inputs. We use two variants of
the value network, one for obtaining standard advantage esti-
mates, and one for obtaining improved advantage estimates.
Because the value is not used during execution time, we
chose to give both value variants full state observability. The
variant we use for obtaining standard advantage estimates
takes as input the environmental observation, the message
from the other agent at the previous time step, and the other
agent’s action from the current time step. The value variant
used for improved advantage estimates takes as input the
environment state and the action from the other agent. This
network cannot take as input the message from the other
agent at the last time step, since the baseline it generates
for the current action becomes the message advantage for
the other agent at the last time step, (as explained in section
3.3) but this baseline cannot in turn be conditioned on the
other agent’s message from the last time step. Although

0 0.5 1 1.5 2 2.5 3 3.5

# episodes # 105

-350

-300

-250

-200

-150

-100

-50

0

M
ea

n 
ep

is
od

e 
re

w
ar

d

Mean Episode Reward vs. Number of Timesteps

bitstring, improved grad
bitstring, standard grad
one hot, improved grad
one hot, standard grad

0 0.5 1 1.5 2 2.5 3 3.5

# episodes # 105

0

50

100

150

200

250

300

M
ea

n 
ep

is
od

e 
le

ng
th

Mean Episode Length vs. Number of Timesteps

bitstring, improved grad
bitstring, standard grad
one hot, improved grad
one hot, standard grad

Fig. 3. Experimental Results for simulation (left) and actual robots (right).
In simulation, we observe learning efficiency improvements both from
utilizing an independent bitwise message policy, and our improved policy
gradient estimator, with the best results occurring when the two techniques
are combined. The policy utilizing a bitwise message policy and improved
gradient estimates also allowed actual robots to reach their goals in much
less time than the other 3 techniques. Neither of the policies trained with
one-hot messages allowed robots to reach their goals.

theoretically justified, neither value variant takes the current
message as input; we found that this hindered performance,
probably because it is not important to estimating the value,
but makes the input space larger.

The value network was trained to minimize mean squared
error between its value estimate and the Q estimate Q̂t for
each timestep t in the episode.

C. Results

The quantitative performance of the described techniques
was evaluated in simulation. Of the four techniques tested,
the improved policy gradient/bitstring message approach
achieved the highest sample efficiency and ultimate per-



formance. The standard policy gradient/bitstring message
approach yielded the second-best results. Both approaches
utilizing one-hot messages performed poorly. The version
using standard policy gradient estimates failed to improve its
policy beyond what is possible using a brute-force search of
the space, indicating the agents either failed to communicate
useful information, or failed to utilize that information.
The version using the improved policy gradient was able
to achieve performance superior to a brute-force search,
indicating that agents did learn to communicate (fig. 3).

Trials on physical robots corroborated the simulation re-
sults. The improved policy gradient/bitstring message ap-
proach allowed both robots to find their goals rapidly. The
standard policy gradient/bitstring message allowed the robots
to find their goals, albeit via a much less efficient route.
Finally, neither of the policies that used one-hot messages
allowed robots to find their goals, and robots moved around
the space in a chaotic manner (fig. 3).

V. CONCLUSIONS

In this paper, we presented two techniques for addressing
the current shortcomings in existing approaches to MARL
with communication, and have demonstrated their effective-
ness on a partially-observable multi-agent problem, on both
physical and simulated robots. We presented a novel bitwise
message policy parameterization that allows agent output size
to scale linearly with message information content, making
it applicable to situations in which large amounts of informa-
tion must be exchanged between agents. In experiments, we
found that such a bitwise policy parameterization results in
a large improvement in learning efficiency, likely because it
allows for much smaller policy network output spaces. Addi-
tionally, we described an unbiased policy gradient estimator
that has a lower variance message gradient contribution than
existing approaches, yielding a large increase in learning
efficiency. The techniques presented in this paper can in
principle be generalized to arbitrary team sizes and network
topologies, as well as problems with unknown channel noise.

Ongoing work is examining the generalizability of these
techniques by applying them to complex tasks involving
large groups of coordinating agents. We are also investigating
the effects of channel noise and changing network topologies
on group performance, as well as examining schemes for
allowing agents more selectively address recipient agents.
Finally, to further improve sample efficiency, we are de-
veloping techniques for overcoming limitations present in
differentiable communications learning.

REFERENCES

[1] OpenAI, “Openai five,” https://blog.openai.com/openai-five/, 2018.
[2] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.

Castañeda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman,
et al., “Human-level performance in 3d multiplayer games with
population-based reinforcement learning,” Science, vol. 364, no. 6443,
pp. 859–865, 2019.

[3] J. K. Gupta, M. Egorov, and M. J. Kochenderfer, “Cooperative
multi-agent control using deep reinforcement learning,” in AAMAS
Workshops, 2017.

[4] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems, 2017,
pp. 6379–6390.

[5] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” 2018.

[6] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” pp.
2137–2145, 2016.

[7] F. S. Melo and M. Veloso, “Heuristic planning for decentralized MDPs
with sparse interactions,” in DARS, 2013, pp. 329–343.

[8] L. Busoniu, R. Babuška, and B. De Schutter, “Multi-agent
reinforcement learning: An overview,” Innovations in Multi-Agent
Systems and Applications-1, vol. 310, pp. 183–221, 2010. [Online].
Available: http://www.dcsc.tudelft.nl/∼bdeschutter/pub/rep/10 003.pdf

[9] S. Sukhbaatar, R. Fergus, et al., “Learning multiagent communication
with backpropagation,” pp. 2244–2252, 2016.

[10] I. Mordatch and P. Abbeel, “Emergence of grounded compositional
language in multi-agent populations,” 2018.

[11] G. Sartoretti, W. Paivine, Y. Shi, Y. Wu, and H. Choset, “Dis-
tributed learning of decentralized control policies for articulated mo-
bile robots,” IEEE Transactions on Robotics, pp. 1–14, 2019.

[12] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig,
and H. Choset, “PRIMAL: Pathfinding via Reinforcement and Imita-
tion Multi-Agent Learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2378–2385, 2019.

[13] G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot de-
centralized collective construction,” in DARS 2018 - International
Symposium on Distributed Autonomous Robotic Systems, 2018, pp.
35–49.

[14] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in Proceedings of the 6th conference on Theoretical
aspects of rationality and knowledge. Morgan Kaufmann Publishers
Inc., 1996, pp. 195–210.

[15] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of operations research, vol. 27, no. 4, pp. 819–840, 2002.

[16] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in NIPS, 1999.

[17] C. Wu, A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. Kakade,
I. Mordatch, and P. Abbeel, “Variance reduction for policy gradient
with action-dependent factorized baselines,” 2018.

[18] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

https://blog.openai.com/openai-five/
http://gaips.inesc-id.pt/~fmelo/pub/melo10dars.pdf
http://gaips.inesc-id.pt/~fmelo/pub/melo10dars.pdf
http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/10_003.pdf

	INTRODUCTION
	BACKGROUND
	Multi-agent Markov Decision Process
	Multi-Agent MDP with a Communication Channel

	THEORY
	Independent Bitwise Policy Parameterization
	Policy gradient for MARL with Communication
	Learned Value Function Baseline

	EXPERIMENTS
	Reward Function
	Neural Network Structure
	Policy Network
	Value Network

	Results

	CONCLUSIONS
	References

