
Autonomous Decentralized Shape-Based Navigation for
Snake Robots in Dense Environments

Guillaume Sartoretti1, Tianyu Wang2, Gabriel Chuang2, Qingyang Li2, and Howie Choset2

Abstract— In this work, we focus on the autonomous naviga-
tion of snake robots in densely-cluttered environments, where
collisions between the robot and obstacles are frequent, which
could happen often in disaster scenarios, underground caves,
or grassland/forest environments. This work takes the view
that obstacles are not to be avoided, but rather exploited to
support and direct the motion of the snake robot. We build
upon a decentralized state-of-the-art compliant controller for
serpenoid locomotion, and develop a bi-stable dynamical system
that relies on inertial feedback to continuously steer the robot
toward a desired direction. We experimentally show that this
controller allows the robot to autonomously navigate dense
environments by consistently locomoting along a given, global
direction of travel in the world, which could be selected by a
human operator or a higher level planner. We further equip
the robot with an onboard vision system, allowing the robot
to autonomously select its own direction of travel, based on
the obstacle distribution ahead of its position (i.e., enacting
feedforward control). In those additional experiments on hard-
ware, we show how such an exteroceptive sensor can allow the
robot to steer before hitting obstacles and to preemptively avoid
challenging regions where proprioception-only (i.e., torque and
inertial) feedback control would not suffice.

I. INTRODUCTION

Animals are particularly adept at navigating obstacle-
ridden environments (see Fig. 1-A) and even at benefiting
from these interactions; their behavior has yet to be repli-
cated by robotic systems [1]–[3]. One of the challenges in
achieving obstacle-aided locomotion lies in the high number
of degrees of freedom snake robots possess. In particular,
recent works [4]–[7] have shown how using shape-based
control, where the robot’s shape remains within a family
of efficient locomotive shapes, enables motion in complex,
unstructured environments by performing control in a fixed-,
lower-dimensional shape space. However, these works only
focused on preventing the robot from getting stuck in these
environments, but did not control its direction of locomotion.
In this paper, we build upon this decentralized shape-based
framework and introduce an approach that allows the robot
to autonomously navigate densely-cluttered environments.

Early work in serpenoid locomotion and control [8] ex-
plored the use of contact force sensors along the body in
order to avoid obstacles. However, a more modern approach
has been to try to understand collisions and use them to

1 G. Sartoretti is with the Department of Mechanical Engi-
neering at the National University of Singapore, 117575 Singapore.
mpegas@nus.edu.sg

2 T. Wang, G. Chuang, Q. Li, and H. Choset are with
the Robotics Institute at Carnegie Mellon University, Pittsburgh,
PA 15213, USA. {tianyuw2, gtchuang, qingyanl,
choset}@andrew.cmu.edu

Fig. 1: Snake robots in environments of varying complexity. A.
Naturally-cluttered environment; B. a model of an artificial densely-
cluttered environment (a pegboard).

one’s advantage. More recently, Liljebäck et al. [9] model
interactions between the robot and obstacles as a hybrid
dynamic system, and develop a hybrid controller for locomo-
tion. This approach, however, is limited in that the controller
only becomes active when the robot detects it is stuck on an
obstacle. Travers et al. [6], [7], [10] introduced a shape-based
controller for compliant slithering and sidewinding, where
gait parameters are continuously updated online to produce
steady locomotion in unstructured environments, based on
onboard torque sensing at the joints. Their work also intro-
duces the concept of decentralized shape-based framework,
which proposes shape parameters be independently updated
in different portions of the robot’s body based on local
sensing and then propagated down the snake’s backbone.

Our approach continuously varies the robot’s gait param-
eters to control the heading of the robot while navigating
a dense environment like the pegboard shown in Fig. 1-B.
To this end, we devise a bi-stable dynamical system that
allows us to incorporate inertial feedback (from onboard
sensors) and obtain a steering offset that helps us stabilize
the robot’s LD in the world to match a given, desired
direction. In particular, we show that initiating changes to the
waveform at the head of the robot (using this steering offset)
and subsequently propagating these changes down the body
allows the robot to effectively steer by leveraging contacts
with surrounding obstacles.

We further extend this control mechanism by installing
an onboard vision system at the head of the robot, allowing
it to explicitly select its direction of travel based on visual
feedback. We experimentally demonstrate that our steering
controller can enable the robot to autonomously navigate its
environment by following the direction recommended by the
vision system, and to negotiate more complex problems that
could not be handled without relying on visual feedback and
feedforward control.

The paper is organized as follows: Section II summarizes
the decentralized shape-based control framework [10] which
serves as a base for decentralized control in this paper.

Section III introduces our continuous, feedback steering
controller. Section IV describes the vision-based controller
used to enable the robot to select its own LD. Section V
explains our experimental validation of the complete close-
loop autonomous navigation framework, composed of the
proprioception-only (i.e., torque and inertial feedback) steer-
ing controller and the vision-enabled controller. Finally,
Section VII presents concluding remarks.

II. BACKGROUND ON DECENTRALIZED SHAPE-BASED
CONTROL FOR LOCOMOTION

This section presents the general framework [10] upon
which we build to control a snake robot in a decentralized
manner, by adapting gait parameters in different portions of
the snake based on local sensing before propagating these
values down the snake’s backbone.

A. Serpenoid Curve Overview

We consider an N -jointed snake robot, with state variable
θ(t) = (θ1(t), ..., θN (t)) ∈ RN expressing the joint angles
1 ≤ i ≤ N at time t. Hirose et al. [8] described a family of
curves, the serpenoid curves, that can parameterize the shape
of a snake robot during locomotion under a variety of gaits.
In this work, we use a gait called planar slithering which is
essentially controls the snake robot to assume the shape of
a time-varying serpenoid curve, i.e., [7], [8], [11]:

θi(t) = θ0 +A sin (ωS si − ωT t) , (1)

where θ0 is a constant curvature offset, si is the distance
from the head of the snake to the joint i along the snake’s
body, A, ωS and ωT respectively are the amplitude, the
spatial and temporal frequencies of the serpenoid curve. The
temporal frequency ωT defines the (temporal) period of the
serpenoid gait (T = 2π/ωT), whereas the spatial frequency
ωS determines the number of sinusoidal periods nS along
the robot’s body (via ωS = 2π nS).

B. Shape Functions for Dimensionality Reduction

Throughout this paper, we consider two controllers for the
robot that build upon the decentralized shape-based control
introduced in [7], [10], which we briefly summarize in this
section. Shape-based control makes use of shape functions,
as a natural way to reduce the dimensionality in systems
with high degrees-of-freedom [10]. The goal of such a shape
function h : Σ→ RN is to determine θ(t) as a function of a
small number of control parameters. Those parameters create
a shape space Σ, which is usually of a lower dimension than
RN . In our case, we consider the case where the amplitude
and spatial frequency in Eq.(1) can be dynamically set and
therefore form a two-dimensional shape space. The shape
function h(A,ωS) of our system is simply the serpenoid
curve Eq.(1), with the two control parameters being the
amplitude and spatial frequency, while the other parameters
are fixed:

h : Σ = R2 7→ RN

hi(A(t), ωS(t)) = θi(t)

= θ0 +A(t) sin (ωS(t) si − ωT t) .
(2)

C. Decentralized Control

More recent works on the shape-based compliant frame-
work proposed the idea of decentralizing control, to endow
the robot with local reflexes and better handle situations
where different portions of the robot would need different
modifications of the shape parameters [7]. These sub-groups
of joints are usually created based on the current shape of the
robot, and propagate down its backbone during locomotion.
Specifically, let us define W windows (i.e., groups of joints),
in which independent values Aj(t) and ωS,j(t) (1 ≤ j ≤W)
are defined for the amplitude and the spatial frequency. The
decentralized time- and space-dependent control parameters
ξ(t, s) (ξ = {A,ωS}) are now expressed in a sum-of-
sigmoids form:

ξ(t, s) =

W∑
j=1

ξj ·
(

1

1 + e−m(s−aj(t))
+

1

1 + e−m(bj(t)−s)

)
,

(3)
with aj(t), bj(t) respectively the start and end position of the
j-th window along the snake’s body, and m ∈ R the slope
of the sigmoid functions.

In this paper, following [7], we also let the windows’
position and number be dynamically set based on the current
shape of the robot’s body. The first window encompasses
all joints from the robot’s head to the first point of zero-
curvature along its body. The following windows are defined
between two successive points of zero-curvature along the
robot’s body, and the last window between the last point of
zero curvature and the tail. We also let the windows naturally
move down the body at the same rate as the serpenoid
curve (i.e., 2π/ωT). This process enables us to naturally pass
information along the robot’s body, as the snake locomotes
through its environment.

III. CONTINUOUS STEERING CONTROLLER

For navigation in dense environments, we build upon the
decentralized compliant controller [7], [10] to endow a snake
robot with steady, uninterrupted locomotion in unstructured
environments. On top of this controller, we then present
a continuously active controller to keep the snake robot’s
motion in a desired direction of travel by relying on onboard
inertial sensing.

To this end, we first present a novel method to predict
the current direction of motion from the robot’s current
gait phase and head orientation in the world. Similar to the
discrete case, we show that the head joint is central when
estimating the locomotive direction of the snake, especially
during interactions with obstacles. Then, we describe our
dynamical system approach to autonomous steering, which
relies on the current and desired directions of motion of the
robot to continuously steer it.

A. Locomotive Direction Estimation

In dense environments, a snake robot needs to constantly
be correcting it direction of motion, since this direction
may be changed by the many collisions with obstacle the
robot experiences. To this end, we first need to estimate

Fig. 2: Locomotive direction (LD) of the snake robot, estimated
incorrectly by the Virtual Chassis (VC) and correctly with our
method which relies on the serpenoid phase of the head module,
θ1(t). Additionally, note that the VC is struggling particularly in
this case: it is hard for this approach to predict the direction of the
yaw, in addition to mis-estimating its orientation.

the snake robot’s current locomotive direction (LD). To do
so, one approach would be to estimate the “main axis”
of the robot in the world, i.e., the axis in the world to
which the serpenoid shape of the robot can be best fitted.
When considering snake robots following regular gaits (such
as slithering, sidewinding, etc.), the robot’s main axis can
be estimated using the Virtual Chassis (VC) [12]. In this
approach, the snake’s main axis is computed by obtaining the
largest singular value of the set of the joints’ positions in the
frame of the robot’s head joint. The positions of joints can
be obtained in this frame, by finding their relative positions
and orientations from the current shape of the snake. Once
the main axis of the snake is computed in the frame of the
snake’s head, it can be transformed into the world frame
based on the head’s orientation in that frame (measured from
onboard IMUs [13]).

The VC approach gives very robust results when the shape
of the snake is regular, that is, when the snake robot’s shape is
close to a serpenoid curve and the main axis is well therefore
well defined. During sharp direction changes, however, the
robot’s shape may become irregular enough to be estimated
incorrectly by using the VC method (as shown in Fig. 4).
In this context, we propose a new approach to estimate the
robot’s main axis, that performs better than the VC when
the robot’s shape is not regular, and gives the same result
in the other cases. With our method, the snake’s planar
LD ϕ(t) ∈ [−π; +π] is measured from predicted joints
positions rather than from the current ones. We predict the
future evolution of the head joint’s position in the world
frame, using the serpenoid curve’s shape from Eq.(1) with the
current control parameter values. That is, we propagate the
serpenoid Eq.(1) in time from the current head angle θ1(t),
and extract the main x-axis in the world frame with respect
to which the sinusoidal curve is currently being defined. We
then perform a singular value decomposition on this set of
joint positions to estimate the main axis of the current robot’s
LD. Fig. 2 shows an example robot’s body shape confusing
the VC method into giving an erroneous reading for the main
axis, while our LD estimation method is able to handle the
same scenario.

Our approach uses the current time and the robot’s state

α
-θ

lim
0 θ

lim

V
(α

)

-1012
Landscape Function V(α)

-1

-2

0

1

Fig. 3: Shape of the bi-welled landscape function V (α), with two
minima located at α = ±θlim and a saddle point at α = 0.

(i.e., control parameter values) of Eq.(1) to infer the robot’s
main axis, rather than just using the current joints’ positions,
as is done with the VC method. Note that when the robot’s
shape is regular, our method returns the same main axis as
the VC. In our case, we rely on Eq.(1) to predict the current
planar angle between the head joint’s orientation and the LD,
d
dτ θ1(τ)

∣∣∣
τ=t

at time t. Finally, we are able to analytically
express the current LD with respect to the current time,
control parameters values and head joint’s yaw angle αH(t)
(measured from onboard IMUs)

ϕ(t) = αH(t)− d
dτ
θ1(τ)

∣∣∣∣
τ=t

. (4)

B. Steering Window

In this work, we propose a steering mechanism where a
time-dependent curvature offset θs(t) is added to each of the
joint angles in the first window of the snake, which become

θi(t) 7−→ θi(t) + δa1(t)≤x≤b1(t)(si) · θs(t), (5)

with a1(t), b1(t) respectively the start and end positions of
the first window along the snake’s body, and the function
δa1(t)≤x≤b1(t) returns 1 if and only if a1(t) ≤ x ≤ b1(t) (if
x lies in the head window), and 0 otherwise.

Naturally extending the use of decentralized control win-
dows being passed along the snake’s body, we also let
the steering offset be propagated down together with the
first window. In particular, when a discrete point of higher
curvature is created at the end of the first window by the
steering mechanism Eq.(5), this bend in the robot’s body is
passed along its body as the robot continues its evolution, by
relying on the window propagation mechanism described in
Sect. II-C. Therefore, when the robot is able to successfully
leverage a contact from its surrounding environment, around
which it is able to hook in order to change its direction, the
rest of the robot’s body will naturally follow the first joints
and steering will be achieved.

During a large steer, Eq.(4) allow us to link the snake
robot’s current shape with its future motion direction. This
prediction step is an approximation, and relies on the as-
sumption of a dense and contact-full environment surround-
ing the robot (which is often validated in practice). In this
environment, the underlying compliant control for locomo-
tion [7], [10] helps the robot differentiate between contacts
that can be leveraged for efficient locomotion and contacts
that could get the robot stuck. In doing so, the compliant
controller effectively aims to keep the snake under force

closure most of the time. During a steering maneuver, the
head window of the robot gets an additional steering offset
that allows the robot to search for contacts with obstacle that
can be leveraged into changing the direction of travel. Once
such contacts are found, the front of the robot can be assumed
to be under force closure again. Under this assumption, we
can now approximately model the robot under a follow-
the-leader planar evolution, where the snake’s joints simply
retrace the head joint’s position in space with a delay. The
windows and steering offset being passed down the robot’s
body naturally help support this model, since successive
windows share the same control parameters with a delay.

C. Dynamical System Modeling

We model the steering offset θs(t)’s evolution with time as
a dynamical system. This approach has previously been used
to successfully implement dynamic gaits changes in mobile
robots [6], [14]. In our case, we want the steering offset to
build up with time as the heading remains incorrect, and to
remain within the joint angles’ limits θs(t) ∈ [−θlim; θlim] ⊂
[−π;π] ∀t. Additionally, we experimentally observed that
this steering mechanism should be active (non-zero) as
often as possible to ensure stable locomotion in the desired
direction of travel. To this end, we construct a bi-stable
landscape function V (α) : [−π;π] → R, with two potential
wells located at ±θlim (and a saddle point at 0):

V (α) = α4 − 2α2 θ2lim. (6)

Fig. 3 depicts the general shape of the landscape function
V (α). We now let θs(t) evolve in the landscape defined by
V (α), following the differential equation:

θ̇s(t) = −β1
d

dα
V (α)

∣∣∣∣
α=θs(t)

+β2·((ϕ(t)− ϕd(t))− θs(t)) ,

(7)
with β1, β2 ∈ R+ two control parameters weighting the
two contributions, and ϕd(t) ∈ [−π;π] the desired robot’s
heading in the world frame. The first contribution in Eq.(7)
drives the steering offset to gradually build up, as the offset
is naturally increased toward one of the extrema ±θlim. The
second contribution links the current heading error and the
steering offset, to enable the offset to switch from one of
the wells of V (α) to the other one, as the heading error
(ϕ(t)−ϕd(t)) changes its sign. In other words, the additional
steering offset Eq.(7) acts as an additional, window-specific
curvature offset, that is always introduced at the head window
based on inertial feedback. This curvature offset is then
naturally passed down the body of the robot, by relying on
the shape-based decentralized framework for locomotion.

IV. VISION-ENABLED AUTONOMOUS NAVIGATION

The steering controller presented in Section III allows
the snake robot to locomote in any desired direction using
onboard inertial and torque sensing. However, a human
operator is still needed for manually inputting the desired
LD ϕd. In order to realize fully autonomous navigation in
dense environments, we further propose to rely on visual
feedback from an onboard camera, which allows the robot

Fig. 4: Successive frames from the experimental validation video for
the continuous inertial steering controller, showing a complete 180
degree turn commanded to the robot. Note how the head window
is responsible for initiating the turn, followed by the other joints,
until the whole robot is turned in the new desired direction.

to reason about the choice of its path, i.e., the choice of the
desired direction ϕd, based on the obstacle distribution ahead
of the robot.

To this end, we rigidly attach an Intel RealSense Depth
Camera D435 to the head of the robot; the camera generates
raw 3D point clouds, which we use to create a local map of
the environment immediately ahead of the robot. Based on
this map, we then show how the robot can explicitly select
its own safe LD.

A. Obstacle Heat Map Generation

We generate a 2D heat map of the distribution of obstacles
based on the points given by the depth camera. We first filter
our points to only include a cuboidal (3D) region of interest
(ROI). Then, we discard the z-coordinate of each point in
that ROI, and combine them into discretized cells, resulting
in an n × n heat map for a chosen resolution n, as shown
in Fig. 5-A. The intensity Ix,y of a given cell is simply the
number of points located within the boundaries of that cell.
The heat map is quadratically scaled to account for the fact
that farther obstacles intercept smaller solid angles and thus
have fewer total points in the point cloud:

I ′x,y =
(y
n

)2
Ix,y. (8)

Finally, all cells with intensity below a fixed threshold ε
are set to 0, with ε defined as follows:

Fig. 5: A. Original heat map with resolution n = 100; B. Ternary
classified heat map showing the resulting desired locomotive direc-
tion (LD) ϕd, which is then used by our navigation controller.

ε = c ·
(

max
x,y

Ix,y + median(I)

)
, (9)

where c is a constant threshold factor between 0 and 1
(c = .25 in practice). This threshold essentially filters for
points whose intensities are “at least c above average,”
leaving nonzero values only at cells with obstacles.

Based on the heat map generated as described above, we
construct a ternary (three-valued) heat map, containing three
distinct values, classifying each cell as either blocked, open,
or occluded:
• A cell is blocked if it has a nonzero value in the original

heat map, i.e. there is an obstacle in that space.
• A cell is open if the cell’s intensity Ix,y was below the

threshold ε but greater than 0 (i.e. that cell was set to 0
during thresholding; these are navigable “floor” points).

• A cell is occluded if the camera did not detect any points
in that cell at all; these cells are in areas that are outside
the FOV of the camera or entirely behind an obstacle,
that is, located in the obstacle’s “shadow”.

An example ternary heat map is shown in Fig. 5-B.

B. Desired locomotive direction

Based on the ternary heat map, the robot’s desired LD ϕd
is determined by minimizing the sum of B(x, y) values for
x, y cells along a line in the direction of ϕd, where B(x, y)
is defined as follows:

B(x, y) =

 1 if cell (x, y) is blocked
0 if cell (x, y) is occluded
−1 if cell (x, y) is open

(10)

We choose the direction ϕd that minimizes B(x, y). An
example of determining ϕd based on the ternary heat map
is shown in Fig. 5-B. By choosing a ϕd that favors open
cells and avoids blocked cells, we ultimately end up with a
feedback mechanism that guides the robot to avoid obstacle
clusters which are hard to slither through and favors navi-
gable gaps between obstacles where the robot can leverage
contacts for its propulsion.

V. EXPERIMENTAL VALIDATION

We implemented the steering mechanism presented in this
paper on a snake robot, composed of sixteen identical series-
elastic actuated modules [15]. The modules were arranged

such that two neighboring modules were torsionally rotated
90 degrees relative to each other. Only the planar modules
(i.e., those actuating in the world’s xy-plane) are actuated,
while the dorsal modules are commanded to constant zero
joint angles. The deflection between the input and output
of a rubber torsional elastic element is measured using two
absolute encoders, allowing us to read the torque measured
at each module’s rotation axis. A braided polyester sleeve
covered the snake, reducing friction with the environment
and forcing the snake to leverage contacts to locomote.

A. Proprioception-Only, User-Controlled Navigation

We first experimentally validated the proprioception-only
steering mechanism described in Section III in an artificial
environment, where obstacles (vertical posts of different
sizes) were randomly distributed to form obstacles with
varying sizes and densities. There, external high-level man-
ual input was used to allow changes in the desired LD
ϕd(t) with time in the presented 8min-long experiment.
Via the use of four buttons, the desired LD in the world
frame could be changed by a user online between the
four cardinal directions (the north being defined as the
initial heading of the robot). The video of the experimental
validation experiment is available at http://bit.ly/
ICRA21-SnakeSteering, while a sequence of still im-
ages is presented in Fig. 4.

B. Vision-Enabled, Autonomous Navigation

We then implemented the vision-enabled autonomous nav-
igation framework composed of the same steering controller,
as well as the vision-based controller presented in Section IV
on the same snake robot. A similar (humanly-)randomized
environment was used for these experiments.

In this experiment, the robot paused approximately every
5 seconds during locomotion, at times when the camera’s
principal axis was aligned with the robot’s LD, to allow the
acquisition of precise visual feedback without any motion
blur. During each pause, the vision-based controller deter-
mined the desired LD ϕd(t), which guided the robot to avoid
large clusters of obstacles that are impossible for the robot to
slither through. While the robot was locomoting, the steer-
ing controller was continuously active to keep the desired
direction ϕd(t). The image processing and computation of
ϕd(t) took less than 0.5s; thus, the short pauses minimally
affected the continuity of locomotion.

A video of this experimental validation
experiment is available at http://bit.ly/
ICRA21-SnakeSteering. A sequence of video
frames is shown in Fig. 6, illustrating how the proposed
vision-enabled autonomous navigation system allows the
snake robot to traverse a cluttered environment without any
human inputs.

C. Comparison of Both Navigation Controllers

Finally, we compared the performance of the
proprioception-only, user-controlled navigation to the
implementation of the vision-enabled autonomous

http://bit.ly/ICRA21-SnakeSteering
http://bit.ly/ICRA21-SnakeSteering
http://bit.ly/ICRA21-SnakeSteering
http://bit.ly/ICRA21-SnakeSteering

Fig. 6: Snapshots from the experimental validation video for the proposed vision-enabled autonomous navigation framework. The robot is
capable of autonomously traversing the densely-cluttered environment. In each frame, the obstacle heat map generated by the vision-based
controller is displayed in the shaded blue area; the robot’s desired propagating direction determined by the vision system is shown by the
solid red line.

navigation in locally traversing an unstructured
environment. A video comparison can be found at
http://bit.ly/ICRA21-SnakeSteering.

As expected, navigation with vision feedforward is a
significant improvement in environments with visually dis-
tinguishable, non-navigable clusters of obstacles, since the
feedforward system can pre-emptively identify potential
“problem areas” and steer ahead of time to avoid them.
Conversely, proprioception-only navigation can only attempt
to negotiate the obstacles once it is aware of their existence,
i.e., after making contact with them, at which time the robot
could already be stuck against a row of obstacles with no
clear means to get itself unstuck short of tracing back its path.

VI. DISCUSSION

In practice, the full, vision-enabled navigation framework
detailed in this work was very accurate in choosing an
appropriate direction ϕd(t), in an environment with a range
of obstacle shapes and sizes (small pegs, large pegs, pegboard
frame, and wall, as well as clusters of the above). Our
framework also appeared robust to the presence of large non-
navigable empty spaces (such as off the edge of the elevated
pegboard), even if those areas had no obstacles.

However, our current use of visual feedback still exhibits
several physical limitations. For instance, the camera has a
minimum viable range of around 11cm, which prevents it
from detecting obstacles that the robot is directly adjacent to.
Similarly, at ranges above 1.5m, the 3D point cloud generated
by the camera becomes relatively unstable and noisy, limiting
our ability to detect further-off “dead ends” if their end
is outside of the field of view of the camera. Finally, we
note that the camera must be relatively steady in order to
generate usable visual feedback, thus necessitating the 0.5s
pauses described previously, which might limit the use of
our method in time-critical scenarios.

Importantly, since the system is inherently an local plan-
ner, it does no high-level mapping or localization. In contrast
to “proprioception-only” global navigation, which chooses
a target direction and preserves a constant LD to that
direction, our vision-based local navigation system currently
only selects a locally high-quality LD, without considering
prior information nor global targets.

This means that the robot could be caught in a cycle
of short-term optima, rather than progressing towards some

global target. For instance, the vision feedforward system
may cause the robot to get caught in a loop of successive
open areas that cause it to periodically re-visit the same
locations, while making no progress in the long term - a
scenario that the proprioception-only controller would avoid
due to its global LD. Future work includes integration of
limited vision-based localization, which can be used to
combine these two approaches (local and global planning),
which due to scope and space constraints were not treated
in this work.

VII. CONCLUSION AND PERSPECTIVES

In this work, we developed a closed-loop autonomous
navigation framework for snake robot locomotion in unstruc-
tured dense environments, which we experimentally vali-
dated on hardware in a number of experiments. Our frame-
work is built upon a novel, dynamical system based contin-
uous steering controller, which builds upon the state-of-the-
art shape-based decentralized compliant control framework.
While this controller allows the robot to continuously steer
and keep a given direction of travel in the world, we further
proposed to allow the robot to explicit select this direction
based on visual feedback from an onboard camera, e.g., to
steer away and avoid challenging regions that could not be
negotiated through feedback control only.

The continuous steering controller and the vision feed-
forward system can be seen as modular pieces that we
would like to further investigate the coordination of them
in the future work. That is, our steering controller enables
the robot to navigate in a given global direction in the
world, while visual feedback can allow local, predictive path
planning. However, integrating these long- and short-term
planning methods is nontrivial, since their individual goals
might not agree, especially around complex scenarios, e.g.,
situations where multiple routes are possible, or situations
where the only safe course of action does not agree with
the desired global direction of travel. Future works will
look to filtering/consensus methods to dynamically combine
these two modular controllers, as well as to explicit SLAM
methods to allow the robot a higher-level of reasoning about
global path planning and already visited areas, e.g., for
autonomous exploration tasks.

http://bit.ly/ICRA21-SnakeSteering

REFERENCES

[1] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, Ø. Stavdahl,
and P. Liljebäck, “Perception-driven obstacle-aided locomotion for
snake robots: the state of the art, challenges and possibilities,” Applied
Sciences, vol. 7, no. 4, p. 336, 2017.

[2] J. Whitman, N. Zevallos, M. Travers, and H. Choset, “Snake robot
urban search after the 2017 mexico city earthquake,” in Proceedings
of the IEEE International Symposium on Safety, Security, and Rescue
Robotics, 2018.

[3] P. E. Schiebel, J. M. Rieser, A. M. Hubbard, L. Chen, and D. I.
Goldman, “Collisional diffraction emerges from simple control of
limbless locomotion,” in Conference on Biomimetic and Biohybrid
Systems. Springer, 2017, pp. 611–618.

[4] M. Travers, J. Whitman, P. Schiebel, D. Goldman, and H. Choset,
“Shape-based compliance in locomotion,” in Proceedings of Robotics:
Science and Systems, AnnArbor, Michigan, June 2016.

[5] T. Wang, J. Whitman, M. Travers, and H. Choset, “Directional
compliance in obstacle-aided navigation for snake robots,” in 2020
American Control Conference (ACC), 2020, pp. 2458–2463.

[6] F. Ruscelli, G. Sartoretti, J. Nan, Z. Feng, M. Travers, and
H. Choset, “Proprioceptive-inertial autonomous locomotion for artic-
ulated robots,” in ICRA 2018 - IEEE International Conference on
Robotics and Automation, 2018, pp. 3436–3441.

[7] J. Whitman, F. Ruscelli, M. Travers, and H. Choset, “Shape-based
compliant control with variable coordination centralization on a snake
robot,” in CDC 2016, December 2016.

[8] S. Hirose, Biologically Inspired Robots: Serpentile Locomotors and
Manipulators. Oxford University Press, 1993.

[9] P. Liljebäck, K. Pettersen, Ø. Stavdahl, and J. Gravdahl, Snake Robots:
Modelling, Mechatronics, and Control, 01 2013.

[10] M. Travers, J. Whitman, and H. Choset, “Shape-based coordination in
locomotion control,” The International Journal of Robotics Research,
p. 0278364918761569, 2018.

[11] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and scripted gaits for modular snake
robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, 2009.

[12] D. Rollinson and H. Choset, “Virtual chassis for snake robots,” in IEEE
International Conference on Intelligent Robots and Systems, 2011, pp.
221–226.

[13] D. Rollinson, H. Choset, and S. Tully, “Robust state estimation with
redundant proprioceptive sensors,” in ASME 2013 Dynamic Systems
and Control Conference, October 2013.

[14] M. Travers, A. Ansari, and H. Choset, “A dynamical systems approach
to obstacle navigation for a series-elastic hexapod robot,” in 2016 IEEE
Conference on Decision and Control, December 2016.

[15] D. Rollinson, Y. Bilgen, B. Brown, F. Enner, S. Ford, C. Layton,
J. Rembisz, M. Schwerin, A. Willig, P. Velagapudi, and H. Choset,
“Design and architecture of a series elastic snake robot,” in IEEE
International Conference on Intelligent Robots and Systems, 2014, pp.
4630–4636.

	Introduction
	Background on Decentralized Shape-Based Control for Locomotion
	Serpenoid Curve Overview
	Shape Functions for Dimensionality Reduction
	Decentralized Control

	Continuous Steering Controller
	Locomotive Direction Estimation
	Steering Window
	Dynamical System Modeling

	Vision-Enabled Autonomous Navigation
	Obstacle Heat Map Generation
	Desired locomotive direction

	Experimental Validation
	Proprioception-Only, User-Controlled Navigation
	Vision-Enabled, Autonomous Navigation
	Comparison of Both Navigation Controllers

	Discussion
	Conclusion and Perspectives
	References

