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Flatland Competition 2020

Abstract
The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling
problem (VRSP). The VRSP is concerned with scheduling trips in traffic networks and the
re-scheduling of vehicles when disruptions occur, for example the breakdown of a vehicle.
While solving the VRSP in various settings has been an active area in operations research
(OR) for decades, the ever-growing complexity of modern railway networks makes dynamic
real-time scheduling of traffic virtually impossible. Recently, multi-agent reinforcement
learning (MARL) has successfully tackled challenging tasks where many agents need to be
coordinated, such as multiplayer video games. However, the coordination of hundreds of
agents in a real-life setting like a railway network remains challenging and the Flatland
environment used for the competition models these real-world properties in a simplified
manner. Submissions had to bring as many trains (agents) to their target stations in as
little time as possible. While the best submissions were in the OR category, participants
found many promising MARL approaches. Using both centralized and decentralized learn-
ing based approaches, top submissions used graph representations of the environment to
construct tree-based observations. Further, different coordination mechanisms were imple-
mented, such as communication and prioritization between agents. This paper presents the
competition setup, four outstanding solutions to the competition, and a cross-comparison
between them.
Keywords: multi-agent reinforcement learning, operations research, vehicle re-scheduling
problem, multi-agent path finding, deep reinforcement learning

1. Introduction

Modern railway networks such as the one operated by the Swiss Federal Railways Company
(SBB) are becoming increasingly complex, and the efficient coordination of the traffic on
the network poses a significant challenge. In a system that registers more than 10,000 train
runs a day1, even small disturbances such as a train malfunction can have a huge impact
on the service quality and stability of the entire network. Therefore, not only the initial
scheduling but also the efficient, dynamic rescheduling of trains is essential.

The challenge of scheduling vehicles dates back several decades and was formally ex-
pressed as the “vehicle scheduling problem” (VSP) (Bodin and Golden, 1981). Finding
solutions to the VSP has been an active area of operations research (OR) ever since (Foster
and Ryan, 1976; Potvin and Rousseau, 1993). Due to the increasing complexity and the
need for efficient rescheduling in case of disruption, Li et al. (2007) proposed an extension
of the VSP to the broader “vehicle re-scheduling problem” (VRSP) which takes disruptions
like vehicle breakdowns into account and represents a dynamic version of the VSP.

However, solving the VRSP incorporating all aspects given in a real world railway net-
work is an NP-complete problem and does not allow for fast experimentation of automated
traffic management, let alone the real-time rescheduling of trains. Therefore, the research
team at SBB began exploring new approaches, including multi-agent reinforcement learning
(MARL) (Egli et al., 2018), to optimize the efficiency of its existing railway network to meet
the growing demand for public transport and freight.

In recent years, MARL algorithms have achieved remarkable successes on challenging
multiplayer video game benchmarks such as StarCraft II (Vinyals et al., 2019; Samvelyan
et al., 2019), Dota 2 (OpenAI et al., 2019), hide-and-seek (Baker et al., 2020) and Capture

1. https://reporting.sbb.ch/verkehr?years=0,1,4,5,6,7&scroll=3135
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the Flag (Jaderberg et al., 2019). Besides idealized video game environments, cooperative
multi-agent reinforcement learning also shows promise for many real-life applications such
as network traffic signal control (Arel et al., 2010; Tan et al., 2020) and real-time bid-
ding (Jin et al., 2018). However, scalability to large number of agents, partial observability
and communication constraints of individual agents remain major challenges. Many recent
approaches address these by learning decentralized policies in a centralized manner (Foerster
et al., 2016; Gupta et al., 2017; Rashid et al., 2018). With decentralized policies, commu-
nication becomes important. Foerster et al. (2016), Sukhbaatar et al. (2016), Jiang and Lu
(2018) and Das et al. (2019) addressed this by explicitly modelling communication between
agents.

To cope with large joint action spaces, value function decomposition methods learn cen-
tralized but factored global Q-functions, which handle coordination dependencies implicitly
(Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Wang et al., 2020, 2021a; Rashid
et al., 2020; Wang et al., 2021b). Foerster et al. (2018) and Lowe et al. (2017) proposed
the paradigm of centralized critic with decentralized actors for multi-agent policy gradi-
ent algorithms. Extending these works, Iqbal and Sha (2019) proposed a shared attention
mechanism and Wen et al. (2019) introduced a recursive reasoning mechanism.

To address the computational complexity of a full system simulation and in light of
the recent development in reinforcement learning (RL) research, SBB in collaboration with
AIcrowd, developed a framework that provides a simplified yet representative environment
to study dynamic train (re-)scheduling (Mohanty et al., 2020). A first edition of the Flatland
competition was held in 2019 with the aim of discovering novel approaches to the VRSP
with a special emphasis on RL-based solutions.

In this paper, we present the Flatland competition run at NeurIPS 20202 and the main
insights gained from it. We outline the competition format in the next section. We then
present common approaches taken by top submissions in Section 3 and proceed with detailed
descriptions of outstanding solutions – provided by the teams themselves – in Section 4. In
Section 5, we present a comparative analysis of these solutions, and discuss our findings in
the final section.

2. Competition

The competition intended to foster research into novel solutions to the real-world VRSP
problem given by a modern railway network. Two competition tracks were available for
submitting either RL or more established OR formulations to encourage cross-pollination of
ideas. The competition was organized on the AIcrowd platform and sponsored by the Swiss
Federal Railway Company (SBB), Deutsche Bahn (DB) and Société Nationale des Chemins
de fer Français (SNCF).

Entry barriers were low to encourage participation and allow teams from diverse back-
grounds and expertise to contribute. Participants could use a Starter Kit3, which could
be directly submitted to the competition, to support experimentation with RL approaches.
Additionally, participants had access to advanced baselines4 based on the RLlib frame-

2. https://www.aicrowd.com/challenges/neurips-2020-flatland-challenge
3. https://gitlab.aicrowd.com/flatland/neurips2020-flatland-starter-kit
4. https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines
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Figure 1: Flatland environment. a) Visualisation of a Flatland environment. The agents
(colored trains) move on tracks (grey) and have to reach their targets (stations).
Switches allow the trains to change tracks (blue rectangles). b) In Flatland, a cell
has one of these eight rail configurations, a mirror image of or a rotation of 90°,
180° or 270° from it. Case 1 can also be curved.

work (Liang et al., 2018) with brief documentation outlining the ideas behind each baseline
as well as experimental results (see Appendix A for details).

2.1. Environment

The Flatland competition was built on the Flatland framework (Mohanty et al., 2020) that
provided randomly generated environments for the agents to operate in (see Figure 1). A
Flatland environment contained a w×h rectangular grid of cells where some cells contained
“rails”. Rails were either straight or curved at 90° and linked cells that were adjacent hori-
zontally, vertically or both. The rails in some cells formed “switches”, which joined 3 or all 4
adjacent cells in different ways. Available choices for an agent representing a train arriving
at a switch were dependent on the direction of entry into a cell, known as “transitions” from
an entry direction to an exit direction. The possible transitions in Flatland are shown in
Figure 1. For a given entry direction, the track layout only ever allowed for 1 or 2 choices of
exit direction. In the environments of the competition, all cells were part of at least one track
cycle (or at least two cycles when counting the directions separately), and no “dead-ends”
existed.

2.2. Agents

A given environment contained n agents ai, i ∈ {1, . . . , n}. Agents were assigned a starting
cell (origin), a direction di ∈ {N,E, S,W} available at the origin, and a target cell. Thereby,
multiple agents could share the same origin (agents started an episode “off the grid”), the
same target or both, but origins were distinct from target cells. The origin and target cells
were simple rails, not switches, and could be reached from both directions. For each timestep
of an episode, every agent issued one of five actions: go forward (MOVE_FORWARD); select a left
turn (MOVE_LEFT); select a right turn (MOVE_RIGHT); halt on current cell, always valid (STOP);
and no-op, always valid (DO_NOTHING). If an agent chose the no-op action (DO_NOTHING), it
carried on as before, either off the grid, stationary in a cell, or moving forward. An agent
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that did not explicitly select an action would perform a no-op. If an agent selected an action
that was not currently valid, the action failed which was equivalent to performing a no-op.
Agents only entered the grid when they issued an action in {MOVE_FORWARD, MOVE_LEFT,
MOVE_RIGHT} which was carried out during the timestep of entry. An agent could choose to
stay off the grid for the whole episode. If an agent’s origin was not empty when the agent
attempted to enter the grid, the action failed. Agents could only move forward (including
left and right turns) or stop, but they couldn’t reverse in situ. Thus, if two agents “collided”
while heading in opposite directions, they became deadlocked for the rest of the episode, and
could not reach their targets. When moving, agents proceeded one cell per timestep, and all
actions were enacted at once. Once an agent reached its target, it permanently disappeared
from the grid and no longer occupied a cell.

An agent could also malfunction, in which case the agent’s actions had no effect and
the agent could not move until the malfunction was resolved. Each agent randomly entered
a malfunction state with a fixed probability given by a malfunction rate which was set for
an environment and shared between all agents. The malfunction rate varied between 0, i.e.
no malfunctions, and 0.004 meaning one malfunction was expected every 250 time steps
on average. When an agent malfunctioned, the malfunction duration, i.e., the number of
timesteps to be spent in the failed state, was drawn from a discrete uniform distribution in
[20, 50]∩N. The remaining duration of the malfunction was available to the agent. However,
the malfunction rates and duration ranges were not available to the agents at any time.

2.3. Task

The task of the competition was to bring as many agents to their targets in as little timesteps
as possible. In the RL formulation, the agents received a penalty of -1 for each timestep
they did not attain their targets, whether they were on or off the grid, moving or stationary.
After an agent reached its target, the reward was 0 for each remaining timestep. The episode
was terminated when all agents reached their targets or when the timestep limit

tmax =
⌊
8
(
w + h +

n

c

)⌋
was reached, with n being the number of agents and c the number of cities in the environment
(see Appendix B). The sum w+h was a rough estimate for an agent’s shortest path, and the
fraction n/c an estimate for the average number of agents that started after each other. Every
agent received an additional reward of 1 if all the agents had reached their targets. Thus the
total episode reward for each agent ai was a negative integer tai ∈ {t ∈ N−|t ≥ −tmax}. The
intention was that agents act cooperatively, so the overall normalized score for an episode
combined the n agents’ individual rewards:

s := 1 +

∑n
i=1 tai

n · tmax
∈ [0, 1) .

The participants had to solve as many environments as possible within an 8 hour time
limit. The overall score S of the submission was given by the sum of the normalised envi-
ronment scores S :=

∑m
j sj with m being the number of environments solved.

In contrast with common RL environments, Flatland allowed access to its full internal
state. An integral part of the challenge was to design observation spaces that RL algorithms
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could learn from. This was challenging due to the varying number of cells and agents in the
grid, and due to the complex dynamics of the environment.

2.4. Evaluation

Once implemented, participants submitted their solutions, i.e. code and any trained model
data, to the AIcrowd evaluator. A competition submission was labelled by the submit-
ter as ‘RL’, ‘OR’ or ‘other’, dependent on the chosen approach. The evaluator tested the
performance of the submitted solutions on a fixed set of pre-generated test environments,
which were not disclosed to the participants. For every test Tk, k ≥ 0, ten environments
Ek,l, l ∈ {0, . . . , 9} were generated. The environments of the same test shared the same
parameters, except for the malfunction rate depending on l, while the environments’ com-
plexity progressively increased from test to test (see Appendix B). As the participants had
to solve as many environments as possible, enough environments were provided to exceed
the anticipated capabilities of all participants.

Timeouts were enforced during the evaluation: 10 minutes per environment for initial
planning, then 10 seconds were allowed per timestep. The submissions could use up to 4
CPU cores (see Appendix C for details). If a timeout was triggered, that environment scored
0. The evaluation ended when one of the following conditions was met: (a) the evaluator
encountered 10 consecutive timeouts; (b) fewer than 25% of the agents reached their target
during a test; (c) the maximum evaluation duration of 8 hours had passed.

A set of 2 example environments per test was made available to the participants,5 along
with the parameters of all environments.6 Participants were also free to use the environment
generator to create their own training sets. A set of “expert” solutions generated using the
winning solution from the 2019 Flatland competition was also made available to participants.

2.5. Organizational Aspects

The competition was organized and run as a collaborative effort by AIcrowd staff and fellows,
employees of the industry partners (SBB, DB, and SNCF), as well as core members of the
Flatland community.

The initial problem formulation was a continuation from the 2019 competition with new
input from the industry partners. Two preliminary rounds before the actual competition al-
lowed testing and refining the initial problem formulation, taking feedback from participants
into account. In parallel, the Flatland environment was maintained and updated to address
the needs of the competition, improve performance and address bugs found by participants.

Participant support was managed through multiple channels, with the public ones being
encouraged to foster collaboration. Participants could ask questions on the instant messag-
ing platform Discord or in the Discourse competition forum. For solution-specific questions,
participants and organizers could communicate directly on the AIcrowd platform with com-
ments attached to each code submission.

After the competition ended, the winning solutions were reviewed by a board consisting of
AIcrowd staff and all industry partners, ensuring each submission met the required criteria.
At least two separate reviews were performed for each winning solution.

5. https://www.aicrowd.com/challenges/neurips-2020-flatland-challenge/dataset_files
6. https://flatland.aicrowd.com/getting-started/environment-configurations.html
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3. Methods

Participants explored a variety of ways to solve the problem posed by the NeurIPS 2020
Flatland competition. Overall, the solutions were categorised into RL, OR and mixed ap-
proaches. We describe the methods used by four outstanding solutions of the Flatland
competition, three RL solutions and one OR.

Multiple teams approached the competition task from the perspective of Multi-Agent
Path Finding (MAPF) (Stern et al., 2019). The input of a classic MAPF problem is an
unweighted graph and a set of agents, each with a start and target vertex (see Appendix D
for more information on the graph representation of Flatland). At each timestep t, an agent
either moves to an adjacent vertex or waits at its current vertex. Agents are at their start
vertex at t = 0 and remain at their target vertex after they completed their paths. The task
is to move all agents to their target vertices without collisions within finite timesteps while
minimizing the sum of their travel times. However, unlike classic MAPF problems, Flatland
poses additional challenges in the form of a highly constrained and irreversible environment
and a sparsity of important decisions.

Despite the differences to MAPF, there are similarities to some MAPF variants: (i)
Trains enter the environment over time and leave it after reaching their target stations,
which is related to online MAPF (Svancara et al., 2019; Damani et al., 2021); (ii) As many
trains as possible (instead of all trains) should reach their target stations before a given
timestep, which is related to MAPF with deadlines (Ma et al., 2018); (iii) Trains breakdown
randomly while moving and are then stationary at the breakdown location for a number
of timesteps, which is related to MAPF with delay probabilities (Ma et al., 2017; Atzmon
et al., 2020).

The winning solution fell into the OR category and successfully applied a MAPF ap-
proach that combines various MAPF algorithms and optimization techniques.

The best-ranked RL teams used diverse reinforcement learning algorithms, however they
all settled on a common set of approaches which we will summarise briefly (see Appendix E
for specifications of the RL solutions).

Tree Observations Most RL solutions used tree-based observations. Similarly to the OR
approach, these observations leverage the underlying graph structure of the railway network.
They are generated by spanning a binary tree from the current position of each agent, with
branches following the allowed transitions until some maximum depth is reached. The
resulting observation contains the information gathered at the switches along each branch.
Various features can be recorded such as the presence of the agent’s target on the current
branch, the presence of other agents, the length of the shortest path from the current cell
to the agent’s target, etc.

The winning RL teams used trees with depth between 1 and 3. They all experimented
with various features and settled on sets containing between 4 and 11 features. This involved
a trade-off between the additional information brought by each feature and the time taken
to calculate them at each timestep.

Reward Shaping Since the rewards provided by the Flatland environment were sparse,
participants experimented with various alternative formulations to help the learning process.
While reward shaping can greatly help, it needs to be done carefully to prevent the onset
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of undesirable agent behavior. If the penalization for unwanted behavior was too strict, the
agents could learn that the best course of action was to never enter the grid. Conversely, a
large positive reward for a sub-goal could incite agents to exploit it, resulting in agents that
would never reach their targets. The winning RL solutions all used bonuses for reaching the
target, penalties for deadlocks, and additional smaller rewards for custom circumstances.

Maximum Occupancy The number of agents in the grid increases the probability of
deadlocks and of agents malfunctioning. One way to avoid this is to limit the maximum
occupancy of the environment. The winning teams all used some metrics or heuristics to
limit the maximum number of concurrent agents.

State Masking The rail grid cells can be classified into three categories (see also Fig-
ure F.1 in Appendix F): (a) non-decision cell, i.e., there is no interesting decision in this
cell or its neighbouring cells; (b) stopping cell, i.e., there is a neighbouring cell from which
multiple (≥3) transitions are possible; (c) decision cell, i.e., there are multiple transitions
available at the current cell. The majority of cells in Flatland are non-decision cells, in
which no significant decision can be made. All winning solutions masked non-decision cells
in order to improve performance either at training time, at evaluation time, or both.

4. Outstanding Solutions

In this section, the teams of four outstanding solutions to the NeurIPS 2020 Flatland com-
petition detail their approaches and results. The selected solutions, one OR and three RL,
were among the top ranked submissions (see Table 1 in Section 5) and each of them demon-
strates a distinct approach. We placed the focus on RL solutions to support further research
into the still experimental MARL approaches to the VRSP.

4.1. Multi-Agent Path Finding for Large-Scale Rail Planning

Team An_Old_Driver : Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan; 1st place OR
and overall.

4.1.1. Method

The Flatland Challenge at its core is a MAPF problem. The first two differences discussed
in Section 3 can be addressed by small modifications of existing MAPF algorithms. The last
difference, namely the malfunctions, can be handled during execution (Ma et al., 2017). We
therefore first plan collision-free paths under the assumption that no malfunctions occur in
the beginning and then handle malfunctions once they occur.

Planning Collision-Free Paths We use Prioritized Planning (PP) (Silver, 2005), a sim-
ple but widely-used MAPF algorithm to generate the initial collision-free paths for all trains.
PP first sorts all trains in a priority ordering and then, from the highest priority to the low-
est priority, plans a shortest path for each train while avoiding collisions with the already
planned paths of higher-priority trains. For efficiency, we use Safe Interval Path Planing
(SIPP) (Phillips and Likhachev, 2011) instead of A* to plan each such path in PP, since it
avoids temporal symmetries.
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Although PP can find collision-free paths rapidly, its solution quality is far from optimal.
We therefore use Large Neighborhood Search (LNS) (Shaw, 1998) to improve the solution
quality. We follow Li et al. (2021a) by using PP to generate an initial solution and repeating
a neighborhood search process to improve the solution quality until the iteration limit is
reached. In each iteration, we select a subset of trains and replan their paths using PP. The
new paths need to avoid collisions with each other and with the paths of other trains. We
adopt the new paths if they result in a smaller sum of the travel times. As the Flatland
Challenge provides 4 CPUs for evaluation, we run 4 LNS in parallel in practice. As we are
given an overall runtime limit of 8 hours, we use simulated annealing to decide the iteration
limit for each environment.

Although SIPP runs significantly faster than A*, it is still slow when there are thousands
of trains because, as the paths of more trains are planned, SIPP has to plan paths that avoid
collisions with more existing paths, resulting in its runtime growing rapidly. We therefore
propose a lazy planning scheme where we plan paths only for some of the trains in the
beginning, then let the trains move, and plan paths for the rest of trains during execution.
Although delaying the planning time of the trains may delay their departure times, which
in turn may delay their arrival times, lazy planning has two implicit benefits: (1) it avoids
pushing too many trains to the environment at once, which could potentially prevent severe
traffic congestion; and (2) when planning paths during execution, we take into account the
influence of the malfunctions that have already happened or are happening.

Recovering from Malfunctions When a train encounters a malfunction during execu-
tion, deadlocks could happen if the trains stick to their original paths. Minimum Commu-
nication Policies (MCP) (Ma et al., 2017) avoids the deadlocks by stopping some trains to
maintain the ordering that each train visits each location. It guarantees that all trains can
reach their target stations within a finite number of timesteps. However, MCP sometimes
may stop trains unnecessarily. We therefore develop a partial replanning mechanism to
avoid such unnecessary waits. When train A encounters a malfunction at some timestep, we
collect all switch and crossing rail segments that train A is going to visit in the future and
then collect the trains who are going to visit at least one of these rail segments after train
A. We replan the paths of these trains in the prioritized planning manner and terminate
when either new paths are planned for all of these trains or the runtime limit is reached.

4.1.2. Results

Our solution is implemented in C++ and is available from our public repository.7 Our basic
solution, namely PP with A* (instead of SIPP) plus MCP, solved 349 instances within 8
hours with a score of 282.6. When we replace A* with SIPP, our solution solved 3 more
instances with a score of 285.4. LNS then improved the score to 289.1, and partial replanning
further improved it to 291.9. Eventually, with the help of lazy planning, we solved 362
instances and reached our highest score of 297.5. More details can be found in (Li et al.,
2021b).

7. https://github.com/Jiaoyang-Li/Flatland
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4.2. PPO with Communication and Departure Schedule

Team JBR_HSE : Konstantin Makhnev, Oleg Svidchenko, Vladimir Egorov, Dmitry Ivanov,
Aleksei Shpilman; 1st place RL.

4.2.1. Method

Our solution is based on Proximal Policy Optimization (PPO) (Schulman et al., 2017)
enhanced with between-agent communication. Communication has been shown to help
agents to solve simple coordination problems (Sukhbaatar et al., 2016; Das et al., 2019), and
our solution extends this result to the complex Flatland environment.

Rewards For each agent, its reward is defined as 0.01×∆d− 5× is_deadlocked + 10×
has_finished, where ∆d is the difference between the minimal distances to the destination
point from its previous and current positions, and is_deadlocked and has_finished are
the respective indicators of whether the agent is deadlocked or has successfully completed
the episode.

Architecture In our solution, the agents are based on the actor-critic framework. The
actor makes decisions whenever encountering a switch, based on features from three sources
(see Figure G.1 in Appendix G):

First, it receives information about the agent itself, such as its position on the map and
indicators of whether it is deadlocked or malfunctioning. At the beginning of the episode,
each agent is also assigned with a handle, a random number uniformly sampled from [0, 1]
which is supposed to represent priority. This information is processed with a fully-connected
network (denoted as “Common Features Net”).

Second, the actor observes the most relevant part of the map, encoded as the edges of
a tree with a depth limited to 3. The features of each edge include its length, distance to
the destination from its nodes, as well as information about other agents, including their
positions and handles. The features of different edges are combined with a recursive network
(denoted as “Tree Features Net”), albeit replacing it with a fully-connected network produces
similar performance.

Third, prior to action selection, the actor receives a set of floating-point vector messages
generated by the neighbouring agents, i.e. the agents observed on the tree. Similarly to
ATOC (Jiang and Lu, 2018), the messages are processed with self-attention layers (Vaswani
et al., 2017).

All components are trained end-to-end using PPO. The agents share experiences and
network parameters. The architecture of the critic is similar to that of the actor, except the
critic does not condition on communication signals. For a more complete description of the
architecture and the features, please refer to our code.8

Departure Schedule To limit the maximum occupancy, we introduce a departure sched-
ule. After pre-training agents without the schedule, we train a supervised classifier that
determines the chances that each agent reaches its destination. Then, we only allow each
train to start moving if the predicted probability exceeds a threshold, set to 0.92 at the start
of the episode, and gradually lowered over time.

8. https://github.com/jbr-ai-labs/NeurIPS2020-Flatland-Competition-Solution
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4.2.2. Results

We found that a carefully tuned PPO with simple heuristics for launching agents can achieve
results comparable to simple algorithms from the operations research field while being quite
fast in execution. Among the modifications that we applied to the classic PPO algorithm,
communication was by far the most impactful. It significantly increased the arrival rate
without compromising scalability. One particular limitation of our solution is that we train
the agents in relatively small environments. Consequently, their performance may degrade
as the environment scales up.

4.3. RL with Centralized Priority Assignment

Team Netcetera: Evgenija Spirovska, Oliver Tanevski, Aleksandar Nikov, Ramon Grunder,
David Galevski, Jakov Mitrovski; 2nd place RL.

4.3.1. Method

We designed an RL solution, where at each timestep each train generates an experience.
We use centralized training of an Ape-X model as described in Horgan et al. (2018). In the
following subsections a detailed explanation for all parts of the solution is presented.

Representation of the Environment In order to optimize the calculations, we represent
the environment as a graph, where each vertex represents a switch and possible arrival
directions to the switch. More formally, a vertex is represented as a state-direction pair
(s, d). A directed edge between two vertices in the graph (s1, d1) and (s2, d2) exists if there
is a directed path in the environment from s1 to s2, such that the directions of the train
on switches match d1 and d2 correspondingly. A representation of a simple environment is
given in Figure D.1 in Appendix D.

Representation of the State The state of the agent should describe its immediate
surroundings well, so it can make an intelligent and informed choice for the next action.
The best choice of features was obtained experimentally. Our best state representation uses
a tree observation of depth 1 which includes features about the shortest path, the status
and the priority of the agent and conflict information (for example: deadlock, deadlock in
the next whole segment until the next usable switch). During the course of the competition
we experimented with many other features, like statistical information about the path and
the environment, time tick info (the number of elapsed timestamps since the beginning of
the episode), info about following switches and other agents. These features proved to only
create noise in the model and reduced its performance.

Priority Our model’s most important feature, which led to significant improvement in
its performance, was priority. The concept of priority is used for solving conflicts between
agents, which happen on a regular basis during simulation. We build an undirected conflict
graph, where each vertex represents an agent and the edges in the graph represent the
conflicts between agents. Assigning priority to the agents is a graph coloring problem,
where two neighboring vertices cannot have the same level of priority at the same time.

We have tried several heuristics for choosing the agents that have priority. The best one
was to give the highest priority to the vertex with highest degree. The logic behind this
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heuristic is that the agent that causes the largest number of conflicts will go first, freeing
the path for most agents in the next steps.

Reward In our final reward setting, the only positive reward was reaching the target. We
also included smaller and larger penalization for correcting unwanted behaviors. The biggest
negative penalization was for getting into deadlock. With smaller penalization we correct
not following priority, missing the shortest path, unwanted stopping, etc.

Models Although we experimented with on-policy and off-policy models, the best results
were achieved with Ape-X model. We used the RLlib library Liang et al. (2018) for model
implementations. We introduced the concept of curriculum learning (Bengio et al., 2009),
meaning the difficulty of the provided training environments changed over time. The idea
was for the agents to learn simple behaviors first. As the training progressed, so did the
complexity of the training environments, allowing the agents to learn more complex behav-
iors.

4.3.2. Results

Our solution9 was able to solve 228 environments, where the most complex one consisted of
181 agents and 20 cities. 88.1 % of the agents were able to reach their target destination.
Our final score was 181.5 and the reason for termination was that we reached overall the
time limit of 8 hours per solution. Our solution performs well in avoiding deadlocks. For the
smaller environments, all the trains are able to reach their targets. The main disadvantage
of our solution is that it is too ‘cautious’, meaning that for really large environments more
trains should be on the map simultaneously.

4.4. TrainfficLight: Decentralized RL for MAPF

Team MARMot-Lab-NUS : Guillaume Sartoretti, Zhiyao Luo, Mehul Damani; 4th place RL.

4.4.1. Method

Our solution builds upon the multi-agent decentralized RL framework for MAPF in grid
environments proposed in our previous work, PRIMAL Sartoretti et al. (2019). Taking
inspiration from PRIMAL, we construct a rich feature based observation for agents and use
a shallow fully connected neural network architecture. We use the popular A3C learning
algorithm for training Mnih et al. (2016). We also draw inspiration from the use of traffic
lights, which are effective in managing traffic at bottlenecks such as junctions and crossings.
Despite the traffic-light-like mechanism we propose, our solution can still be implemented
in a fully decentralized manner, by relying on local communication between nearby agents
only.

State Masking We classified the rail grid cells as described in Section 3. Since the major-
ity of cells in Flatland are non-decision cells and in these cells, we hard code a MOVE_FORWARD
action or a STOP action, which is determined solely by the occupancy of the single reachable
neighbouring cell to ensure safety. Correspondingly, we remove the state-action pairs of

9. https://github.com/netceteragroup/Flatland-Challenge
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non-decision cells from training. An obvious advantage of the state classification is that we
drastically reduce the number of samples agents needed to learn in an episode.

Observation According to our state masking, decisions are only made at stopping points,
i.e., a state before agents finalize their headings on a junction. The observation of an agent
is tree-shaped but with a relatively shallow depth (only immediate information about the
most immediate junction). Specifically, it contains a series of handcrafted and hand-selected
features on the future junction (i.e., turn left, go forward and turn right). Each choices
consists of 9 scalar values, including 1) whether current heading has solution to the goal 2)
optimal path length to its goal, 3) number of agents blocking with in the next junction, 4)
total number of agents blocking along the optimal path, 5) number of agents crashed along
the optimal path, 6) total number of agents blocking on junctions along the optimal path,
7) number of agents queuing within the next junction, 8) distance to the next junction and
9) whether the closest stopping point is occupied. In total, each agent’s observation is a
3× 9 vector of these features, ultimately represented as a 1× 27 vector.

Clusters In our solution, the real bottlenecks are not the low-level individual junction
cells or switches where agents have multiple possible decisions, but are the closely connected
clusters of these cells which need to be navigated effectively. We formally define clusters as
a collection of connected grid cells where each cell has at least three possible transitions (see
Figure F.1 in Appendix F). Since they usually consist of multiple decision cells, clusters also
negatively affect tree observations by occupying a significant depth of the tree. This makes
the observation highly localized which affects the ability of agents to do long-term planning.

Traffic Lights In order to effectively resolve the bottleneck created by clusters, we propose
a smart traffic light inspired mechanism that controls entry into these clusters by only
allowing a single agent to occupy the cluster at a time. When an agent is currently occupying
the cluster, the traffic light signal is red for all entry cells into the cluster. When there is no
agent occupying the cluster, then the traffic light signal switches to green for the entry cells
into the cluster which currently have an agent waiting. Although the implementation of this
mechanism is handcrafted in our work, we believe that it would be easy to train a RL-based
controller for the traffic light policy, which could make the system even more robust. This
will be investigated in future works.

Departure Initialization We use two simple rules for agent initialization. First, we set
a soft upper bound for the number of agents in the system which is a function of the grid
size. Second, we initialize agents having the same start and end locations one after the
other. These agents generally tend to follow the same trajectory in a line and as a result,
the chances of conflict between them are minimal.

4.4.2. Results

Our solution10 achieved a score of 127.9 and was able to plan successfully for 67% of the
agents. The most effective component of the solution was the introduction of traffic lights,
which helped prevent deadlocks and conflicts in clusters. Our solution, being reactive, was

10. https://github.com/marmotlab/flatland-challenge-neurips-2020
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also relatively unaffected by malfunctions. We also found that departure initialization using
the heuristics described above has a considerable impact on performance.

5. Competition Results

Team Rank Score % Trains Done # Environments
An_Old_Driver OR 1 297.507 98.6% 363
JBR_HSE RL 1 214.150 78.5% 336
Netcetera RL 2 181.497 88.1% 229
MARMot-Lab-NUS RL 4 127.912 66.4% 230

Table 1: Competition results. Overall scores, completion rates and number of tackled
environments of the four solutions presented in this paper.

In total, 702 participants took part in the competition, formed 63 teams and made 2237
submissions. We compared the competition performances of the four solutions presented
in the previous section. Table 1 shows their overall scores, completion percentages and
number of encountered environments. The OR solution (An_Old_Driver) tackled the most
environments with a total of 363, followed by the winning RL solution (JBR_HSE) with
336. Interestingly, the second RL solution (Netcetera) tackled 1 environment less (229) than
the fourth RL solution (MARMot-Lab-NUS, 230), but scored better on average resulting
in a better ranking. This perfectly illustrates the two competing goals of the challenge:
maximizing the number of agents that reach their targets vs minimising the time needed to
bring the agents there.

Figure 2 shows the normalized scores of the four solutions after 90 hour of evaluation,
without enforcing the termination conditions of the competition (see Appendix H for the
completion rates). For simple environments and a small number of agents, all four solutions
received a very high score with some exceptions for the fourth RL solution. Scores start
to decline around test 10 when the number of additional agents per environment increased
faster (+8 agents per test) than during the 10 tests before (+1 agent). While the fourth RL
solution had some outliers in the earlier tests, the second RL solution had a higher variance
later on. The best RL solution and the OR solution show comparably less spread of the
scores which indicates that they could better adapt to all sorts of environments. A reason
for the best RL solution to cope better with the larger number of agents compared to the
other RL solutions could be given by the learned communication between agents, which
was responsible for better performances during the experimentation phase by the team (see
Section 4.2).

All three RL solutions used different learning algorithms (PPO, Ape-X, A3C) but, at
first glance, there seems to be no performance difference based on the algorithm choice which
is consistent with the results from the Flatland baselines (Mohanty et al., 2020).

It is also worth highlighting that both centralized and decentralized approaches were
effective and had comparable performance. An_Old_Driver used an OR-based priority-
planning approach to centrally plan collision-free paths. In contrast, all RL solutions were
based on the centralized training with decentralized execution paradigm, whereas the arising
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Figure 2: Normalized environment scores. The dots indicate the normalized scores the
solutions achieved for a given environment. The lines represent the mean of the
10 environment scores per test (x-axis) and the filled area the 0.1-quantile.

coordination problem was solved in either a centralized or decentralized manner. JBR_HSE
supplemented observations based on a local tree observation and hand-crafted features with
local learned communication. Netcetera constructed a global conflict graph to assign prior-
ities in a centralized fashion during execution to solve conflicts between agents. MARMot-
Lab-NUS used a local tree observation in combination with decentralized traffic signal clus-
ters that can be implemented by local communication around critical switches.

In parallel to the competition, special “Community Prizes” were available for contribu-
tions that supported the participants’ experimentation.11 The top community contribu-
tions12 included innovative observation builders for RL, notebooks to leverage the RLlib
baselines, and a tool to visually analyze the agents’ behaviour (see Appendix I), which won
first place.

6. Conclusion

The results show that RL solutions are still a considerable distance away from OR based
solutions. OR solutions have the advantage that they can search the joint configuration space
in a centralized manner, and, therefore, allow agents to exhibit coordinated maneuvers that
can handle complex situations. A single deadlock in Flatland can have a domino effect and
further work needs to be done to address such events effectively.

Defining the right observations has proven to be difficult and more research is needed to
investigate the influence of specific features. For example, the local observation of an agent

11. https://discourse.aicrowd.com/t/flatland-community-prize
12. https://discourse.aicrowd.com/t/neurips-2020-flatland-winners
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could be significantly enriched by combining a tree observation with a local grid observation
to enable long-term planning and spatial reasoning in the region surrounding each agent.
Also network structures with a temporal component such as an LSTM could improve the
long-term planning, but accommodating such an approach with state masking is challenging.

In the competition, heuristics customized to the specifics of Flatland and the task at
hand, such as departure schedules and prioritisation, greatly improved the performance
of solutions. Building on the promising results of these decision heuristics, coordination
mechanisms such as traffic light policies (see Section 4.4) and the graph based prioritisation
(see Section 4.3) could potentially be improved by introducing RL-based controllers instead
of manually implemented ones.

Overall, the Flatland competition 2020 demonstrated the potential of RL approaches
but also showed that more systematic research is needed to find effective methods to solve
the VRSP for problems such as Flatland.
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Appendix A. Starter Kit and Baselines

Multiple ready-made solutions and advanced baselines were provided to participants to
support quick experimentation.

A.1. Starter Kit

The Starter Kit offered a short and readable implementation of the DDDQN algorithm (Wang
et al., 2016) using PyTorch (Paszke et al., 2019). By default, it used a tree observation with
25 features and depth 2. It could be cloned from the AIcrowd repository and submitted di-
rectly to the challenge, granting a score of 54.646. The Starter Kit was designed as a simple
entry point for non-expert participants. A detailed documentation offered a walk-through
of the code.13 It also included support for experiment logging and hyperparameter tuning
using Weights & Biases (Biewald, 2020).

A.2. RLlib Baselines

Baselines built on the RLlib framework (Liang et al., 2018) were also provided. RLlib is
an open-source library for reinforcement learning that offers a unified API for various RL
methods and is designed for scalability. The RLlib baselines included four reinforcement
learning methods: Ape-X (Horgan et al., 2018), PPO (Schulman et al., 2017), PPO with
a centralized critic (Iqbal and Sha, 2019) and MARWIL (Wang et al., 2018). They also

13. https://flatland.aicrowd.com/getting-started/rl.html
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included two improvements specifically designed for the Flatland environment: the ability
to skip cells where no meaningful decision had to be taken, and the ability to mask invalid
actions. By default, the baselines used a tree observation with 25 features and depth 2. An
alternative observation that used the expected density in each cell was also available.

Some of the baselines used imitation learning (IL) approaches in order to leverage expert
demonstrations. MARWIL uses demonstrations to learn a policy that can in theory exceed
the performance of the expert policy. In addition, the Ape-X and PPO baselines could also
be trained using a mixture of IL and RL experiences. Full details can be found in Mohanty
et al. (2020).

Appendix B. Environment Configurations for the Evaluation

The environments of the evaluation were generated with increasing difficulty. All environ-
ments were based on the same parameters:

n_envs_run := 10

min_malfunction_interval := 250

max_rails_in_city := 4

malfunction_duration := [20, 50]

max_rails_between_cities := 2

speed_ratios := {1.0 : 1.0}
grid_mode := False

For every environment l ∈ {0, . . . , 9} of a test k ≥ 0, the following parameters were calcu-
lated:

malfunction_intervall := l ·min_malfunction_interval

n_agentsk+1 := n_agentsk + d0.75 · 10blog10(n_agentsk)ce

n_citiesk :=

⌊
n_agentsk

10

⌋
+ 2

x_dimk :=


√

6

(⌈
max_rails_in_city

2

⌉
+ 3

)2

· n_citiesk

+ 7

y_dimk := x_dimk

In total, 41 test k ∈ {0, . . . , 40} were generated, each containing 10 environments l ∈
{0, . . . , 9}, which shared the same dimensions, number of agents nk ∈ [1, 6256] ∩ N, and
other parameters (see above). Dimensions ranged from 25×25 to 314×314, all square. The
environments in each level had malfunction rates r = (l ·min_malfunction_interval)−1,
for l > 0, and r = 0 for l = 0.
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Appendix C. Evaluation Setup

The submissions were evaluated in a docker container with access to 4 CPU cores and 15
GB of main memory. Each core was an hyper-thread of an Intel Xeon E5 v3 with a base
speed of 2.3 GHz and a single-core maximum turbo speed of 3.8 GHz. The base image for
the container was Ubuntu 18.04.

The submissions were built in advance of the evaluation when necessary, for example
to compile C/C++ code. They could only communicate with the evaluation environment
through a restricted interface to avoid any abuse.

Appendix D. Graph Representation of the Flatland Environment

Figure D.1: Visualization of a graph representation of the environment where a vertex rep-
resents a switch and the direction of entry.

A Flatland environment can be represented as different kinds of graphs. For example,
every cell can be modelled, but also graphs that only include decision cells are useful. For
most applications, not only the rail layout but also the available direction options an agent
has at a vertex, dependent on its incoming direction (edge), have to be modelled. In that
case, a cell is translated into multiple vertices, one for each direction available.
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Appendix E. Outstanding Solutions Hyper-parameters

E.1. Team JBR_HSE

E.1.1. Reinforcement Learning Model

The model was trained using PPO (Schulman et al., 2017).

Maximum training timesteps 1010

Maximum training episodes 105

Optimizer Adam
Learning rate 10−5

Batch size 32
GAE horizon 16
GAE gamma 0.995
GAE lambda 0.95
Epsilon (clipping) 0.2
Value loss coefficient 0.5
Entropy coefficient 10−2

Actor network [256, 128] fully connected
Critic network [256, 128] fully connected
Network activations ReLU
Model architecture See Section 4.2

E.1.2. Departure Classifier

The classifier limited the maximum occupancy by only allowing trains that have a high
probability to reach their target to enter the grid.

Training epochs 3
Optimizer Adam
Learning rate 10−4

Batch size 8
Probability threshold 0.92
Network layers [128, 128] fully connected
Network activations ReLU
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E.2. Team Netcetera

The model was trained using Ape-X DQN with Duelling Networks (Horgan et al., 2018).

Training timesteps 2,000
Optimizer Adam
Learning rate 5e-4
Batch size 128
Epsilon (exploration) 1 to 0.02 annealed over 15,000 timesteps
Network layers [30, 30, 30, 30, 30, 20, 20, 20, 20, 10, 5] fully connected
Network activations ReLU

The other parameters used the values provided by the RLlib Ape-X DQN implementation.14

E.3. Team MARMot-Lab-NUS

The model was trained using A3C (Mnih et al., 2016).

Optimizer Nadam
Learning rate 2−5

Gamma .95
Network layers [256, 256, 256, 256, 128, 64] convolution, [1024] fully connected
Network activations ReLU

Appendix F. Cell Types in a Flatland Environment

Figure F.1: Cell types. There are three different types of cells in a Flatland environment
(see Section 3). The majority of cells containing rails in a Flatland environment
are non-decision cells (grey rails). The blue cells are decision cells where an agent
has multiple options (depending on the incoming direction) in which direction to
proceed. Directly connected decision cells form clusters which play an important
role for train coordination. Red cells denote stopping cells that are connected
to decision cells but not decision cells themselves.

14. https://docs.ray.io/en/releases-0.8.7/rllib-algorithms.html
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Appendix G. JBR_HSE Solution Architecture

Figure G.1: Agent architecture. o, a,m, and h respectively denote observations, actions,
messages, and extracted features.

Appendix H. Environment Completion Rates

Figure H.1: Ratio of agents that reached their targets per environment. The dots
indicate the rate of agents that completed a given environment. The lines
represent the mean of the 10 completion rates per test (x-axis) and the filled
area the 0.1-quantile.
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Appendix I. Visual Analytics for Flatland

Figure I.1: A visual analytics approach to analyze agent behaviour. The timeline
view is shown on the left, the map view on the top right, and the graph view on
the bottom right.

The visual analytics tool15 offered three static and interlinked views to investigate the
performance of a solution in an individual environment (see Figure I.1): the timeline view,
the map view and the graph view. The timeline view allowed to investigate actions and
events (e.g., movement, malfunctions, deadlock, etc.) for each train in a separate row. The
map view highlighted the train positions on tracks for individual timesteps and the graph
view showed the user-defined regions-of-interest from the map view as vertices and agent
movements between the regions as edges. Figure I.2 shows an example of a visual analysis
of the track usage.

Figure I.2: Visual analysis of the track usage. In this example (environment 7 of
test 10), An_Old_Driver (a), JBR_HSE (b), and Netcetera (c) showed similar
behavior by utilizing almost all the tracks (red heatmap), whereas MARMot-
Lab-NUS (d) used fewer tracks. JBR_HSE and MARMot-Lab-NUS both expe-
rienced deadlocks (red solid blocks). Individual trains are represented through
numbered black circles and stations are labelled S1-S4.

15. https://github.com/shivamworking/flatland-visualization
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