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Abstract— The long-term goal of this work is to enable
agents with low-information sensors to perform tasks usually
restricted to ones with more sophisticated, high-information
sensing capabilities. Our approach is to regulate the motion
of these low-information agents to obtain “high-information”
results. As a first step, we consider a multi-agent system tasked
with locating and tracking a moving target using only noisy
binary sensors that measure the presence (or lack thereof)
of a target in the sensor’s field of view. To generate effective
paths for these agents, we use ergodic trajectory optimization
with a novel mutual information map that is fast to compute
and can handle the discontinuous measurement models often
associated with low-information sensing. We compare our
approach with existing motion planning methods in multiple
simulated experiments. Our experiments show that agents using
our method outperform purely coverage-based approaches as
well as naive ergodic approaches.

I. INTRODUCTION

This work considers the question: can well-designed mo-
tion strategies allow agents with low-information sensors
to perform complex information-gathering tasks like target
search? As their name suggests, low-information sensors,
such as tactile sensors, provide little information compared
to high-information sensors like RGB-D cameras. Such low-
information sensing can result from either low resolution
or high uncertainty in the sensor’s measurements. In this
work, we propose a motion planning method for a multi-
agent system tasked with autonomously locating and tracking
a single moving target with binary sensors, a type of low-
information sensor that only produces a 0 or 1 indicating
whether the target is within each agent’s field of view (FOV).

In order to plan effective motion strategies for these agents
with binary sensors, we use ergodic trajectory optimiza-
tion (ETO), a framework which has been applied to many
information-gathering problems, including target search [1]–
[6], self localization and learning [7], [8], shape estima-
tion [9], and robotic palpation [10]. The ETO framework has
been shown to produce effective long-term motion strategies
for exploration [5]. Since low-information sensors, by their
very nature, cannot gather much information in a short time,
the ETO framework’s utility for long-term motion strategies
makes it appealing for systems with low-information sensors.
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Fig. 1. Illustration of multi-agent search with binary detection sensor.
(Left) Snapshot of the simulation environment. Each drone can see the
moving red target when it is within the drone’s FOV, shown as a cones
which turns green when the target is observed and red otherwise. (Right)
Example mutual information map and target belief distribution (lighter is
higher). Green dots are current drone (x, y) positions and red dots show
planned ergodic trajectories over a time horizon tH = 30. Red × shows
true target (x, y) location (unknown to agents).

In ETO, agents’ trajectories are optimized so that the time
spent in a region of the search space is proportional to
the amount of information in that area, according to an a
priori information map [11]. Though previous works have
primarily used heuristic-based maps [1], [4], [10], [11] or
Fisher information maps [2], [3], [7], [9], we propose to use
a mutual information map. Mutual information, unlike Fisher
information, can handle measurement models which are
discontinuous with respect to sensor location [12]. Previous
methods for computing a mutual information map have relied
on learning-based techniques which require large amounts
of data to train and can be computationally burdensome
[13]. We instead derive a quick-to-compute, closed-form
expression for the mutual information for the specific case
of a low-information binary target sensor.

We use this ETO-based method for motion planning to
search for a moving target using only binary target sensors
and demonstrate that our proposed mutual information map
allows the agents to effectively locate and track the target.
We compare our method to existing techniques on a number
of simulated examples with a multi-agent system and show
that ours results in the best estimate of the target’s location
(in terms of mean absolute distance).

A summary of contributions in this work is as follows:

1) Extending existing ergodic search techniques for use
with low-information binary target sensors.

2) Deriving a quick-to-compute closed-form expression
for the mutual information between binary observa-
tions and a target belief distribution.
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II. RELATED WORKS

A. Low-Information Sensors
Often, simpler, low tech sensors can be cheaper or more re-

liable than sensors which provide higher quality information.
For example, while a high-resolution camera could provide
lots of information about a persons location in its field of
view, it might cost more than the rest of the robot and still
fail when lighting is poor. A pyro-electric infrared sensor
is both cheap and requires no lighting at all to detect a
person, though the information gained from a detection is
significantly lower.

For these reasons, low-information sensors have widely
been used in various robotics-related domains. Acoustic
binary proximity sensors, pyro-electric infrared sensors, and
moving target indicators are often used in static wireless
sensor networks to track moving objects in a fixed region
which are used in applications such as disaster relief and
surveillance [14]–[20]. Gas sensors have been used on tele-
operated mobile robots to locate hazardous gas leaks [20],
and tactile sensors have been used for SLAM with fixed
agent trajectories [21], [22]. In contrast to these works,
which are concerned with statically placed sensors or human
controlled agents, we focus on autonomous agents, more
in line with works like [9]. The work in [9] considers the
active non-parametric shape estimation problem with a tactile
sensor, but relies on a learned collision likelihood distribution
to smooth out discontinuities resulting from the sensor only
measuring contact or no contact. In this work, we present a
method that is indifferent to discontinuities, allowing us to
use an exact measurement model and avoid the parameter
tuning required in most learning-based approaches.

B. Information Theoretic Planning
Information theoretic planning has been considered for

many different information gathering problems and has been
particularly successful at addressing the target search prob-
lem, where agents are tasked with locating and tracking a
moving target. With these methods, agents are controlled
so that sensor measurements they take are likely to reduce
uncertainty about the target location [23]. In [15], the authors
use a particle filter based estimate of α-mutual information
(Rényi information) for static but configurable binary sensors
to create short time horizon plans for target tracking. Other
works consider information maximizing control methods for
mobile agents using various types of sensors [23], [24].
However, these works run into a fundamental problem with
information-maximizing strategies; the computation time for
both mutual information and Rényi information scale expo-
nentially with the number of agents and the time horizon
for planning. Due to computational constraints, these early
works choose actions over a maximum time horizon of two,
leading to myopic behavior that can result in failure to locate
targets.

Recent works have developed less greedy methods using
combination of computationally cheaper approximations of
the information gain and more efficient planning methods.
In [25], the authors derive an approximate form for the

mutual information when the measurement model is Gaus-
sian, and alleviate some of the issues of greedy planning by
carefully choosing the set of motion primitives to avoid con-
sidering primitives which collect similar information. Other
works consider sample-based planning techniques for infor-
mation acquisition over long time horizons [26], [27]. Dames
[28] considers many ways to make computing the mutual
information more computationally feasible—for example,
the use of an adaptive cellular representation for the target
belief distribution. However, these works do not get over the
fundamental scaling issues of information maximization.

C. Ergodic Search

Ergodic search is another technique that has been applied
to the target search problem. In the ETO framework, tra-
jectories are optimized so that the agents visit areas of the
search space with a frequency proportional to the amount of
information in that area, according to a static information
map [11]. This search strategy allows for the planning
of long-time horizon trajectories which balance between
exploitation of areas of high information and exploration of
low-information regions, even when the distribution of in-
formation is highly non-convex [5]. Because the information
map is static (at least over the course of one planning step),
is does not fully consider how every measurement interacts
with the others like purely information based approaches.
However, computation of the ergodic metric scales linearly
instead of exponentially like most information metrics, al-
lowing it to be used with more agents and longer planning
horizons.

In [1] and [4], the authors use this framework for target
search with a heuristic-based map defined by the target belief
distribution. In this work, we show that using the target
belief distribution as the information map is not always
effective for binary sensors as just maximizing the likelihood
of observing the target may not be enough to get a good
estimate of its location. Both [3] and [2] consider sensors
with non-linear measurement models and use ETO with a
information map defined using the Fisher information matrix
determinant in order to get more informative measurements.
Though maximizing the Fisher information is desirable, as
it can be used to derive a lower bound for the variance of
an unbiased estimator for a target location [12], it requires
the measurement model to be differentiable. Otherwise,
the Fisher Information does not exist at every point. For
the binary sensors considered in this paper, using Fisher
information is particularly impractical as it is always either
zero or undefined.

III. PROBLEM SETUP

In this section, we describe the method used to actively
search for and localize a moving target. We first define the
target dynamics and the measurement model of the binary
sensors used to track the target. Then, we describe the model
predictive control procedure we use to optimize the ergodic
metric, the cost function associated with ETO.
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A. Target Tracking
Let yt ∈ Y be the target’s state at time t, where Y is the

set of all possible target states; in this paper, where we are
tracking a single target in the plane, Y ⊂ R2. Note that if the
target is a point mass, then yt is simply the location of that
point, and if the target is a disk (as in Figure 1), yt is some
reference point on the disk, e.g., its center. Furthermore, let
g(yt+1|yt) be the probability density function representing
the non-adversarial, stochastic dynamics of the target.

In order to locate the target, each agent (enumerated as
i ∈ {1, . . . , N}) has a binary sensor which outputs stochastic
measurements zi,t ∈ {0, 1} indicating the presence of the
target in the sensor’s FOV. The state of agent i at time t is
xi,t ∈ X , where X is the set of achievable agent states, and
we call S(xi,t) ⊆ Y the agent’s sensor footprint, which gives
the set of target locations within the sensor’s FOV when the
agent is at xi,t. We also define T, F ∈ [0, 1] as the true
and false positive rates of the binary sensors, giving us the
following measurement model:

zi,t ∼

{
Bernoulli(T ) if yt ∈ S(xi,t)

Bernoulli(F ) if yt /∈ S(xi,t).
(1)

Let h(zi,t|yt;xi,t) be the probability mass function associ-
ated with the distribution for zi,t. Note that h(zi,t|yt;xi,t) is
conditioned on yt since this value is unknown to the agents,
but parameterized by xi,t, which is known.

During target search, we keep track of a target be-
lief distribution with density b(yt|z0:t;x0:t), where z0:t =
[z0,0, · · · , zN,t] is a vector of all the past observations and
similarly x0:t = [x0,0, · · · , xN,t] is a vector of all past
agent positions, using the standard recursive Bayes filtering
equations (see [29] for details).

B. Ergodic Trajectory Optimization
In ETO, the spatial statistics of agents’ trajectories are

optimized to cover X proportional to an a priori information
map Φ : X → R+ [11]. We assume that the state of the agent
evolves according to the discrete time dynamics

xi,t+1 = f(xi,t, ui,t), (2)

where ui,t ∈ U is the control input for agent i at time t. The
spatial statistics of the agents’ joint trajectory over a time
horizon tH , x = [x0,t, · · · , xN,t+tH−1], are defined as

C(x) =
1

NtH

N∑
i=1

t+tH−1∑
τ=t

δ(x− xi,τ ), (3)

where δ is the Dirac-delta function. In [11], the authors define
the ergodic metric E(x), which compares the spatial statistics
C with the information map Φ, i.e.,

E(x) =
∑
k∈Z∗n

Λk|ck − φk|2, (4)

where ck and φk are the kth Fourier components of C and
Φ respectively, and Λk are weights which put emphasis on
lower-order fourier coefficients [11]. Similarly to [7], we

Fig. 2. Components for calculating the mutual information map. (a)
Sensor footprint mask M(y) for a rectangular sensor footprint, (b) Current
belief about target location b(y), (c) µ(x) calculated using Equation 16
(shown projected onto Y), (d) Ix(y; z) calculated using Equation 9 (shown
projected onto Y)

optimize the joint controls u = [u0,t, · · · , uN,t+tH−1] in a
receding horizon fashion with the optimization

u? = arg min
u

E(x) +
∑
i

∑
t

u>i,tRui,t

subject to xi,t+1 = f(xi,t, ui,t) and l(x,u) ≤ 0

with initial condition x0,0, . . . , xN,0,

(5)

where R is a matrix that penalizes control effort and l is a
set of inequality constraints on the trajectory and controls
e.g., inter-agent distance and control saturation.

There exists many different methods for performing this
optimization [3], [7], [30]. We solve Equation 5 using the
automatic differentiation library CasADi [31]. An example
trajectory with tH = 30 is shown in Figure 1.

IV. INFORMATION MAP WITH BINARY TARGET SENSORS

Now, we derive an information map for a binary target
sensor to use with ETO. We first give some background
on mutual information Then, we show how a closed form
expression for both metrics can be derived and used to
compute corresponding information maps.

A. Mutual Information
Mutual information is a commonly used measure for

information in the target search problem [24]–[26], [28]. The
mutual information between an observation z and the target
belief for y when an agent is at state x is

Ix(y; z) = Eh(z;x)[DKL(b(y|z;x) || b(y))]

= DKL(p(y, z;x) || b(y)h(z;x))

= H(y)−H(y|z;x),

(6)

where E is the expected value, DKL is the Kullback-Leibler
(KL) divergence, and H is the Shannon entropy [12]. It can
be viewed both as a measure for how dependent the target
location y and an observation z are (line 2 of Equation 6) and
as the expected reduction in uncertainty in y from making
an observation z (line 3 of Equation 6). We can simply
normalize Ix(y; z) over X to create an information map to
use with ETO,

Φ(x) =
Ix(y; z)∫

X Ix′(y; z)dx′
(7)

B. Derivations and Computation for a Binary Sensor
In this subsection, we discuss the computation of infor-

mation maps based on the mutual information which can be
used with ETO to produce effective search trajectories. We
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first define µ(x) to be the measure of the set S(x) (the sensor
footprint) over the target belief distribution, i.e.,

µ(x) =

∫
S(x)

b(y)dy. (8)

Proposition 1: For the binary measurement model de-
scribed in Equation 1, the mutual information (Equation 6)
between a sensor observation z and the target belief distri-
bution for y when an agent is in state x is

Ix(y; z) =

µ(x)

(
T log

(
T

p1

)
+ (1− T ) log

(
1− T
p0

))
+

(1− µ(x))

(
F log

(
F

p1

)
+ (1− F ) log

(
1− F
p0

))
,

(9)

where p1 = Tµ(x) + F (1− µ(x)) and p0 = 1− p1 are the
believed probabilities of observing a 1 and 0 respectively.

Proof: We start with the definition of mutual informa-
tion using KL divergence in Equation 6 and rewrite it to use
the conditional distribution of z on y.

Ix(y; z) = DKL(b(y, z;x) || b(y)h(z;x))

=

∫
Y

∑
z∈{0,1}

p(y, z;x) log

(
p(y, z;x)

b(y)h(z;x)

)
dx

=

∫
Y

∑
z∈{0,1}

h(z|y;x)b(y) log

(
h(z|y;x)

h(z;x)

)
dx.

(10)

Then, we can write h(z;x) in terms of µ(x), T , and F using
Equation 1 and the law of total probability.

h(z = 1;x) =

∫
Y
h(z = 1|y;x)b(y)dy

= T

∫
S(x)

b(y)dy + F

∫
Sc(x)

b(y)dy

= Tµ(x) + F (1− µ(x)) := p1

(11)

h(z = 0;x) = 1− h(z = 1;x)

= 1− Tµ(x)− F (1− µ(x)) := p0
(12)

where p1 and p0 are defined for notational convenience and
Sc(x) is the set complement of S(x). Then, by splitting up
the integral over Y in Equation 10 by S(x), we get

Ix(y; z) =∫
S(x)

b(y)

[
T log

(
T

p1

)
+ (1− T ) log

(
1− T
p0

)]
dy +∫

Sc(x)

b(y)

[
F log

(
F

p1

)
+ (1− F ) log

(
1− F
p0

)]
dy.

(13)

Since all the variables in the square brackets are constant
with respect to y, we can substitute in the definition for µ(x)
to get the final expression in Equation 9.

Writing Ix(y, z) in terms of µ(x) is important because,
when S(x) is a fixed shape (i.e., it doesn’t rotate or
scale) which translates around the search space, µ(x) can
be efficiently computed using image convolution. To give

Fig. 3. ETO pipeline for target search. The ergodic search algorithm is
initialized with a uniform information map Φ which is used to provide an
initial exploratory control signal to the agents subject to the optimization
described in (5). Subsequent binary sensor measurements acquired through
exploration are used to filter the belief over the targets which is used to
reconstruct Φ according to Eq. 9.

a mathematical definition for a fixed shape, we start by
defining the projection function P(x) : X → Y , which
maps x to its projection on Y (e.g., if y = (y1, y2) and
x = (y1, y2, ẏ1, ẏ2, x5, x6) then P(x) = (y1, y2)). Then,
S(x) = SP(P(x)) is a fixed shape iff for all x, y1, y2

y1 ∈ SP(P(x)) ⇐⇒ y1 + y2 ∈ SP(P(x) + y2). (14)

This definition captures the idea that S(x) only translates
with P(x) and allows us derive a formula for µ(x). From
SP , we define the mask

M(y) := 1[y ∈ SP(0)], (15)

where 1[·] is the indicator function. This allows us to
calculate µ(x) as

µ(x) =

∫
S(x)

b(y)dy =

∫
Y
M(y − P(x))b(y)dy

= (M ∗ b)(P(x)),

(16)

where ∗ is the convolution operator. Using a grid based
representation of the target belief distribution and the sensor
footprint mask, we can use image convolution to efficiently
calculate µ(x) for all values of x on the grid. Figure 2 shows
an example where the sensor footprint is a rectangle. Once
we have µ(x), we can calculate Ix(y; z) using Equation 9.

V. RESULTS

In this section, we compare the performance of our method
to a naive ETO implementation and to Boustrophedon de-
composition [32] (i.e., “lawnmower” coverage). Addition-
ally, we examine how our method fares as the number of
searching agents varies and show that the information map
used with ETO can have even more affect on the search
performance than the quality of the sensor data received.

A. Experimental Setup
Figure 3 illustrates the pipeline used for the ETO based

algorithms. The information map Φ is initially generated
as a uniform distribution over the space. At each timestep,
each agent moves according the commanded controls based
on the initial information map. As the agents move about,
they take a binary observation, which is used to update
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Fig. 4. Search comparisons and multi-agent contributions. (Left)
Average MAD of the three algorithms ± two standard errors. Our method
(MI-ETO) quickly localizes the targets and hones in on their location, as
can be seen by the sharp decrease in MAD and low steady state MAD
once the targets have been found. (Right) Average MAD of the MI-ETO
algorithm ± 2 standard errors with varying numbers of agents. As can be
expected, more agents results in better localization but can eventually leads
diminishing returns as the number grows higher.

the belief about the target’s location using a particle filter.
Finally, the new belief is used to update the information map
Φ according to Eq. 9 which is then inputted into ETO to
plan agent trajectories and output corresponding controls. In
Boustrophedon decomposition, the trajectories of the agents
are fixed to the lawnmower patterns so no replanning is
necessary.

To compare performance, we use mean absolute distance
(MAD). For a belief b, MAD is defined as∫

Y
b(yt) ||yt − y∗t ||2 dy, (17)

where y∗t is the true location of the target and ||yt− y∗t ||2 is
the euclidean distance between the state yt and the true state
y∗t . For the particle filter implementation of the belief used
in this work, this is calculated as∑

i

wi ||yi − y∗t ||2, (18)

where yi is particle i’s state and wi its corresponding weight.
MAD is low when the belief is dense near the true target state
(i.e., all the particles are near the true state).

For all the experiments done, the true positive rate T and
false positive rate F are set to 0.8 and 0.01 respectively.
The search space is a 6 by 6 meter area, and the belief
is initialized to a uniform distribution over the space. The
agents can move up to 5 m/s and the targets move according
to a random walk with a maximum velocity of 0.15 m/s. The
field of view of each of the agents is a circular area centered
directly below them with radius 0.577 m.

B. Comparisons between Algorithms
The three algorithms compared are as follows: 1. MI-

ETO: ETO with our mutual information-based information
map generated using Equation 7; 2. B-ETO: Naive imple-
mentation of ETO, where the the information map is simply
the belief b(yt+1|z0:t;x0:t) (i.e., not using any information-
like measure and simply exploring high likelihood areas); 3.
Lawn: Agents move back and forth across the search space,
covering the whole space but not spending additional time
in any one area.

Figure 4 shows the average MAD from 40 simulated trials
of each algorithm. As can be seen, the Lawn algorithm

Fig. 5. Comparison with high information sensors. (Left) RMSE± 2 SE
for both higher-information sensors with B-ETO (HI) and low-information
sensor with MI-ETO (LI). The number next to HI is the value of σ2.
(Right) Entropies ± 2 SE for high and low information sensors. Using MI-
ETO with a low-information sensors starts to outperform B-ETO with the
higher-information sensors at around σ2 = .5.

performs the worst as it is not able to take advantage of
previously obtained observations. Additionally, the agents
do not revisit areas previously covered, meaning that even
when the target is detected it is not necessarily tracked
afterwards. The B-ETO algorithm performs slightly better
but still has a high steady-state MAD as the agents are not
using an information-based search strategy. Without using
mutual information, the agents’ sensor observations are not
as useful as the MI-ETO algorithm. The reason for the
disparity between the two ETO algorithms is the binary
sensing modality. As can be seen in Figure 2, the information
gained by the binary sensors is actually quite low when the
agents is directly over an area of high belief, and instead is
maximized when µ(x) is about 0.5. In fact, without providing
a full proof due to space constraints, it can be shown that
Equation 9 is maximized when µ(x) is between .5 and 1/e
(Euler’s number) depending on the values of the true and
false positive rates T and F . This means that the B-ETO is
often sending agents to locations with too high a density and
therefore doesn’t gain as much information.

C. Varying the Number of Agents
Now, we look at how MI-ETO performance changes as

the number of searching agents varies. The data is collected
over 40 simulated trials with each number of searching
agents. Illustrated in Figure 4, MI-ETO performs signifi-
cantly worse with one and two agents and that the increased
performance diminishes as the number of agents increases
(e.g., the difference between 1 and 2 agents is much greater
than between 3 and 4). This is an expected result since, as the
number of agents increases, the agents’ field of views will
inevitably overlap during the search process and therefore the
information gained by each individual agent will decrease
thus reducing efficacy of each contributing agent.

D. Comparison to a High Information Sensor
Here, we show that effective planning can have a greater

affect on the search performance than sensor quality alone.
Here, we compare MI-ETO to B-ETO with varying levels
of sensor quality (i.e., noise levels). While the agents using
MI-ETO still receive only binary observations, the B-ETO
agents observe ŷ ∼ ϕ(ŷ−yi,t, σ2), where ϕ is a multivariate
normal distribution with mean 0 and σ2 variance in each
independent direction (i.e., a diagonal covariance matrix).

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1063 submitted to 2022 IEEE International Conference on
Robotics and Automation (ICRA). Received September 14, 2021.



Fig. 6. Camera-based search and persistent tracking. (Left) Average
RMSE from 10 runs using camera based object detection system from t =
300 to t = 1500 (steady state tracking). MI-ETO performs significantly
better than B-ETO. (Right) Snapshots of a “robot” with a rectangular sensor
footprint localizing a moving target. The top image in each pair shows the
information map (lighter is higher). The bottom images show a contour plot
of the target belief distribution (red lines) at each time step on top of the
full image from the camera. Both images show the current agent location
(orange dot), the current planned trajectory (blue), the sensor footprint
(outline shown as green rectangle), and the true target position (red ×).

In Figure 5, we vary σ2 and show that at around σ2 =
.5 MI-ETO starts to outperform B-ETO in terms of both
root-mean-sqaured-error (RMSE) and entropy despite using
lower-information sensors (30 trials of each σ2 value are
done). Note that RMSE is calculated similar to MAD given
by √∫

Y
b(yt) ||yt − y∗t ||22 dy. (19)

The difference between the compared algorithms is even
more apparent when we look at the entropy of the belief
distribution. Our approach MI-ETO using a low-information
sensor is shown to obtain lower entropy than most of the
comparisons and perform comparably to a higher information
sensor. This data demonstrates that effective search planning
can be as or even more important than the quality of the
sensor data being received.

E. Results with a Camera-Based Object Detection System
In this subsection, we show results using a webcam-based

object detector to demonstrate that MI-ETO still outperform
the naive B-ETO when some of the assumptions are broken;
neither the stochastic dynamics of the target g(yt+1|yt) nor
the sensor’s measurement model (parameterized by T and
F ) are known.

The target is a red object which is moved around by a
person, and the image classifier predicts either a 0 or a 1
depending on whether there is a sufficiently red object within
the cutout (see Fig. 6). On 20 training images collected prior
to the trials, the classifier had a 99.5% true positive rate and a
0.7% false positive rate, so we use T = .995 and F = .007.
To mimic a real robot moving around with a camera, we
allow the classifier to see and move a rectangular cutout
from the full webcam image. Figure 6 shows three timesteps
from a single trial. The search space and state space are both
the [0, 1]× [0, 1], where (0, 0) is the bottom left of the full
image and (1, 1) is the top right. The initial belief is set to the
uniform distribution, and the target’s dynamics are assumed
to be a zero mean Gaussian which is uncorrelated over time.

Though the values of T and F are overly optimistic
due to the relatively small training set and the assumed
motion model is not realistic for a person trying to move an
object around randomly, we still see notable improvement in
tracking performance by using the information based map as
can be seen in RMSE plot in Figure 6. This is a direct result
of MI-ETO better leveraging search over a more appropriate
information map for the low-information sensor.

VI. CONCLUSION

In this paper, we illustrate that low-information sensors
can be used to perform complex information gathering tasks
by using effective planning techniques. This is demonstrated
in the results, which show that using mutual information
for the information map for low-information (binary) sensors
results in improved search performance compared to existing
approaches. In addition, we show that effective planning
and search-based methods provided by ergodic trajectory
optimization and intelligently constructed information maps
enables low-information sensors to perform comparably to
high-information sensors. In future works, we would like to
explore generalizing this method for use with a heteroge-
neous swarm of agents and consider other low-information
sensing modalities.

REFERENCES

[1] G. Mathew, A. Surana, and I. Mezić, “Uniform coverage control of
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[11] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena,
vol. 240, no. 4-5, p. 432–442, 2011.

[12] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed.
Wiley-Interscience, 2006.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1063 submitted to 2022 IEEE International Conference on
Robotics and Automation (ICRA). Received September 14, 2021.



[13] L. Dressel and M. J. Kochenderfer, “Using neural networks to generate
information maps for mobile sensors,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 2555–2560.

[14] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking
with binary proximity sensors,” in IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005.
IEEE, 2005, pp. 301–308.

[15] C. Kreucher, K. Kastella, and A. O. H. Iii, “Sensor management using
an active sensing approach,” Signal Processing, vol. 85, no. 3, p.
607–624, 2005.

[16] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target
tracking with binary proximity sensors,” ACM Transactions on Sensor
Networks (TOSN), vol. 5, no. 4, pp. 1–33, 2009.

[17] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley, “Tracking
multiple targets using binary proximity sensors,” in Proceedings of
the 6th international conference on Information processing in sensor
networks, 2007, pp. 529–538.

[18] G. Tuna, V. C. Gungor, and K. Gulez, “An autonomous wireless sensor
network deployment system using mobile robots for human existence
detection in case of disasters,” Ad Hoc Networks, vol. 13, pp. 54–68,
2014.

[19] A. H. Henni, R. B. Bachouch, O. Bennis, and N. Ramdani, “Enhanced
multiplex binary pir localization using the transferable belief model,”
IEEE Sensors Journal, vol. 19, no. 18, pp. 8146–8159, 2019.

[20] T. Das, D. J. Sut, V. Gupta, L. Gohain, P. Kakoty, and N. M. Kakoty, “A
mobile robot for hazardous gas sensing,” in 2020 International Con-
ference on Computational Performance Evaluation (ComPE). IEEE,
2020, pp. 062–066.

[21] M. Salman and M. J. Pearson, “Advancing whisker based navigation
through the implementation of bio-inspired whisking strategies,” in
2016 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2016, pp. 767–773.

[22] O. Struckmeier, K. Tiwari, M. Salman, M. J. Pearson, and V. Kyrki,

“Vita-slam: A bio-inspired visuo-tactile slam for navigation while
interacting with aliased environments,” in 2019 IEEE International
Conference on Cyborg and Bionic Systems (CBS), 2019, pp. 97–103.

[23] B. Ristic and B.-N. Vo, “Sensor control for multi-object state-space
estimation using random finite sets,” Automatica, vol. 46, no. 11, pp.
1812–1818, 2010.

[24] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air
and ground surveillance,” IEEE Robotics & Automation Magazine,
vol. 13, no. 3, pp. 16–25, 2006.

[25] B. Charrow, V. Kumar, and N. Michael, “Approximate representations
for multi-robot control policies that maximize mutual information,”
Robotics: Science and Systems IX, 2013.

[26] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic infor-
mation gathering algorithms,” The International Journal of Robotics
Research, vol. 33, no. 9, pp. 1271–1287, 2014.

[27] Y. Kantaros, B. Schlotfeldt, N. Atanasov, and G. J. Pappas, “Asymp-
totically optimal planning for non-myopic multi-robot information
gathering.” in Robotics: Science and Systems, 2019.

[28] P. Dames, “Multi-robot active information gathering using random
finite sets,” 2015.

[29] Z. Chen et al., “Bayesian filtering: From kalman filters to particle
filters, and beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[30] I. Abraham and T. D. Murphey, “Decentralized ergodic control:
distribution-driven sensing and exploration for multiagent systems,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2987–2994,
2018.

[31] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[32] H. Choset, “Coverage of known spaces: The boustrophedon cellular
decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1063 submitted to 2022 IEEE International Conference on
Robotics and Automation (ICRA). Received September 14, 2021.


