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Joint-Space CPG for Safe Foothold Planning and
Body Pose Control during Locomotion and

Climbing
Ge Sun1,† and Guillaume Sartoretti1

Abstract—From insects to larger mammals, legged animals
can be seen easily traversing a wide variety of challenging envi-
ronments, by carefully selecting, reaching, and exploiting high-
quality contacts with the terrain. In contrast, existing robotic
foothold planning methods remain computationally expensive,
often relying on exhaustive search and/or (often offline) optimiza-
tion methods, thus limiting their adoption for real-life robotic
deployments. In this work, we propose a low-cost, bio-inspired
foothold planning method for legged robots, which replicates the
mechanism of the central nervous system of legged mammals.
We develop a low-level joint-space CPG model along with a
high-level vision-based controller that can inexpensively predict
future foothold locations and locally optimize them based on a
potential field based approach. Specifically, by reasoning about
the quality of ground contacts and the robot’s stability through
the high-level vision-based controller, our CPG model smoothly
and iteratively updates relevant locomotion parameters to both
optimize foothold locations and body pose, directly in the joint
space of the robot for easier implementation. We experimentally
validate our control model on a modular hexapod on various
locomotion tasks in obstacle-rich environments as well as on stair
climbing. Our results show that our method enables stabler and
steadier locomotion than an open-loop CPG controller, yielding
higher-quality feedback from onboard sensors by minimizing the
effect of slippage and unexpected impacts.

Index Terms—Biologically-Inspired Robots, Legged Robots

I. INTRODUCTION

LEGGED animals possess advanced neural control sys-
tems and body structures from millions of years of evo-

lution. In particular, they can seamlessly generate coordinated
and flexible gaits with feedback from their different senses
to walk on various complicated terrains. Inspired by these
biological systems, there is a broad interest in developing bet-
ter locomotive skills based on feedback from various onboard
sensors for legged robots, especially towards autonomous real-
life deployments such as search and rescue, mapping, or
exploration of human-denied areas [1]. Inspired by the loco-
motion mechanisms of animals [2], [3], this work addresses
safe foothold planning for locomotion and climbing over
general unknown terrain, based on onboard visual feedback.
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Fig. 1. Hexapod robot HEBI Daisy climbs stairs with onboard visual
sensors (Intel Realsense D435i for local terrain mapping, and T265 for visual
odometry). The robot can optimize the footholds based on the gradient of
the potential field map shown above. In our work, the outputs of the joint-
space CPG model are directly commanded to the horizontal and vertical
shoulder joints (1 and 2) without any modification. The elbow joint 3 is
handled via (closed-form) inverse kinematics. The rotation axes of each
joint are labeled with arrows. Our simulation code is available online at
https://github.com/marmotlab/CPG Foothold Planning.

We develop a computationally low-cost, bio-inspired control
framework that allows a legged robot to correct its predicted
foothold locations and exploit safe contacts with its environ-
ment, while ensuring stable locomotion, by integrating sensed
information in a manner that replicates the main mechanisms
behind stable, legged locomotion of vertebrates over rough
terrain.

The rhythmic locomotion of vertebrates is usually generated
by biological neural motor circuits in their spinal cord, referred
to as Central Pattern Generators (CPGs) [4]. The CPGs of
animals can produce rhythmic behaviors such as the ones
needed to generate walking, swimming, flying, or breathing
in the absence of sensory input from the higher levels of the
central nervous system [5]. However, the current behavior of
CPGs can be adapted based on high-level input from the brain
(e.g., change step height/length, or initiate gait transitions), or
based on low-level feedback from limbs (e.g., early contact
with the ground or slippage) [6]. Notably, experimental results
have demonstrated the existence of a short-latency visuo-
motor pathway during vertebrate locomotion over challenging
terrain [3], [7]. In this pathway, the central nervous system
is involved in adjusting foot trajectories reactively during the
legs’ swing phase, to identify and leverage good contacts with
the environment while ensuring balance [2]. Specifically, the
brain integrates visual feedback with proprioceptive informa-

https://github.com/marmotlab/CPG_Foothold_Planning
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tion, to then output the relevant signal to the premotor circuitry
in the spinal cord, adapting the CPGs’ behaviors to reach
corrected footholds [8].

In this work, we develop a closed-loop CPG-based frame-
work that mimics these key mechanisms to endow a legged
robot with the ability to predict, identify, correct, and leverage
useful contacts with the environment during locomotion over
irregular terrain. Our control framework is divided into two
parts: 1) a low-level joint-space CPG model (akin to the neu-
ronal motor circuits in the spinal cord), which directly controls
the leg movements, and 2) a high-level vision-based controller
(replicating the necessary brain mechanisms), which integrates
the internal state information of the robot with environmental
feedback from onboard sensors. Our high-level controller can
easily play forward the current behavior of the CPGs to
predict foothold locations without internal physics simulation.
These locations are overlaid on the local map of the robot’s
surrounding, to assess their quality. There, we propose the
use of a potential field to inexpensively and iteratively correct
the footholds towards safer areas. These iterative correction
signals from the high-level controller are used by the low-
level joint-space CPG model, to update the relevant CPG
parameters and smoothly reach these optimized footholds,
while ensuring stable locomotion by adapting the body pose.
Compared to existing foothold planning methods [9]–[13],
which often rely on exhaustive search and/or expensive model-
based optimization, our CPG model is directly defined in the
joint space of the robot, closer to the biological inspiration
for this mechanism, leading to simpler and computationally
inexpensive implementation.

We conduct experiments to validate our approach on a
hexapod robot through walking and climbing tasks. There,
we show that by fully integrating our high-level vision-based
controller and our low-level joint-space CPG model, the robot
can carefully select and adapt footholds in real-time. Our
experiments on steeper stairs, in particular, highlight that
careful foothold correction is paramount, as our method allows
the robot to climb significantly more effectively than an open-
loop CPG controller, maximizing success rate and forward
velocity.

The structure of this article is as follows: Section II presents
some related works about CPG-based controller and foothold
control for legged robots. Section III introduces our basic CPG
model. Section IV, introduces the potential field map as well
as foothold prediction and correction and body pose control.
In Section V, experiments are conducted to validate our model
on a Hexapod robot on different terrains. Finally, Section VI
summarizes and concludes our work.

II. PRIOR WORKS

A. Stable Legged Locomotion

Stable legged locomotion and climbing over irregular terrain
requires two key capabilities: (1) safe foothold planning, to
allow the robot to identify, reach, and exploit safe contacts that
aid locomotion, and (2) Body pose control, to ensure stable
locomotion. Foothold planning is often cast as an optimization
or search problem, with the goal to select safe and usable

contacts in the immediate neighborhood of the robot [10]–[12].
Specifically, early works have looked at mixed-integer convex
optimization to plan footholds for bipedal robots [14], or
relied on polynomial-based approximations to build a decision
surface with ground surface characteristics for foothold selec-
tion [12]. Some works also proposed learning-based methods
to compute foothold cost maps of the terrain, which can
then be used by legged robots for foothold selection [15].
For hexapod robots, Tian et al. recently proposed a method
based on such a foothold cost map, generated by analysis of
the terrain features and the relationship between robot and
terrain [13]. In order to plan more complex motions over
fully-mapped environments, Winkler et al. [10] proposed an
NLP solver based method to generate feasible, highly dynamic
motions that optimized body trajectory along with footholds.

Existing body pose control methods can be broken down
into two main categories: proprioceptive sensor-based meth-
ods [16], [17], and exteroceptive sensor-based methods [9],
[18]. The former class adapts the body pose reactively, often
based on feedback from onboard inertial measurement units
and/or force/torque sensors [19], [20]. The latter class senses
the environment first, usually using vision sensors, before tak-
ing a correcting action (i.e., more akin to feedforward control).
These methods generally plan the motion or trajectory of the
center of mass based on foreknowledge of the environment
and of the robot’s trajectory. In unknown environments, exte-
roceptive sensor-based approaches are generally more effective
and robust than proprioceptive sensor-based ones, as they can
make predictive corrections and do not only react to losses
of balance. Our work, like legged animals, combines both
methods.

B. CPG

Inspired by animals, CPG-based motion control has been
widely studied and used for generating gaits for legged
robots [21]–[23]. Many CPG models to date rely on nonlinear
equations [24], artificial neural networks [25], or topological
models [26]. For dynamic system based CPGs, on which this
work focuses, there are two commonly used methods of CPG
for legged robots, task-space and joint-space CPGs. Task-space
CPGs generate leg trajectories in Cartesian space [27], and
then obtain joint angles via inverse kinematics. On the other
hand, each output of a joint-space CPG represents one of the
key degrees-of-freedom (DoFs) of the robot [20]. In doing so,
joint-space CPGs remain closer to their biological inspiration,
where outputs of a CPG are neural signals directly transmitted
to individual muscles to produce motion. However, compared
to model-based control or dynamic motion primitives [28],
CPGs are often less effective on systems with strong dynamics
like bipedal and quadrupedal robots [29]. Nevertheless, CPGs
remain an enticing framework to produce low-cost, closed-
loop locomotion controllers for multi-legged systems such as
hexapod robots, which have the potential to remain statically-
stable during locomotion and climbing [20], [30]. There are,
however, a few papers on CPG-based foothold planning and
control for legged robots [31]–[34]. In particular, we note the
work of Asadi et al. [32] that proposed controlling footholds
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Fig. 2. Potential field map over a block obstacle (shown at the top right), and
its use to iteratively correct predicted foothold locations. The red dots indicate
iteratively predicted footholds, and the green point the adjusted foothold based
on the local gradient of the potential field, which now lies further from the
dangerous area (defined here as the edges of the obstacle).

by adjusting the main frequency of their CPG model, which
was limited to avoiding simple obstacles on flat ground. Sa-
putra et al. [34] integrated a dynamic-density topological map
with an affordance mechanism to deal with sudden obstacles
within a CPG model. Nonetheless, their work does not actively
control the robot’s body pose for stability.

III. LOW-LEVEL JOINT-SPACE CPG MODEL

In this work, we rely on a dynamical system approach to
CPGs, in which the central pattern generator is expressed as
a set of coupled oscillators. The mathematical CPG model
we use builds upon and extends previous works [20], [27].
Since we consider a joint-space CPG, the output values of
the oscillators directly represent joint angles of key artic-
ulations of the robot. Specifically for our robot, θ1(t) =
[θ1,1(t), θ1,2(t), ..., θ1,6(t)] was used to present the angles of
the first, horizontal shoulder joints (joint 1 in Fig. 1), and
θ2(t) = [θ2,1(t), θ2,2(t), ..., θ2,6(t)] the angles of the second,
vertical shoulder joints (joint 2 in Fig. 1).

θ̇1,i(t)=− aibi
2

·ωi ·∂Hρθ2,i+αi
(
µ2−Hρ (θ1,i, θ2,i)

)
·∂Hρθ1,i

θ̇2,i(t)=+
aibi
2

·ωi ·∂Hρθ1,i+βi
(
µ2−Hρ (θ1,i, θ2,i)

)
·∂Hρθ2,i

˙cx,i(t) =fcx(∆Xi(t), s,di(t) + ∆Yi(t), cx,i)

ȧi(t) =fa(cx,i(t), s,di(t) + ∆Yi(t), ai),
(1)

where ∂Hρξ =
∂Hρ

∂ξ (θ1,i(t), θ2,i(t)), µ denotes the “radius” of
the limit cycle, ωi the oscillation frequency (thus defining the
overall locomotive velocity), αi, and βi the forcing strength in
the horizontal axis and vertical axis respectively, s the desired
stride length of legs on the ground, and di the desired distance
between the trajectory of grounded legs and the side of the
robot’s body (shown in Fig. 4). ∆Xi(t) and ∆Yi(t) denote
the desired correction between predicted and desired footholds
along the X and Y axis respectively (as illustrated in Fig. 2
and discussed below in Section IV-C). In this work, we rely on
an elliptic limit cycle [20], for which the Hamiltonian function
reads:

Hρ(θ1,i, θ2,i) =

∣∣∣∣θ1,i − cx,i
ai

∣∣∣∣2 + ∣∣∣∣θ2,i − cy,i
bi

∣∣∣∣2 , (2)

with ρ = (ai, cx,i), because the foothold of leg i is mainly
adapted by changing the values of ai and cx,i. a is the vector
of semi-major axes (thus impacting the stride length of each
leg), and b the vector of semi-minor axes (impacting step
heights). cx and cy are the vectors of x- and y-coordinates
of the origin of each leg’s limit cycle in its joint space. In this
work, to implement our foothold correction method, the key
CPG parameters a and cx are updated with time (as shown in
Fig. 3). The associated foothold adjustment functions fcx and
fa in Eq.(1) are detailed in Section IV-C below. Finally, we
note that, especially in our experiments on robot, we further
leverage our previous work [20] to control the robot body
pose with inertial feedback, by adapting cy with time based
on feedback from the onboard IMU towards a desired body
pose (this is detailed further in Section IV-D).

To ensure stable, steady locomotion, the coupling between
the six oscillators (legs) is crucial and defines the gait of the
robot. This work relies on the Kuramoto model from [35], [36]
to define the gait coupling term of our CPG model, which
updates the angular frequency of each oscillator to keep the
legs coupled:

ωi = ω0 +

N∑
j=1

λij sin (ϕj − ϕi −∆ϕij) , (3)

where ϕi(t) = arctan
(
θ2,i(t)−cy,i(t)
θ1,i(t)−cx,i(t)

)
is the current phase

of the ith oscillator, and ω0 is the nominal angular velocity
(same constant value for all oscillators). The angular velocity
of the ith oscillator ωi is affected by the current (ϕj − ϕi)
and the desired (∆ϕij) phase difference between every pair of
oscillator i and j. λij denotes the coupling strength between
two oscillators (constant for all leg pairs in practice). In this
work, we rely on the alternate-tripod gait, for which the desired
phase matrix reads:

∆ϕij =

{
0, if i, j ∈ A or i, j ∈ B
π, if i ∈ A, j ∈ B or i ∈ B, j ∈ A

, (4)

where A = {1, 4, 5} and B = {2, 3, 6} are sets of three
legs defining the first and second tripods respectively (legs
are numbered in Fig. 4).

Finally, to make the ground trajectory of the end-effectors
(feet) straight in the world frame, and parallel to the forward
direction of the robot (refer to Fig. 4), the angle of the third
joint of each leg can be expressed via inverse kinematics
(closed-form for our 3-DoF-per-leg robot):

θ3,i(t)=
π

2
+arcsin

(
di(t)

L3 · cos θ1,i(t)
−L2 cos θ2,i(t)

L3

)
−θ2,i(t)

(5)
where L2 and L3 are the lengths of the second link and third
link for each leg.

It is worth mentioning that the same framework could
easily be extended to use a task-space CPG [27], e.g., to
allow more complex combined motion such as omnidirectional
translations, or turning walks. However, such a change would
come at the cost of losing some of the bio-inspiration, and
would likely increase the overall computational cost due to
the heavy reliance on inverse kinematics calls.
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Fig. 3. Example footfall correction via the change of cx and a. Initial values
of the CPG parameters are a = 2, b = 6, cx = 0, and the initial position
(θ1 = 1.9 θ2 = 0) is shown as the yellow dot with green outline (t = t0).
The CPG is first allowed to converge to the first limit cycle (blue circle). At
t = t1 (solid green dot), the CPG parameters suddenly change to a = 1.5,
b = 6, cx = 2, and we can see the oscillator converge to the new limit
cycle (red circle) rapidly and stably. This mimics the change of parameters
associated with foothold correction (here, the leg associated with this oscillator
would be placed further forward along the X axis of the world); note that cy
indicates the ground level.

IV. HIGH-LEVEL VISION-BASED CONTROLLER

This section describes our high-level vision-based controller
for foothold planning and body pose optimization.

A. Foothold Potential Field Map

A precise map of the environment is required to plan the
motion and foothold adaption for legged robots on irregular
terrain. Real-time map building with onboard sensors is a chal-
lenging issue for legged robots. Odometry drift might occur
due to some unexpected events like foot slippages and vibra-
tions from unexpected impacts with the ground [19]. Recently,
Fankhauser et al. [37] proposed an efficient mapping method
to build and update an elevation map based on the uncertainty
estimates of the robot’s pose estimation. In this work, we use a
similar approach to build a local elevation map from onboard
visual sensors. In their later work on foothold planning and
motion control for quadrupedal robots [9], Fankhauser et al.
then proposed to evaluate the foothold score of each cell in
the elevation map, based on terrain features (slope, curvature
and roughness). This approach works very well, but requires
significant computation for this exhaustive search step. Here,
we propose instead to rely on a potential field defined over the
local elevation map, to iteratively compute corrections to the
predicted foothold that can optimize future foothold locations
at a low cost, and can be feedback directly into our joint-
space CPG model. Furthermore, our potential field map can
be customized according to different scenarios and demands,
i.e., to avoid specific types of hazards.

The robot-centric elevation map is expressed as a 2D grid
map, with its origin at the (projected downwards) position of
the robot’s body. The height of each corresponding terrain
area/cell is stored in this 2D grid map as h(X,Y ). We then
construct a potential field function P (X,Y ) over the elevation
map, which will be used for foothold correction.

Sudden changes in the elevation usually signify an edge in
the world, such as the edge of stairs or other sharper object,

which are often poor foothold locations that can lead to slip-
page. Therefore, as a first example, we detail the construction
of a potential field function that will discourage the placement
of feet at regions of high gradient of the elevation map. We
later detail another potential field constructed to avoid objects
of a specific height of the ground.

We first define the gradient map of the elevation map as:

g(X,Y ) =

√
∂h

∂X
(X,Y )2 +

∂h

∂Y
(X,Y )2. (6)

However, the gradient map is often noisy, especially when
the elevation map is the result of onboard mapping on a
real robot, and cannot directly be used as a good potential
field for foothold planning. Therefore, we propose to rely
on a simple thresholding operation to identify dangerous
points (x, y), around which we place a Gaussian distribution

N
([

x
y

]
, η
g(x,y)

)
, with η the covariance. We further pro-

pose to make the covariance a function of the magnitude of the
gradient, to create a more peaked potential field around areas
of high danger (i.e., larger gradient magnitude, thus stronger
repulsion). The potential field P (X,Y ) is finally constructed
as a sum of these Gaussian functions:

P (X,Y ) =

N∑
i=1

1

2πσ2
i

e−[(X−µxi)
2+(Y−µyi)

2]/(2σ2
i ), (7)

where (µxi, µyi) are all the dangerous areas identified by our
simple thresholding operation, and σ2

i = η
g(µxi,µyi)

.

B. Foothold Prediction

To predict the footholds of the swing legs, we first predict
their foot trajectories in the joint space by forward-solving
our CPG model using the Euler method, while keeping the
current parameters constant (by selecting the appropriate α
and β values in Eq.(1), we assume that the oscillators of
each leg have already rapidly converged to the current CPG
parameters). To do this efficiently, we transform the known
limit cycle of the CPG into polar coordinates, and predict the
outputs of the CPG as: θ1,ip = ai cosψi + cx,i

θ2,ip = bi sinψi + cy,i
θ3,ip = fIK (θ1,ip, θ2,ip, di) ,

(8)

where ψi(t) = arctan
(
θ2,ip(t)−cy,i(t)
θ1,ip(t)−cx,i(t)

)
is the predicted phase

of the swing leg’s oscillator. We discretize ψ within [0, Tψ]
(with Tψ the remainder of the flight phase duration) in the
swing phase of each leg and substitute it into Eq.(8) to
express the predicted foot trajectories (as illustrated in Fig. 7,
(c)). θ1,ip, θ2,ip, θ3,ip denotes the predicted first, second, and
third joint angles of leg i. The predicted foot trajectories
are calculated using forward kinematics, while taking into
account future body poses by assuming the robot’s body
moves at a constant linear speed. That is, in our work, the
robot is assumed to be quasi-static and purely kinematic.
Finally, the intersection point between each of these discretized
trajectories and the elevation map, which can be obtained
very inexpensively, yields the predicted next-step foothold
(Xp,i, Yp,i) for each leg.
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Fig. 4. Geometric top view of the relevant quantities at play when updating
cx and a in the joint space, based on the s and di values given in the world
frame, based on the kinematics of the robot. Solid colored line for cx and a
instead represent their angular value from the horizontal dotted line, for easier
visualization (legs are numbered with white numbers).

C. Foothold Correction

In our work, the potential field map (Section IV-A) is used to
iteratively correct the predicted footholds, pushing them away
from undesired areas along the X and/or Y dimensions of the
elevation/potential field map. Specifically, we rely on the local
gradient of the potential field map at the predicted foothold
position of each leg, to calculate the correct steps ∆Xi and
∆Yi:


∆Xi = ζ

∂P

∂X
(Xp,i, Yp,i) ,

∆Yi = ζ
∂P

∂Y
(Xp,i, Yp,i) ,

(9)

where ζ is the step size of the gradient update.
In this work, the key idea behind performing repeated

such gradient-based corrections, as opposed to performing
a single foothold optimization/correction, is to distribute the
associated computation over time. Our foothold prediction and
correction process is inexpensive, and can still yield near-
optimal (locally-optimized) footholds after enough gradient
updates. Thus, compared to model-based optimization algo-
rithms, our method can be easily applied to multi-legged
systems such as hexapod robots. Performing numerous small
foothold corrections also allows us to keep running the main
CPG loop at relatively high frequency, smoothly updating the
key CPG parameters and thus keeping the oscillators (and thus
the robot’s motion) stable.

To enact the foothold corrections Eq.(9), we update the
relevant parameters of the low-level CPG model with time.
Regarding ∆X , we note that the parameters a and cx are the
main ones driving the placement of the end effector along the
X axis of the world. That is, intuitively, the foothold’s offset
in x direction is mainly affected by cx, the joint-space offset of
the planar base joint of the robot. However, the stride length
of the different legs in the world should remain constant to
make sure the robot is walking forward in a fixed direction
with a constant speed. Hence, we also need to update a along
with cx to keep the stride length of the legs unchanged.

Given the robot’s morphology, we can calculate the new a
and cx values for each leg, which allow the placement of the
foot at the corrected foothold location (Xp,i + ∆Xi) while
keeping s and di unchanged, which we express as:

cx,i(t+ 1) = κ (∆Xi(t), s,di(t) + ∆Yi(t)) ,

ai(t+ 1) = ϕ(cx,i(t), s,di(t) + ∆Yi(t)),
(10)

Fig. 5. Hexapod climbing stairs using our adaptive foothold controller. The
robot aims at avoiding to step on the edge of each step while optimizing
its body pose for balance. The new support polygon (yellow dotted line) is
defined using the predicted footholds (yellow circles filled with red). The
blue circle and pink circle are the downward-projection (along gravity) of the
current and predicted CoM of the robot, respectively.

Specifically, cx is updated using the closed-form equation
below, which is explained geometrically in Fig. 4. a values
are updated using a similar geometric argument to ensure s
and d are preserved, after cx is updated.

cx,i(t+ 1) = 1
2

[
arctan

(
m+∆Xi(t)

di(t)+∆Yi(t)

)
+ arctan

(
m+∆Xi(t)−s
di(t)+∆Yi(t)

)] (11)

Differently, adjusting the foothold with ∆Y along the Y
direction in the world is achieved by updating the third joint
of each leg. There, Eq.(5) is modified to:

θ3,i(t)=
π

2
+arcsin

(
di(t)+∆Yi(t)

L3 · cos θ1,i(t)
−L2 cos θ2,i(t)

L3

)
−θ2,i(t)

(12)

Finally, the functions fcx and fa needed for the main CPG
equation Eq.(1) can be expressed as:

fcx(·) =
κ(·)− cx,i(t)

∆t
, fa(·) =

ϕ(·)− ai(t)

∆t
. (13)

We note that, to best utilize the robot’s workspace and avoid
singular configurations, the adjustment range of the values of
a and cx are limited; furthermore, we reset the values of a and
cx for legs about to step off the ground (i.e., resets happen at
the beginning of each flight phase). Finally, to ensure the leg
swings smoothly to the next desired foothold without being
affected by the reset of a and cx, we set the value of β larger
than α, thus pushing the oscillators to preferentially converge
to the new limit cycle along the vertical axis.

D. Body Pose Correction

One of the concerns with adapting footholds is that of
negatively impacting the stability of the robot’s body, as the
support polygon changes when footholds are modified. In our
previous work [20], the robot’s body orientation was controlled
by correcting the cy values from inertial feedback. In this
work, we extend this idea and propose to further correct the cx
and a after each foothold correction step to improve stability.
We update all cx and a values to translate the robot’s body
forward/backward with respect to the legs, in order to keep the
robot’s center of mass (CoM) over its new support polygon
without affecting the footfall planning.

To this end, we calculate both the current and predicted
downward-projection (along gravity) of the robot’s CoM onto
the new support polygon, which is calculated on the basis of
predicted footholds (Fig. 5). In doing so, we ignore the mass of
the robot’s leg (including the actuator of the third joint of each
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X Y

Fig. 6. Screenshots of our flat-ground, obstacle-rich experiment. Boxes, acting as obstacles that should not be stepped on (the color of each box is meaningless
here), have been randomly placed on the ground. Here, note that the potential field is built from the height of cells in the elevation map, and not the local
gradient. In this scenario, the robot is seen adapting its foothold in both the X and Y directions to avoid stepping on the obstacles, as highlighted for the
front left leg in the two right-most images. The robot’s traveling direction is indicated by the orange arrow in the first frame.

leg) and assume that the robot’s CoM coincides with the center
point of its body. If the projected CoM position falls within
the new support polygon, the robot is considered statically
stable, and no correction is made to cx and a. However, if this
projected point lies outside the support polygon, we calculate
a translation vector p⃗ = (∆R, 0, 0) to translate the body
forward/backward with respect to the grounded leg frame. The
cx,i and ai are further updated as:

cx,i(t+ 1) = κ (−∆R, s, di(t) + ∆Yi(t)) ,

ai(t+ 1) = ϕ(cx,i(t), s,di(t) + ∆Yi(t)).
(14)

By using the robot’s kinematics to translate this translation
vector to an offset in the joint space of the first shoulder joint,
the CoM will be moved to fall within the new support polygon.
It should be noted that body position correction occurs once
foothold planning has found the local-optimized footholds
after sufficient iterations. As described, we updated the cx and
a for both grounded legs and swing legs at the same time, to
ensure that the corrected foothold positions are left unchanged
in the world frame.

V. EXPERIMENTS

We experimentally validate and evaluate our CPG-based
foothold controller on a modular hexapod robot (HEBI Daisy,
illustrated in Fig. 1). The robot is equipped with an onboard
tracking camera for visual odometry (Realsense T265) and an
RGB-D camera for local terrain mapping (Realsense D435i).
The depth range of the D435i camera is between 0.3 m and
3 m, and its field of view is 87◦ × 58◦ (±3◦). The robot-
centric map is a 3m x 3m discretized elevation map that is
built incrementally over time, while taking into account the
robot’s motion. The radius of the robot is 0.5 m, and the radius
of the robot’s feet is 0.025 m. Therefore, the elevation map
and potential field map resolution are set to 0.05 m, which
is precise enough for foothold prediction and adjustment at
low computational cost. The frequency of foothold prediction
and correction is set at 10 Hz. Moreover, the minimum update
frequency of the elevation map and the potential field map is
2Hz, which we have found to be sufficient to handle reasonable
dynamic changes in the environment.

Based on the robot’s morphology, we define the initial CPG
parameters as:

cx0
=

[
−π

6 −π
6 0 0 π

12
π
12

]
,

cy0 =
[
0 0 0 0 0 0

]
.

(15)

The shoulder joint angles of the robot are directly set by the
CPG output θ1,i and θ2,i (θ2,i(t) = max (θ2,i(t), cy,i) account
for ground contact), while elbow joint angles are calculated
using Eq.(5).

bi 0.8 ω0 1
αi 0.3 ζ 0.25
βi 150 λi,j 3
µ 1 η 0.05
s 0.13 m L2 ,L3 0.325 m

TABLE I
CONTROLLER SETTINGS AND ROBOT DATA

We discuss the results of two sets of experiments. First,
we place box obstacles randomly on flat ground (as shown in
Fig. 6). The length, width, and height of the box are 16 cm,
9.5 cm, and 8 cm, respectively. In this scenario, we assume
all the boxes are dangerous areas (i.e., undesired foothold),
and build the potential field map based on the height of
cells in the elevation map (all grids with a height of more
than 0.03 m above ground are considered as dangerous area).
Fig. 6 illustrates how the robot adjusts the foothold with our
controller when walking on such irregular terrain, by adapting
foothold locations along the X and Y dimensions in the world,
by updating the relevant CPG parameters online. We report
the traversing time and the number of failed footholds for the
open-loop CPG controller and our adaptive foothold controller
in Table II. We note that our foothold controller can achieve the
same control frequency as the open loop controller, when both
controllers run map building, but the open loop controller does
not run the foothold prediction and correction mechanisms.

Control method Time to Traverse Failed foothold Frequency

Open-loop Controller 83.2s 10 50Hz
Adaptive Foothold Controller 86.6s 0 50Hz

TABLE II
Real robot results in our flat-ground, obstacle-rich experiment.

Stairs’ Average Slope Control method Climbing Time (std) Success Rate

Open-loop Controller 151.2s (4.58) 100%
17◦ Adaptive Foothold Controller 117.4s (8.89) 100%

Open-loop Controller 140.3s (30.62) 60%
26◦ Adaptive Foothold Controller 109.2s (16.87) 100%

Instantaneous Acceleration Magnitude (lower is better) Average (std) Peak

Open-loop Controller 0.0698m/s2 (0.0181) 1.0632m/s2

Adaptive Foothold Controller 0.0611m/s2 (0.0132) 0.6803m/s2

TABLE III
Real robot results in our stair climbing experiment.

Second, we perform experiments on a mockup stairs made
of 5 irregular steps, as shown in Fig. 7. The first three steps
are 14.5 cm high, while the latter two are 16 cm. The width
of each step varies from 35 cm to 52 cm. The thresholding
operation here is based on the gradients of the elevation map:
all grids with a gradient of more than 0.03 in magnitude are
considered as dangerous area. In this experiment, the robot
needs to precisely control its footholds to fully climb up to
the highest platform. We perform 5 trials with our adaptive
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(a) (b) (c) (d)
Fig. 7. (a) The predicted foothold of hind right leg lies at the edge of the stairs (red point), which is an unsafe area (high chance of slippage). (b) Therefore,
the foothold is adjusted to a safe area based on the gradient of the potential field map at that predicted foothold location. (c)(d) Visualization of the elevation
map/potential field, foothold prediction and foothold correction at the same instants as (a) and (b). The red line (before foothold correction) in (c) and green
line (after foothold correction) in (d) is the predicted trajectory of the foot. In our experiments, all controllers run directly on the robot, on an onboard Intel
NUC i5 with 8GB RAM.

foothold controller, and 5 using a simple open-loop controller.
In this open-loop controller, we disable foothold correction and
fix the body-pose correction to match the stairs’ average slope.
In Table III, top, we report the average time to climb the first
(17◦ slope) portion of the stairs, as well as the second (26◦

slope) portion, as well as the success rate. In the lower part of
the same table, we also report the average and peak magnitude
of instantaneous acceleration measured at the robot’s body
(sampled at 50Hz frequency).

From these results, we note that our foothold controller
significantly helps maintain the average velocity of the robot
during climbing, by avoiding poor ground contacts that result
in slippage (and thus loss of propulsion) that we observed
in our open-loop experiments. The corrected footholds are
guaranteed to be at least locally optimal after enough gradient
updates (footholds can converge within the first half of the
leg swing phase). Compared to the open-loop controller, our
foothold controller can effectively eliminate large vibrations
of the robot body, hence improving the locomotion stability
(refer to Table III bottom). Second, we further note that,
in experiments on the steeper stairs, the success rate of the
open-loop controller is only around 60%, as the poor ground
contacts often lead to loss of balance and/or to significant
changes in the robot’s direction of travel (which forced us to
stop the experiment for safety). Fig. 7 shows a breakdown
of the main foothold prediction, correction, and action loop
of our CPG-based controller. First, by combining trajectory
prediction and local elevation map, the controller obtains the
predicted foothold in Fig. 7 (c). There, the local gradient of
the potential field map is calculated at that predicted foothold
location, which in this case falls in a potentially dangerous area
(i.e., large gradient/repulsion). This repulsion force iteratively
pushes the predicted foothold away over the next update cycles
of the CPG, finally settling on a corrected foothold over the
safe area shown in Fig. 7 (d).

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a low-cost, bio-inspired CPG
framework that predicts, iteratively corrects, and exploits safe
footholds on challenging terrain, for the locomotion and
climbing of legged robots based on visual feedback. Our
framework replicates the main mechanism at play in the short-
latency visuo-motor pathways documented in legged verte-
brates [3] [7]. The mapping and potential field construction
may be linked to the manner in which animals aggregate
visual information about their surroundings and add/embed

semantic information (regarding the safety of various areas
for the purpose of foothold planning). Additionally, our joint-
space CPG controller replicates the function of the spinal
cord which can alter foot trajectories directly and quickly.
Our controller can distribute the foothold and body correction
processes in time and keep computation low, while improving
overall stability by keeping changes small and smooth. In
particular, we note that the potential field used by our high-
level vision-based control can be easily customized to fit
various scenarios, as shown in our experiments that consider
obstacle avoidance on flat ground as well as safe foothold
and body pose correction for efficient stair climbing. Unlike
model-based optimization methods, our approach is model-
free and can adapt to sudden changes in the real-time map,
as we predict and correct footholds continually during the
swing phase. Furthermore, we note that our controller can be
directly extended to other hexapedal gaits. To generalize to
various robot morphologies (e.g., quadrupeds), our CPG model
can be adjusted according to the joint-to-joint relationship, as
proposed in [38]. Incorporating foot contact information (e.g.,
force/torque sensor) could allow our method to also adapt
to dynamic gaits, as in [39], while remaining close to the
biological inspiration. We believe that our work may provide
an avenue to further our understanding of the key mechanisms
at play in animal locomotion, via their replication on robots
and further analysis.

However, mammals in nature most likely reason about the
quality of ground contacts in their surrounding by relying
more on experience and memory, especially when traversing
terrains they have not seen before. Therefore, future work
will investigate the use of deep learning methods (including
memory-enabling networks), to improve the assessment of
potential contacts and further improve performance across
tasks and environments, as investigated in [40]. Our method
may face difficulties when dealing with complex scenarios,
such as unstructured terrains (gravel, etc.) and dynamical
scenarios where footholds might be dynamically safe (i.e., can
be moved by the robot, e.g., rocks). Our future work will also
evaluate and improve our method in such cases by developing
a mechanism to determine whether the corrected foothold falls
within a local-optimal solution and fall back on other means
of optimizing footholds that can circumvent this issue.
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