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Abstract— This work introduces a CPG model, which allows
intuitive gait definition, as well as reactive gait transitions, while
ensuring stability and forward progression online and in real-
time. Specifically, we propose to rely on keyframes – discrete
key leg configurations that can be sequenced into a gait – to
define arbitrary legged gaits. We then introduce a new task-
space central pattern generator (CPG), which relies on the well-
known Kuramoto model for leg phase difference coupling, as
well as on a new feedforward term to achieve timed phase
coupling between legs for convergence to arbitrary gaits. We
then show how this framework can naturally be extended to
allow arbitrary gait transitions, by developing two stabilization
techniques. First, we reason about the robot’s predicted stability
to disable specific oscillator updates during transition, while
minimizing the resulting effect on forward locomotion. Second,
we control the robot’s body position within the grounded legs
to ensure current and predicted stability, based on inexpen-
sive forward prediction of the CPG model. We validate our
approach by presenting simulation and experimental results on
a hexapod robot following and transitioning among hexapedal
and quadrupedal gaits, in a number of indoors and outdoors
locomotion, and mobile manipulation scenarios.

I. INTRODUCTION

Legged animals excel at navigating varying environments
and tasks by effortlessly adjusting their gaits, e.g., walk, trot,
gallop [1]. In particular, some animals are able to seamlessly
transition to gaits which only use a fraction of their limbs,
freeing up the others for manipulation tasks or to handle
limb injuries [2], [3]. However, current robotics methods
to replicate such animal-like behavior remain limited. Ex-
isting methods usually rely on computationally expensive
optimization [4]. These methods can require up to a minute
to compute one stable gait transition, which limits their
implementation on robot. This work takes a completely
different approach, and proposes a new method by which
gaits can be

1) easily designed by developing a keyframe-based ap-
proach, where a gait is discretized into a set of impor-
tant leg configurations (”checkpoints”), through which
the robot must pass to complete a gait cycle, and

2) transitioned between online and in real-time, by relying
on a reactive controller that ensures steady forward
progression of the robot during transition, while en-
suring stability by updating the body’s position and
limiting leg usage.
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Fig. 1. Hexapod robot transitioning from an alternate tripod gait (right) to
a quadrupedal gait that only uses the four hind legs for locomotion (left).

That is, our method generates gait transitions trajectory
purely reactively, rather than through (expensive) global pre-
planning [4], thus increasing flexibility and applicability
to real-world scenarios, but at the cost of only producing
locally-optimal gait transitions.

Our controller is built on top of a standard task-space
central pattern generator (CPG) [5], [6], and ensures stable
asymptotic convergence to any gait from any initial config-
uration for easier implementation on robot. The CPG os-
cillators generate end-effector trajectories for locomotion in
Cartesian space, which can then be converted to joint angles
via the robot’s kinematics1. We extend this design by drawing
inspiration from the well-known Kuramoto oscillator [7], [8],
to create a novel CPG feedback term that ensures desired
phase differences (defining the gait at hand) between legs
are met.

Phase coupling is quick and effective [7], but is not
sufficient to ensure gait convergence for general gaits, and in
particular cannot easily handle gaits with non-constant phase
differences during a gait cycle. In order to handle arbitrary
gaits, we must account for both leg phases and timings, i.e.,
we need legs to each meet the correct phase at the correct
time during a gait cycle. Based on this observation, we
introduce a feedforward component to our Kuramoto-based
oscillator model, which guarantees the target phase (and, as
a result, phase differences between legs) is reached at the
correct timing within the gait. By considering the interactions
between oscillators, the Kuramoto feedback term works
collectively with the feedforward term, which solely focuses
on singular oscillators and their individual progression.

We then extend our keyframes-based CPG to produce
stable gait transitions, by limiting leg movements and adapt-
ing the body’s position. During transition, our approach
enables/disables leg movements (i.e., CPG update) at each
time step, by reasoning about the projected stability of the

1Throughout the paper, we refer to oscillators as legs/end effector
positions interchangeably.



robot using a locally optimal, greedy approach. In doing
so, we show that the feedback component of the CPG also
helps minimize the duration legs remain stationary due to
instability, to maximize steady forward progression during
gait transition. Additionally, we constantly adapt the body’s
position within the grasp defined by the grounded legs (i.e.,
the support polygon) to ensure continued stability, by relying
on an inexpensive prediction of our CPG model. In doing
so, the feedforward and feedback components of our CPG
collaboratively ensure the robot can accurately converge
to a gait (feedforward), while maintaining a priority for
quick forward movement (feedback). Our resulting approach
enables reactive, online, and stable gait transitions at any
point between two arbitrary gaits.

Our simulation results help shed light on the interactions
between the feedforward and feedback components of our
model in helping steady forward progress during gait transi-
tions. We further compare our results to one gait transition
reported in [4], showing that our reactive transitions are near-
optimal in terms of leg liftoff, and discuss the differences
between our approach in terms of forward progression.
Finally, we present a number of experimental results on a
hexapod robot transitioning between well-known hexapedal
gaits on flat and (slightly) unstructed terrains, both indoors
and outdoors. We further show results where the robot is
tasked to transition to a quadrupedal gait, where two of the
legs are unused for locomotion (and could be used for other
tasks, e.g., mobile manipulation).

Section II includes relevant background information about
CPGs, gaits, gait transitions, and previous work. Section III
explains our approach to keyframe-based gait definition and
design. Section IV presents our CPG controller in detail.
Section V describes how locomotion and gait transitions
are stabilized. Section VI presents our experiential results
gather from simulation and on robot. Section VII includes a
summary of our methods and outlines possible future works.

II. BACKGROUND

For as long as researchers have been working on robotics,
they have been attempting to replicate locomotion in na-
ture by mimicking animal-like motion. In animals, the best
characterized spinal network for locomotion is the central
pattern generator (CPG). Across species of animals, CPGs
are networks of spinal neurons that produce rhythmic pat-
terns, without the need of any rythmic input, for use in a
number of fundamental tasks such as walking, flying, and
swimming [9], [10]. While biological CPGs are still an
active area of research, the robotics community have started
formulating mathematical CPG models to develop controllers
for articulated robot [10]. In robotics, CPGs are often de-
fined as a set of coupled oscillators with assigned parame-
ters for frequencies, amplitudes, weights, offsets, etc. This
model allows coupling of the key robot articulations/joints,
and has the ability to be easily adjusted through relevant
parameters [11], [12]. CPG’s have been used to control
quadruped [7], hexapod [4], [6], [13], octopod [13], and
snake-like robots [14], [15].

Most animals use a variety of gaits during locomotion
depending on the terrain in their environment, their speed,
their body, etc. Moreover, these gaits are defined and have
been optimized during the long processes of evolution and
natural selection [16]. Replicating this level of optimization
on a robot is an ongoing research challenge. There are
many methods of defining gaits for use in legged robots. A
common method is to define a gait relative to the coupling of
the CPG. [6], [11] use a coupling matrix directly acting upon
each component of the CPG, while [7] relies on a matrix
of angular phase differences in order to define gaits. Finally,
gaits can also be described by their associated footfall pattern
of the robot, which defines when each leg is grounded during
a gait cycle [4].

Gait transitions are finite motions which allow a robot to
switch between gaits [17]. A common method to perform gait
transition involves adjusting internal CPG parameters which
define the coupling configuration [7], [11]. This method
relies on the CPG’s natural ability to converge to arbitrary
limit cycles, but does not reason about the applicability of
said transition on a robot (and, in particular, about stability
during transition). Another method would be to overlay two
leg trajectory patterns at the same time such that legs are
switched from one gait to another one-by-one [17].

Previous work has used optimization based transitions to
develop footfall patterns for a known transition between two
gaits [4]. They separate the transition into the optimization
of transitional footfall patterns, describing which leg is
grounded at which time during the transition, before running
a second optimization that yields exact joint trajectories
and body poses during the transition to meet these footfall
patterns and ensure stability. [4] both aims at maximizing
forward progression and minimizing ground contact changes
over a given, fixed gait transition period. Additionally, this
method is always able to find a stable, optimal transition
between gaits and intended to create smooth transitional
motions, but does so at the cost of computation times, which
can reach one minute and are therefore usually performed
offline and ahead of robot implementation. As such, these
transitions have limited application in situations which re-
quire an unpredicted gait transition on short notic, which
could result in a loss of stability, e.g., in response to leg
failure or unexpected variations in terrain.

III. KEYFRAME-BASED GAIT DEFINITION AND DESIGN

During a gait cycle we can view each legs in one of
two states - stance and swing. Legs in stance are grounded,
while swing legs are lifted off the ground, and the transi-
tion between these states occurs whenever legs make/break
ground contact. The CPG model described in Section IV)
controls the progression of the phase of the legs through
one gait cycle, often represented as their angular position on
a (usually circular) limit cycle (colored dots in Fig. 2). In
this work, this limit cycle is directly defined in the Cartesian
space, and the phase of legs also represents the position of
their end-effector in the world. Legs in stance (with phase in
the lower half-plane) are responsible for producing motion by



translating the body (animal or robot) in the desired direction
of motion. On the other hand, swing legs (with phase in
the upper half-plane, so end-effector position above-ground)
are responsible for progressing the gait cycle, i.e., they are
advancing so they can once again be used to produce motion.

We propose using keyframes to easily define arbitrary
gaits. We also extend this framework to enable stable,
online gait transitions by performing iterative adjustments in
Section V. A keyframe-based gait cycle requires progression
through a set of timestamped ”checkpoints” (keyframes),
which capture discretized, timestamped leg configurations.
One keyframe is defined at each point of the gait where
legs change ground contacts. At all times, the CPG will
advance toward the next target keyframe within the defined
gait. Progressing through every keyframe once is defined as
a gait cycle (i.e., one complete period of the oscillators).
Specifically, keyframes are represented as N-dimensional
vectors of desired leg phases (associated with a vector of
timestamps for each keyframe), and are combined together to
build a keyframe matrix that fully defines a gait. In this work,
for ease of presentation, we assume that the keyframe timings
are implicitly defined, such that keyframes are uniformly
distributed over a gait cycle. The most simple example can
be seen in the definition of a simple alternate tripod (KT )
gait for a hexapod robot:

KT =

[
0 π π 0 0 π
π 0 0 π π 0

]
(1)

where the phase differences between legs in different tripods
is π at all times, which can be calculated as the difference
between different legs on the same row (keyframe). Ground
contacts only change at two times and therefore only two
keyframes are required to fully define the gait. Gaits such as
a wave gait (KW ) or tetrapod gait (KTT ) will require more
keyframes to define and will be less intuitive to design due
to them having non-constant phase differences between legs:

KW =
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 . (3)

We can also define gaits which do not use all available
legs on the robot by defining certain legs to remain in swing
phase throughout the entirety of the gait cycle. We can define
a hind-legged quadruped gait (KH ) which uses the four hind
legs or more simply, a simple quadruped gait (KQ) which
keeps the two middle legs raised:

KQ =
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Fig. 2. The three distinct keyframes that define the tetrapod gait, as well
as CPG convergence to the tetrapod gait from random initial positions.
Oscillators (legs) phases are represented by colored circles (each color is
a separate oscillators - circles have more than one color when multiple
oscillators share the same phase). Given that we are working with a task-
space CPG, the oscillator phase directly represents the end effector position
in the world. Keyframes are represented by colored lines (matching the
oscillators’ colors), which define the desired phase of the oscillators at that
instant during the gait cycle. Oscillators which are below the x-axis of the
plot are grounded (in stance phase), while those above are in the air (in swing
phase). The oscillators rotate around the limit cycle counterclockwise.

IV. KURAMOTO-INSPIRED CPG MODEL

We introduce a novel CPG based on the Hopf model [18],
which utilizes a feedforward component to set individual
oscillators’ angular velocities and guarantee coupling, as
well as a feedback component extended from the Kuramoto
model to help maximize convergence speed and forward
progression by accelerating legs in swing phase. The Ku-
ramoto model describes the dynamics of a set of N phase
oscillators, θi with angular velocities ωi(t) [12]. The goal of
these oscillators is to converge and rotate given a formation
(i.e., a set of desired phase differences):


ωi(t) = −

feedback︷ ︸︸ ︷
N∑
j=1

λ sin(θj − θi −∆φij)1y(t)≥0 +

feedforward︷ ︸︸ ︷
κi − θi
P

ẋi(t) = α(µ− r2i )xi + ωi(t)yi

ẏi(t) = β(µ− r2i )yi − ωi(t)xi,
(5)

where the first equation is adapted from the Kuramoto model
to calculate the angular velocities of our CPG oscillators and
reach the desired phase differences defined by the current
keyframe. There, the first term, the Kuramoto feedback, is
only applied to swing legs and provably ensures asymptotic
convergence of the legs to the desired phase differences
defined by the current target keyframe. ωi(t) is the velocity
of the ith oscillator (1 ≤ i ≤ N ) at time t, and N
is the number of legs/oscillators. λ is a constant, which
affects the strength of the adjustment to ωi(t) and θi is the
angular phase of oscillator i. ∆φij represents the desired
phase differences between oscillators i and j (i.e., θj − θi,
with θi = arctan(yi)(t)/xi(t))) in the target keyframe (see
Eqs.(6)-(7) below). 1y(t)≥0 controls the adjustment such that
this term is only applied during swing phase.

The second term is a feedforward component, which
calculates the angular velocities required by each oscillator
to reach their phase in the target keyframe, κi, given the
duration, P , until that target keyframe. It is necessary to
rely on this feedforward term to ensure convergence, because
the Kuramoto feedback term couples phase differences only
asymptotically, and thus is indifferent to keyframe timings,



which is not sufficient for our task-space CPG. That is,
the Kuramoto model alone can achieve convergence to an
alternate tripod gait because the phase differences between
the legs are constant throughout the duration of the gait,
i.e., the timing of the convergence does not matter, only
the phase differences of the legs. However, a tetrapod gait
(shown in Fig. 2) requires more than phase difference
coupling to achieve convergence, since it has non-constant
phase differences during a gait cycle. There, the Kuramoto
feedback alone would ensure convergence to the correct
phase differences, but most likely not at the right timing,
which would offset the leg positions and disturb the timings
of ground contacts.

The second and third equations in Eq.(5) make up a
common two-state Hopf oscillator [11], [18], which gives
us the horizontal and vertical components of the velocity
in the phase space (here, Cartesian coordinates, similar
to [6]). Whereas the task-space CPG in [6] is defined in 3
dimensions, we here ignore the 3rd dimension for simplicity,
and let x and y evolve on a plane, parallel to the direction
of locomotion, whose origin is at given points in the robot’s
body frame (i.e., the grasp map). However, note that our
approach naturally extends to the full 3D, cylindrical CPG
defined in [6]. The final joint angles of the robot are obtained
from inverse kinematics. α and β are positive constants that
control the speed of convergence to the limit cycle [11].

√
µ

is the amplitude of oscillations and r =
√
x2 + y2.

To integrate our keyframe-based gait definition with our
Kuramoto-based CPG, we require θ and ∆φ to use in Eq.(5).
The θ of the legs is defined as arctan(yi(t)/xi(t)). ∆φ is a
matrix whose elements are calculated by:

∆φij = θj − θi. (6)
Accordingly, the ∆φ matrix is constructed as follows:

∆φ =


θ0 − θ0 θ1 − θ0 . . . θN − θ0

θ0 − θ1
. . .

...
...

. . .
...

θ0 − θN . . . . . . θN − θN

 . (7)

Our CPG model assumes a pre-defined gait cycle duration,
which can be manually selected. We use this value along with
the current time, t, to determine the current progression of the
oscillators within each gait cycle. This information is used
to identify when to update the target keyframe to continue
the gait progression.

A. Constant Grounded Velocity

So far, our CPG model ensures smooth (mathematical)
convergence to any arbitrary gait (albeit without any guar-
antee of stability yet). Our CPG already prioritizes forward
progression by assigning a non-zero velocity to the grounded
legs, but the horizontal component of this velocity (i.e., the
end-effector velocity on the ground) is currently not constant
and follows a sine wave on the ground. To ensure legs can
make contact with the ground at arbitrary times relative to
each other, as is common to most gaits except for alternate
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Fig. 3. Constant grounded velocity on xi(t) (red: stance, blue: swing).

tripod, we need to ensure that grounded foot velocities are
constant.

We develop a function, ψ(t), which corrects the angular
velocity ω(t) to result in a constant velocity for all grounded
feet. This is achieved by multiplying the desired constant
velocity by the inverse of the current speed:

ψ(t) =

{
γω(t)

r sin (θ(t)) y ≤ 0

ω(t) y > 0,
(8)

where γ is a normalization constant (γ = 0.65 in practice).
Looking at Fig. 3, we can observe the top plot of the

uncorrected xi(t) which is driven directly by ω(t) whereas
the bottom plot shows the xi(t) which is corrected by inte-
grating our new definition of ψ(t), allowing us to establish
constant grounded velocity. It is important to note that our
approach for assigning constant velocity to the grounded
feet is exclusive to a task-space CPG (but could likely be
extended to joint-space CPGs by reasoning about the robot’s
kinematics).

V. STABILITY DURING GAIT TRANSITION

This section presents our method of performing quick and
versatile gait transitions and propose two solutions which
when used together, not only improve the stability of gait
transitions, but also the general locomotive stability of gaits.
First, we propose to limit the movements of individual legs
such that only leg movements which do not hinder the
stability of the robot are permitted. Second, to ensure body
stability we propose a simple reactive controller to translate
the robot’s body (with respect to grounded legs) in the plane
parallel to the ground by predicting the CPG model.

A. Keyframe-Based Gait Transitions

We have the ability to design complex gaits using
keyframes and will now explore how keyframe-defined gaits
are used to enable gait transitions. Gait transitions are
initiated by changing the current target keyframe (from the
current gait) to a keyframe on the destination gait. Previous



Fig. 4. Center of robot body projected down along gravity (green) inside
support polygon (blue) during tripod gait.

works such as [4] transition to an arbitrary keyframe within
a gait (e.g., the first keyframe). Although our approach can
handle such request, we may generally prefer to reduce the
transition distance to maximize both stability and forward
locomotion. In this work, we propose to transition to the
closest point in joint space (by Euclidean distance) if it
is stable, otherwise transition to the closest keyframe in
the desired gait. However, transitioning to the closest point
minimizes distance travelled, but may not be stable. Thus,
we use the keyframes of the destination gait instead in such
cases, ensuring we can always transition to a stable keyframe.
The duration of a gait transition is user defined and, to
achieve the best results possible, a reasonable duration should
be defined (we have found gait cycle time

number of keyframes to result in a fair
estimate in practice).

B. Selectively Enabling Leg Movements

By simply aiming to reach a target keyframe on the
destination gait, a transition could cause a grounded leg
which is providing stability to be lifted, thus impacting
balance and preventing the safe transition. In this work, we
focus on ensuring the static stability of the robot, that is,
keeping the robot’s center of mass projected down by gravity
within the support polygon, the region defined by the convex
hull formed by the grounded contact points (see Fig. 4). We
simply score stability using a binary value, which indicates
whether (1) or not (0) the robot is statically stable, using
the robot’s current configuration and assuming a flat, level
ground.

Stability scores of the predicted CPG are checked at each
time step, by predicting whether the current CPG update
(dx,dy) would keep the robot stable - by looking only a
single time step forward we are optimizing locally, allowing
for reactive CPG updates. Predicting this type of stability
longer into the future will be the subject of future works, as
this is highly nontrivial in the presence of hybrid contacts
with the environment. If the stability score (defined above)
indicates the robot is predicted to be stable at the next time

step, then all oscillators are updated. Otherwise, we propose
to search for and allow the maximum number of oscillators
to be updated, while ensuring predicted stability. Specifically,
we discretize the updates of legs into binary vectors which
can then be individually checked for stability score and used
in the CPG update to enable/disable the update of each
oscillator, based on their entry in this vector – legs which
are represented with a 1 in the vector are updated and those
represented with a 0 are not. We create a matrix, M, of 2N

binary vectors of length N, that capture all possible binary
vectors: 

1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 1
...

...
...

...
...

...
0 0 0 0 0 0


Discretized leg movement arrangements

. (9)

We then search through every possibility in descending
order of the number of legs used, at most exhaustively, and
stop at the first option that results in a stable update (i.e.,
we greedily find a stable configuration update with maximal
number of legs used, i.e., minimal leg stoppage). This yields
the binary vector, ~ρ, associated with the stable permutation
found. ẋ(t) and ẏ(t) are then element-wise multiplied by this
vector to only enable the appropriate leg updates:{

ẋ(t) = ẋ(t) ◦ ~ρ
ẏ(t) = ẏ(t) ◦ ~ρ. . (10)

If the only stable update results in no leg movement,
we instead force the update of all legs currently in swing
phase. The intuition here is to allow these legs to lower to
the ground, as this will eventually help regain stability and
unlock the situation. Moreover, we note that the inclusion of
this fallback strategy intuitively allows us to guarantee the
completeness of our reactive gait transitions. In practice, we
observed that standard gait transitions rarely (nearly never)
need to use this fallback strategy.

C. Body Translation

In addition to selectively enabling the robot’s leg move-
ments, we also take advantage of planar body translations
to further support robot stability during transitions (and
locomotion). Body translation may not be necessary for
simple gaits and transitions, but is a fundamental part of
developing gait transitions to less stable gaits, such as those
which do not use all of the robot’s legs or gaits which enact
drastic changes to the robot’s support polygon. We translate
the robot body in the grasp frame along the x and y axis (i.e.,
parallel to the ground). We determine the robot’s center of
mass using the Pinocchio library [19].

The most straightforward approach would be to translate
the robot body reactively (i.e., pure feedback control). How-
ever, we experimentally observed that this is not very effec-
tive because of the delay between identifying an instability
and moving the body accordingly - stability is often already
lost by the time the body adjusts and it can then be difficult
or impossible to recover then. In this work, we propose



Algorithm 1: CPG Update // O(2NN)

// Stable Leg Arrangement: O(2NN)
for arrangement in M do

Check stability score for arrangement
if Stable arrangement then

Update CPG according to this arrangement
if No stable arrangement exists then

Update CPG by lowering legs in swing phase
// Translate Body: O(N)
Calculate intersection of support polygons
Get body translation from PD controller
Translate body by ∆xbody and ∆ybody

to play the current CPG model forward in time, which
can be done very inexpensively, to predict how the body
should translate to maintain stability at all times, both during
normal locomotion and gait transitions. CPG prediction is
ran until the next keyframe, at which point we calculate the
intersection of the current support polygon and the one at
that keyframe, and translate the body towards the center of
mass of the intersection of these two hulls. This choice will
ensure that the robot remains stable at all times, because
the furthest we can translate the body to is the edge of
the current polygon (in the case the polygons have very
limited overlap or is a line). Additionally, if the polygons
do not overlap, we translate toward the center of mass of
the sampled polygon. We then use a simple PD controller to
apply our body translation.

In practice, to allow the body enough time to re-position,
especially for complex gaits where successive support poly-
gons vary greatly, we introduce pauses in the CPG update at
keyframe changes.

D. Complexity

The complexity of our update algorithm with both the
exhaustive leg search and forward-sampled body translation
is O(2NN) as showed in Algorithm 1.

Although the worst case complexity looks to be quite poor,
the effective complexity is significantly better, as the average
number of arrangements checked through the exhaustive
search of M is very low in most realistic cases. We gathered
data from every transition between tripod, wave, tetrapod,
quadruped, and hind-legged gaits over 1500 CPG updates
following the start of the transition. This allows for five full
gait cycles following the transition period for the CPG to
converge. On average 96.6 percent of searches were solved
on the initial arrangement, 98.87 percent looked at five or
fewer, and 99.87 percent looked at ten or fewer. The worst
case run time seen during testing in simulation was 0.04
seconds using both stabilization methods.

VI. EXPERIMENTS

In this section, we describe the hardware and simulation
software used for our experiments. We present our experi-
mental results and highlight the effectiveness of our approach
in various gait transitions.

Fig. 5. Hexapod robot walking using a hind-legged quadruped gait to free
its front limbs for the manipulation of a container.

A. Experimental Hardware and Setup

In order to test our methods, we conducted experiments
in both simulation and on hardware with a HEBI X-Series
modular hexapod composed of 18 actuators (HEBI Daisy).
Each leg of the robot has three joints, two proximal joints
acting as a shoulder (or hip), and a single distal joint acting
as an elbow or knee. The robot has a nominal stance of 1.1m
x 1.1m and has a mass of 21kg. For simulation experiments,
we use the ROS/Gazebo simulator to gather results. We run
our tests with our hexapod traversing an empty world (no
obstacles or uneven terrain).

B. Simulation Results

To measure the effectiveness of our approach, we report
the number of liftoffs and the amount of leg stoppage
throughout a number of gait transitions. These data sets were
gathered in simulation using some of the common gaits listed
in Section III, including tripod (KT ), wave (KW ), tetrapod
(KTT ), quadrupedal (KQ), and hind-legged (KH ) gaits. The
results gathered in simulation during our experiments can be
seen in tables I and II.

The number of foot liftoffs during transitions can be
used as an indicator for speed of transition and of the
forward progression during transitions. Most approaches try
to minimize the number of foot liftoffs during gait transition,
but more (useful) liftoffs implies more gait cycles and thus
more progression (as shown in some of the results in [4]).
Looking at our results in Table I, we can see that the
transitions with the highest number of foot liftoffs (three) are
those which start from a tripod gait. The other transitions
have only a single foot liftoff with the exception of the
transition to the hind-legged gait. This is not surprising
because of the difficulty of this transition - the hind-legged
gait requires a great amount of adjustment to eventually
converge. We also note that our approach does not optimize
for forward progression by allowing additional gait cycles
during transition, but instead tries to minimize the travel



Foot Liftoffs During Gait Transitions
Gait Transitions −→T −→W −→TT −→H −→Q
T - 3 3 3 3
W 1 - 1 2 1
TT 1 1 - 2 1

TABLE I
Number of foot liftoffs during gait transitions. The left column shows the
initial gait (defined in Section III). Every other column shows the ending

gait above as well as the number of liftoffs below.

Percentage of Leg Stoppage During Gait Transitions
Gait Transitions λ

0 1 2 5 25
T−→W 0.29 0.29 0.29 0.29 0.29
T−→TT 0 0 0 0 0
T−→H 0.76 0.76 0.76 0.67 0.57
T−→Q 1.24 1.24 1.24 1.14 1.05
TT−→T 0.57 0.57 0.57 0.57 0.57
TT−→W 0 0 0 0 0
TT−→H 2.14 2.14 1.86 1.86 1.43
TT−→Q 6.86 5.71 4.57 3.14 1.43

TABLE II
Average percentage of leg stoppage during a gait transition due to
instability. The transitions performed are listed in the left column.
Increasing values of λ are used to show the effect of the feedback

component on reducing leg stoppage.

of the legs during the transition, while keeping the robot’s
progression as steady as possible.

The amount of leg stoppage is important to observe to
ensure we are prioritizing forward movement (i.e., we want
to stop legs – disable their oscillator update – as infrequently
as possible). For our results we specifically look at leg stop-
page during gait transitions. In Table II, we show the effect of
varying the value of λ (the strength of the feedback term of
the CPG) on the average percentage of leg stoppage during
gait transitions. During most gait transitions, leg stoppage is
infrequent and therefore the effect of the feedback term is
limited. More difficult gait transitions result in great amount
of leg stoppage, where the effect of lambda can be observed
more easily. In particular during the quadruped transition,
nearly 7 percent of the total leg updates were stopped during
the transition, but the amount of leg stoppage can be greatly
reduced with high values of lambda. With a lambda of 25 the
percentage of leg stoppage was reduced from 6.86 percent
to 1.43 percent.

Our gait transitions rely on a user-defined period to exe-
cute. However, our method also naturally supports transition
periods that are too short to enable a complete transition to
the target keyframe, because of the ability of the feedforward
component of the CPG to couple to the target gait even after
a partial transition. Table III) reports the true, complete tran-
sition duration required by our approach if an unreasonably
small duration period is input, showing that our approach can
still adapt and provide a reasonable, self-timed transition.

Finally, we compare the result of our reactive gait tran-
sition to previous works. Specifically, since code is not
available for this prior work, we focus on the specific gait
transition detailed in Fig. 2 of [4]. We recreate an identical
scenario by designing the same quadrupedal and pentapedal

Unreasonably Short Transition Times and Coupling
Gait Transitions −→T −→W −→TT −→H −→Q
T - 0.458 0.354 1.154 0.667
TT 0.529 0.523 - 0.579 0.579

TABLE III
True transition duration (in seconds) until total coupling to the target gait,
given an unreasonably short transition time of 0.001s (i.e., one time step,

dt).

Fig. 6. Footfalls patterns during a gait transition from a quadrupedal gait
(left) to a pentapedal gait (right), to be compared with Figure 2 from [4].
The vertical axis are the leg numbers which correspond to Fig. 4. The period
of the gait transition is displayed by the vertical blue lines.

gaits, and perform a gait transition between them at the same
exact times during the gaits using our methods.

When comparing the figure from [4] to Fig. 6, we first note
that our transition period is shorter and has fewer changes
in ground contacts. [4] optimizes for forward progression
while minimizing ground contacts changes (although the
former seems to be weighted more heavily), given a user-
defined gait transition period. Although the transition period
is longer in [4]’s figure, the robot is progressing more than
in Fig. 6. This is because we take a different approach,
aimed at prioritizing short transition times and reaching the
destination gait quickly (and with minimal leg movement) to
resume normal locomotive progression. Despite the reactive
nature of our method, we are still able to closely match
the performance of [4] in this case, which uses global
optimization, demonstrating the high quality of the resulting
transition trajectories of our approach.

C. Experimental Results

Our on-robot demos were run both indoors and outdoors
and can be seen here: https://bit.ly/CDC2022-KuramotoCPG

We performed on-robot experiments using common
hexapedal gaits (alternate tripod, tetrapod, and wave gaits)
both indoors on a static surface and outdoors while moving
over varied terrains. Transitioning between these gaits in-
doors in a controlled environment is results is perfectly stable
transitions. We further tried to make the transitions between
them more challenging by performing them at (manually se-
lected) inopportune times within the gait cycle, but observed
complete stability throughout our experiments nonetheless.
Although body translation is not necessary to stabilize these
gaits, we note that it has the benefit of continually adjusting
the body position closer to the center of the support polygon
(i.e., the ideal stable position), which would likely make the
robot more robust to outside disturbances.

We can take advantage of these gaits’ varied stabilities
to locomote over concrete, grass, and a small grassy in-
cline, using a different gait each time the terrain becomes
increasingly challenging. Alternate tripod is used on the flat
concrete surface, tetrapod on the grass, and wave gait on the



grassy incline. These gait transitions display the advantages
of adapting gaits based on the stability required from the
surrounding environment. This demo (which can be seen in
our video playlist) is for visualization only, and is presented
to showcase the potential usage of gait transitions for real-life
tasks that involve varying terrains.

The most challenging gaits to perform and transition to
are those which use a subset of the robot’s legs. To further
stress-test our method, we performed transitions from a
tripod to a hind-legged gait, which only uses the hind four
legs for locomotion. During these experiments, the body
translation our model employs saves the robot from losing
stability and falling forward. We additionally observe seldom
restriction of leg movements during transition, to prevent
further instability. Although we were able to achieve stability
during this gait transition, we were limited in the speed of
the locomotion due to the body requiring significant time
between leg liftoffs to adjust its position ahead of the next
leg’s movement. We were also able to take advantage of the
front limbs being freed during this gait and for mobile object
manipulation (see Fig. 5 and in our playlist).

VII. CONCLUSION

To create stable locomotion or free legs up for applications
such as climbing or mobile manipulation, we introduced
a new CPG model that can be used to easily define gaits
and achieve reactive, online, and stable gait transitions. To
these ends, we proposed a CPG composed of a feedforward
term and Kuramoto-based feedback term, which coopera-
tively improve convergence to arbitrary gaits and prioritize
forward progression and a keyframe-based gait design and
transition mechanism that aims at streamlines the gait design
process and supports stable, online gait transitions. Our CPG
model relies on selectively enabling leg movements, while
prioritizing forward progression, and predictively adjusting
the body’s position within the grasp defined by the legs.

Future work will investigate gradient-based methods that
may allow us to search through the space of potential leg
updates at a lesser cost than the current greedy exhaustive
search, for more complex scenarios or robots with more
legs. Additionally, we have noticed that ω(t) can ramp up
near the end of a keyframe (e.g., if legs were stopped due
to instability), and as a countermeasure, we have applied a
bound on ω(t). Another solution may be to preemptively
overshoot our target keyframe to avoid spikes in ω(t) by
adding weights to the feedforward component of our CPG.
Thirdly, we would also like to rely on more advanced
proprioceptive sensors, such as torque sensors or IMU, to
further improve general (dynamic) stability. Finally, we are
also planning to explicitly investigate the use/extension of
our model for cases where legs might break or go limp.
There, we expect that more involved transition methods that
can safely avoid self-collisions and/or more advanced gaits
might be necessary, i.e., gaits with different duty factors per
legs for cases where some legs need to pick up the task of
another disabled limb, thus needing to contact the ground
multiple times per gait cycle.
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