
Distributed Model Predictive Control of Connected
Multi-Vehicle Systems at Unsignalized Intersections

Qiang Ge
School of Vehicle and Mobility

Tsinghua University
Beijing, China

gq17@mails.tsinghua.edu.cn

Guillaume Sartoretti
Department of Mechanical Engineering

National University of Singapore
Singapore

guillaume.sartoretti@nus.edu.sg

Jingliang Duan
School of Mechanical Enginnering

University of Science and Technology Beijing
Beijing, China

duanjl15@163.com

Shengbo Eben Li
School of Vehicle and Mobility

Tsinghua University
Beijing, China

lishbo@tsinghua.edu.cn

Yuming Yin
School of Mechanical Engineering
Zhejiang University of Technology

Hangzhou, China
yinyuming@zjut.edu.cn

Sifa Zheng*
School of Vehicle and Mobility

Tsinghua University
Beijing, China

zsf@tsinghua.edu.cn

Abstract—This paper proposes a four-component framework
for connected vehicles in general scenarios, which consists of:
1) an information flow topology, 2) cooperative controllers, 3)
node dynamics, and 4) formation geometry, extending original
concepts from vehicular platoon control. In this framework, we
present a real-time planning and distributed cooperative control
method, which is scenario-agnostic and scalable to larger groups
of vehicles. Specifically, we first develop a real-time receding-
horizon planning approach, which improves plan consistency by
reasoning about and reusing the previous trajectory. Our dis-
tributed model predictive controllers track the resulting reference
trajectories and avoid collisions by allowing neighboring vehicles
to exchange their intentions. In contrast to many existing meth-
ods, our approach to decentralized cooperation does not need to
assume fixed paths for vehicles, nor any priority among them. We
present simulation results with up to 8 heterogeneous vehicles,
showing how our framework allows agents to establish efficient
interactions to simultaneously traverse an unsignalized intersec-
tion smoothly and safely. Video results are available at https:
//youtu.be/Q3KjKuIquAo and https://youtu.be/x1zS4ynaW-s.

Keywords—Intelligent connected vehicles, intention sharing,
real-time planning, distributed control

I. INTRODUCTION

Li and Zheng et al. recently proposed a framework for
vehicular platoon control, composed of four key components:
information flow topology, distributed controllers, node dy-
namics, and formation geometry [1]. With the increasing pro-
portion of intelligent and connected vehicles (ICVs) in modern
traffic flows, inter-vehicle cooperation has been growing from
a relatively closed intra-platoon problem to a much more in-
tricate and complex one that involves vehicle following, merg-
ing, as well as conflict resolution at intersections, ramps, or
roundabouts. This work extends the original four-component
framework to accommodate general multi-connected vehicle
systems, by incorporating new relevant features unseen in
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traditional platoons, such as general trajectory planning sce-
narios, distinct cooperative controllers, mobility in the full 2D
plane, as well as dynamic topologies. Our framework relies
on receding-horizon planning with improved plan consistency,
as well as distributed model predictive control (DMPC) on
the full 2D plane (i.e., without the assumption of fixed paths
for vehicles) with local communications to allow vehicles to
exchange their intentions towards priority-free cooperation.

Trajectory planning aims at generating a sequence of dis-
crete waypoints, which can then be tracked by a low-level con-
troller to allow vehicles to reach their target destination. Exist-
ing methods are either based on optimization [2], search [3],
or sampling [4]. While optimization based methods can yield
smooth and safe trajectories, they usually suffers from high
computation times, especially under complex constraints. The
other two types of method are relatively more time-efficient,
but often at the cost of path resolution. Moreover, sampling
or search-based methods performs worse in the presence of
dynamic obstacles, which are common for vehicle driving
tasks. To improve planning efficiency, Guan et al. recently
proposed the integrated decision and control framework (IDC)
for automated vehicles, in which path planning considers
only static traffic elements like road boundaries and traffic
lights [5]. There, the key insight is to reduce the complexity
of trajectory planning, to then only consider other vehicles
as moving obstacles during the control phase. This allows
real-time planning, but sometimes at the cost of oscillations
of the closed-loop trajectory tracking. Inspired by this idea,
we introduce a receding-horizon trajectory planning method,
which relies on general feature points that can be easily
extracted from the environment, to output smooth trajectories
at low computational cost. We further explicitly reason about
plan consistency using the previous vehicle’s trajectory, to
prevent oscillations and improve replanning efficiency.

Our trajectory planning approach then requires a low-level
controller that can explicitly handle state constraints (such as
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the ones needed for online collision avoidance among moving
vehicles), for which the natural choice is model-predictive
control (MPC). That is, with our choice of trajectory planner
and problem statement, we cast multi-vehicle cooperation as a
distributed MPC (DMPC) problem. Many related works focus
on intersection control using DMPC [6]–[10], but assume
vehicles drive on predefined fixed paths. This assumption helps
them formulate a two-level optimization problem – upper-level
optimal scheduling and low-level local longitudinal control
– but also introduces three main drawbacks. First, driving
on fixed paths requires the assignment of priorities among
vehicles at each conflict point, which is hard to optimize for
in a distributed manner. When the traffic is sparse (i.e., when
each conflict point can be decoupled from the whole conflict
graph and become a one-variable integer decision problem),
priorities can be easy to determine with an implicit “first come,
first serve” rule. However, efficient cooperation is most critical
in high-traffic scenarios. Second, the available road space
is not fully utilized under the fixed-path assumption, where
steering away from the fixed path is not allowed, even when it
would be a better option. That is, the vehicles’ action space is
unnecessarily limited, resulting in suboptimal solutions. Third,
the scheduling strategy is coupled with the lanes topology and
the conflict points, thus limiting the generalizability of these
approaches to different tasks. For example, when approaching
a new scenario, e.g., an irregular asymmetric intersection, the
upper-level coordination algorithm often has to be redesigned.

Inspired by recent works in which agents share their inten-
tions for better cooperation [11], [12], this work relies on local
interactions among vehicles to share each others’ predicted
future states, which are then used by their DMPC controllers
to avoid collisions. In doing so, the receding-horizon nature
of DMPC helps decompose a difficult, global optimization
problem in time, thus allowing vehicles to iteratively reach
collaboration without the need for fixed-path assumptions or
priorities. Specifically, our DPMC controller is defined over
acceleration and steering angle, thus allowing vehicles to fully
utilize their 2D environment, as evidenced by our simulation
results, where multiple vehicles are tasked to simultaneously
traverse a large, unsignalized intersection while safely avoid-
ing collisions. Finally, we note that our genberal framework
is scenario-agnostic, since it only relies on general features
of the environment for planning and on intention-sharing
for collaborative DPMC, and thus should generalize to new
scenarios or tasks without significant changes.

II. FOUR-COMPONENT FRAMEWORK

The classic four-component framework of vehicular platoon
control [1] is: (1) node dynamics, which describes the behavior
of each involved vehicle; (2) information flow topology, which
defines how the nodes exchange information with each other;
(3) distributed controller, which implements the feedback
control only using neighboring information; (4) formation
geometry, which indicates the desired inter-vehicle distance
when platooning. We give the new definitions and explain the
extensions of the four-component framework below:

1) Information Flow Topology. The information exchange
relationship among vehicles. In a platoon, topology is
usually fixed; in general connected multi-vehicle sys-
tems, however, switching topology with varying number
of nodes becomes much more significant. Moreover,
whether the topology is fixed or not, it could be central-
ized, distributed or hybrid. Another extension lies in that
the system may include “dumb” nodes, corresponding to
vehicles without communication capabilities.

2) Cooperative Controller. The control law takes both lo-
cal perception and communication information as input.
Control can be executed by either master node/slave
node under a centralized network, or any node under
a distributed network. In the case of centralized cooper-
ation, the slave controller can be a local feedback tracker
trying to follow the instructions from a central node. In
the case of a distributed network, the controller could
interact with other peer neighbors by exchanging their
intentions in the prediction time horizon. Specially, a
dumb node such as an unconnected vehicle could only
be observed and predicted by cooperative controllers,
and probably should be treated with a more conservative
policy.

3) Node Dynamics. Input-output property of the vehicle.
While platoons usually consider homogeneous dynam-
ics, multi-ICV systems often consist of vehicles with
heterogeneous dynamics. Furthermore, node behaviors
in multi-ICV systems include both longitudinal and lat-
eral dynamics, thus further increasing their complexity.
This change requires nodes to show higher intelligence
and accuracy during perception, decision, control, and
execution.

4) Formation Geometry. Local planning method and en-
vironmental context information. In a platoon, the ge-
ometry is usually a single scalar constant describing the
distancing policy. When considering general scenarios
and tasks, the geometry may consist of multiple time-
variant constraints: inter-vehicle safety distances, traffic
light phases, speed limits, and varying lane topologies.
Centralized control usually relies on known/fixed scenar-
ios, and thus cannot handle general tasks like traveling
in an asymmetric intersection without a priori knowl-
edge about it. However, a distributed controller can
consider only its local reference trajectory (which could
be determined by feature points encoding interesting
part of the environmental information) and surrounding
obstacles, and does not seek any global understanding
of the (bird’s-eye view) road topology. In other words,
once the navigation direction is determined, distributed
control may be decoupled from the structure of the
surroundings.

The four components are independent concepts. From the
perspective of controller design, the other three components
take different effects. Information flow topology influences the
upstream input of the controller, node dynamics describe the



TABLE I
CATEGORIZATION OF CONNECTED MULTI-VEHICLE COOPERATION

Information Flow Topology
switching fixed centralized distributed ICV rate < 1 ICV rate = 1

[5], [7], [9], [10], [13]–[17] [6], [18]–[20], [21]1 [6], [8], [10], [14]–[19] [5], [7]–[9], [13], [21] [5] [6]–[10], [13]–[21]
Cooperative Controller

upper scheduling + lower tracking global optimization feedback linearization MPC neural network
[8], [10], [14]–[16], [18] [17], [19], [21] [20] [7]–[9] [5], [13], [17]

Formation Geometry
multi-lane road single-lane road ramp/roundabout intersection
[13], [18], [21] [5], [20] [10] [5]–[10], [14]–[17], [19], [21]

Node Dynamics
1 DoF2 ≥2 DoF homogeneous heterogeneous

[6]–[10], [13]–[17], [20] [5], [18], [19], [21] [5]–[10], [13]–[19], [21] [20]
1 Topology assumed to be fixed during each predictive horizon.
2 Degree of Freedom.

downstream actuator, while formation geometry relates the dy-
namic reference trajectory and time-varying parameters in the
controller simultaneously. Under the proposed framework, one

Fig. 1. Four-component framework

can design local planning algorithms and reactive distributed
controllers to enhance the efficiency and safety of the whole
traffic with a continuously varying ICV proportion. In addition,
the component could be used as independent parameters for
sensitivity analysis. For example, given the proportion of
ICVs (describing information flow topology) and distribution
of vehicles’ dynamic parameters (describing node dynamics),
the optimization effect of different cooperative controllers
at intersections, roundabouts, and other scenarios (describing
formation geometry) could be statistically analyzed.

We list some of the important works categorized by the
framework in Table I as an intuitive example. Each of the four
components could be divided according to different standards.
Note that there could be more genres added as new columns,
e.g., many classic fixed topologies analyzed in a platoon.
However, when it comes to general connected multi-vehicle
systems, the dynamic feature of the vehicle group usually
makes the topology switching. We refer the reader to [1] for
an overview of platoon-related literature, which is not listed
in this table for brevity. We further do not include details of
trajectory planning (in the formation geometry component) for
simplicity.

III. DISTRIBUTED COOPERATION

In this section, we first develop a local trajectory planning
method, which takes into account plan consistency. After
that, we formulate a distributed model predictive control
problem. The two method will specify the formation geometry
and cooperative controller in Section II, and serve the four-
component example in Section IV.

A. real-time consistent trajectory planning

We use cubic Bezier curves and straight lines to generate
smooth spatiotemporal trajectories, assuming there are no
obstacles at this stage. The input are lane midline feature
points, speed limit, and traffic light carrying the environmental
context, as shown in Fig. 2, which can easily be obtained
from onboard sensing modules or roadside infrastructure. Our

Fig. 2. Feature points and environmental context at an intersection

approach assumes that each vehicle has access to its location,
denoted as P0 = [X0, Y0, ϕ0]

T and thus can identify the next
feature point P f

m = [Xf
m, Y f

m, ϕf
m]T indexed by m. More

specifically, m will be updated by m + 1 as the vehicle
drives into a certain vicinity of P f

m. If another two assisting
points P a

1 = [Xa
1 , Y

a
1 ]

T and P a
2 = [Xa

2 , Y
a
2 ]

T are determined,
the trajectory points can be expressed using the following
equations with regard to a continuous variable τ , which is
parameterized by X0, X
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f
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when τ ∈ (1,+∞),

R
(
τ | P f

m

)
=

[
Xf

m cosϕf
m

Y f
m sinϕf

m

] [
1

τ − 1

]
. (2)

Since the reference trajectory should be tangent to the current
point P0 and the feature point P f

m, the first and second
auxiliary points P a

1 , P a
2 are determined by{

Xa
1 = X0 + L0 cos (ϕi)

Y a
1 = Y0 + L0 sin (ϕi)

(3a){
Xa

2 = Xf
m − L3 cos

(
ϕf
m

)
Y a
2 = Y f

m − L3 sin
(
ϕf
m

)
.

(3b)

The distance L0 and L3 could be generated in different ways.
One intuitive way is to set them to some fixed values or define
them as a function of the vehicle speed. However, the reference
trajectory could vary with each round of planning even if
there were no outer interventions, e.g., obstacles. Note that
this phenomenon may introduce unwanted fluctuations for the
whole closed-loop system consisting of the planning module
and the controlled vehicle dynamics.

Here we propose a method with which the successive
planned trajectories share some extent of consistency: the
next-step curve is a part of the current curve. When there
are no obstacles or disturbances, the online planned trajectory
equivalently makes the vehicle follow one continuous curve.
Specially, when the vehicle deviates from the planned trajec-
tory to avoid a crash, the new trajectory will strike a balance
between its original intent and its current position. To achieve
this effect, we can derive an equation with the condition that
there exist common points on both the last trajectory and the
new trajectory:

R
(
τ | P0, P

a
1 , P

a
2 , P

f
m

)
= R

(
τ ′ | P ′

0, P
a′
1 , P a′

2 , P f
m

)
(4)

If points τ = τ1, τ2 are on the last-step trajectory, and they
correspond to τ ′ = τ ′1, τ

′
2 on the current trajectory. Given τ ′

and the distance that vehicle has travelled during the most
recent planning interval (namely distance dP0P ′

0
in Fig. 3), the

mapping relationship can be easily estimated:

1− τ ′

1− τ
=

dP f
mP0

dP f
mP ′

0

≈ 1

1− τfirstpoint
(5)

Note that d in (5) denotes the generalized string length
of the curve. The division between string lengths could be
estimated from the value of τ at the first reference point
on the translucent one, i.e., τfirstpoint. Therefore, choosing
τ1, τ2 ∈ (0, 1), calculating τ ′1, τ ′2 according to (5), with known
parameters X0, X

a
1 , X

a
2 , X

f
m, Y0, Y

a
1 , Y

a
2 , Y

f
m and X ′

0, Y
′
0 , (4)

turns into a linear system of equations relating Xa′
1 , Xa′

2 , Y a′
1 ,

and Y a′
2 , which can be solved rapidly using matrix operations.

The value of τ1, τ2 here will determine which part of the
two curves are overlapping. Intuitively, the planned trajectory
will consistently lead to P f

m even if the vehicle has deviated
from its expected path. In other words, the planning module
shows a form of natural resilience against disturbance. This is
another advantage of our method, besides the consistency in
no-disturbance environments.

Fig. 3. Real-time iterative planning with cubic bezier curve

After a continuous curve is determined, discrete points
can be serially found on it according to the speed profile
within the prediction time horizon, considering the speed limit,
traffic light phase, and distance to the stop line (indicated
in Fig. 2). We present the overall algorithm for real-time
consistent trajectory planning in Algorithm 1. This algorithm
works in an iterative and receding-horizon manner, i.e., the
output Lnew

0 , Lnew
3 will be used as the input L0, L3 of the

next planning step. Additionally, the feature point P f
m will be

updated by P f
m+1 according to the output flag UpdateFeature-

Point. Note that the constant L can be designed as a function
of the vehicle speed.

Algorithm 1 Real-time Consistent Planning
Input: predictive horizon Np, current position P0, feature point P f

m, speed
sequence v, time interval T , last-step output L0, L3. constants: L > 0;
τ1, τ2 ∈ (0, 1) and τ1 ̸= τ2; ErrorRate∈ (0, 0.2); τbound ∈ (0, 1)

Output: R0(τ ), Lnew
0 , Lnew

3 , UpdateFeaturePoint
1: UpdateFeaturePoint = False
2: τ = [0, 0, · · · , 0]1×(Np+1)
3: calculate Pa

1 , P
a
2 with (3)

4: R0(·)
.
= R(· | P0, Pa

1 , P
a
2 , P

f
m)

5: for idx = 2 : Np + 1 do
6: ∆L = v[idx] · T
7: specify τ [idx] with binary search, such that∣∣∥R0(τ [idx]),R0(τ [idx− 1])∥2 −∆L

∣∣ ≤ErrorRate·∆L
8: end for
9: if τ [2] > τbound then

10: UpdateFeaturePoint = True
11: Lnew

0 = L
12: Lnew

3 = L
13: else
14: τ ′1 = (τ [2]− τ1)/(τ [2]− 1) //using (5)
15: τ ′2 = (τ [2]− τ2)/(τ [2]− 1) //using (5)
16: solve linear system of equations regarding Xa′

1 , Xa′
2 , Y a′

1 , Y a′
2{

R(τ ′1 | P ′
0, P

a′
1 , Pa′

2 , P f
m) = R(τ1 | P0, Pa

1 , P
a
2 , P

f
m)

R(τ ′2 | P ′
0, P

a′
1 , Pa′

2 , P f
m) = R(τ2 | P0, Pa

1 , P
a
2 , P

f
m)

17: Lnew
0 =

∥∥P ′
0 − Pa′

1

∥∥
2

18: Lnew
3 =

∥∥∥Pa′
2 − P f

m

∥∥∥
2

19: end if

B. nonlinear distributed predictive control

The objective and constraints of the nonlinear distributed
model predictive controller are listed below. There, the trajec-
tory R0(τ [i+1]) generated by the aforementioned algorithm 1
is denoted as xR

t+i, i = 0, 1, · · · , Np − 1.

min
ut,...,ut+Np−1

Np−1∑
i=0

(
xt+i−xR

t+i

)T
Q
(
xt+i−xR

t+i

)
+ uT

t+iRut+i

(6)



s.t. xt+i+1 = f (xt+i, ut+i) (7a)

D − (xt+i − xj
t+i)

TQ(xt+i − xj
t+i) ≤ 0 (7b)

xmin ≤ xt+i ≤ xmax (7c)
umin ≤ ut+i ≤ umax (7d)

xk
t+i,min ≤ xt+i ≤ xk

t+i,max (7e)

Np is the predictive horizon length. 0 ≤ j ≤ Nneb(t),
Nneb(t) is the number of neighbors of the vehicle at time
t. These neighbors are identified by either onboard sensors
or wireless communication, all of which are within a sensing
range, considered large enough to ensure detection in advance.
1 ≤ k ≤ Nbound(t), Nbound(t) is the number of constraints
determined by drivable boundaries of the vehicle at time
t. Q and R are weighting matrices. D is the inter-vehicle
distancing parameter, which is simplified to a constant here,
as the vehicle profiles are assumed to be identical. umax, umin

and xmax, xmin are bounds on the control and state vectors.
xR
t+i is the reference trajectory point at time t+ i. xj

t+i is
the predicted/intended state of the j-th surrounding vehicle at
time t+ i. Connected vehicles will share their predicted state
from the last solution of their local optimal control problem;
for non-connected vehicles, a simple prediction by extending
their current state for Np steps is applied. xk

t+i is the k-th
drivable boundary at time t+i. f(·) is the nonlinear vehicle
dynamics in [22].

IV. SIMULATION VERIFICATION

We select a cooperative driving task with distributed con-
nected vehicles in an unsignalized intersection scenario. We
specify the simulation settings by the four components as
follows.

• Information Flow Topology
Vehicles are independent and equal nodes communicating with
other connected nodes within a given distance. This assump-
tion makes the topology switching. The minimum range could
be estimated by the maximum speed × the prediction time
horizon × 2. We do not specify this value since our simulation
is on a small area, in which it is reasonable to assume the
environment fully connected.

• Cooperative Controller
The distributed predictive controllers are constructed accord-
ing to (6) and (7). Q = diag(100, 100, 0, 0, 0, 0), R = diag(21,
500). xmin = [-∞, -∞, -∞, 0, -4, -3], xmax = [+∞, +∞, +∞,
20, 4, 3]. umin = [-3.5, -π/5], umax = [2.5, π/5]. All quantities
are in the international system of units. Ts = 0.1 s, Np = 20.

• Node Dynamics
In order to provide a convenient interface for the controller to
call, we build a heterogeneous dynamic module in a parametric
modelling manner. Throttle feedforward and feedback are
embedded, so that this model can automatically track the
desired acceleration instructions from the upstream controller.
The lateral dynamics adopt the classic single-track model,
which is discretized in a tailored way to keep it numerically

stable [22]. Fig. 4 gives the general logic of the longitudinal
dynamics, considering heterogeneous vehicles. Note that the
heterogeneity could be both over parametric differences like
scale, weight, ratios etc., or over structural differences in
powertrain. Three types of dynamics are used in the following
simulation. Specifically, the vehicle classes follow the CarSim
prototypes “C-Class, Hatchback 2017”, “F-Class, Sedan w/
CVT”, and the TruckSim prototype “LCF Van 5.5T/8.5T”
respectively. The accuracy verification of dynamics module
is not included in this paper, since it is not focused on the
accurate prediction of a field test, but the heterogeneity and
imperfect models when carrying out MPC.

Fig. 4. Heterogeneous longitudinal dynamics
• Formation Geometry

The real-time planning algorithm in section III-A is adopted
to generate the trajectories. The reference speeds are always 8
m/s. The squared inter-vehicle distance bound D is set to be
20 and sent to the cooperative controller. The environmental
context, such as lane boundaries are neglected for simplicity.
Note that when carrying out a field test, the time-varying
boundaries should be included for safety guarantees.

A. Simulation with 3 vehicles

The simulation process is illustrated by Fig. 5. The speeds of
the three vehicles are shown in Fig. 6. This is another evidence,
beyond the trajectories shown in Fig. 5, demonstrating that all
vehicles have adaptively selected their own way to collaborate
with others. For example, vehicle A turns right and brakes,
whereas vehicle B and C keep smoothly driving. Human
drivers interact without communication but with traffic rules,
social etiquette and common sense, and we show that ICVs
could behave similarly only with simple intention sharing
mechanism based on low-bandwidth wireless communication.

This effect is a balance achieved by the vehicles sponta-
neously, without any explicitly assigned priority or rules. In ad-
dition, the mobility of both longitudinal and lateral directions
helps vehicles to find a better joint solution, compared to many
methods assuming fixed paths. More importantly, since the
global route topology within the intersection is not necessary
for decision making, the simulation could easily extended to
other scenarios.

The control inputs together with historical intentions of
the three vehicles are shown in Fig. 7. Each translucent line
represents the 20-step-long predicted control values, which
reveals the receding-horizon nature of our MPC controller.
Note that the executed actions’ solid lines are mostly within
the envelop of the translucent ones, essentially demonstrating



(a) time = 1s (b) time = 2s

(c) time = 3s (d) time = 4s

Fig. 5. Trajectories of three heterogeneous ICVs. Round dot: intention;
Triangle dot: trajectory; Solid line: planned trajectory.

Fig. 6. Speed
that the vehicles have successfully cooperated after implicit
interactions. If consensus is not approached, the action lines
would frequently go outside the intention lines and show more
fluctuations.

Fig. 7. Intentions and control values

The planning time and MPC solution time are shown

(a) planning time

(b) solution time
Fig. 8. Step-wise time consumption

in Fig. 8(a) and Fig. 8(b). Algorithm 1 is implemented in
C++ and wrapped by a windows dynamic link library (.dll),
which is called by python in our simulations. The optimal
control problem is solved by ipopt [23] under the CasADi
framework [24], on a laptop with an intel core i7 CPU. The
consistent planning is validated to be effective and fast, while
we acknowledge that the computation burden of nonlinear
MPC could become an issue when applied to real vehicles with
much more constraints, likely less computational resources,
and more stringent real-time requirements.

B. Simulation with 8 vehicles

In Fig. 9, 8 vehicles (2 trucks, 3 CVT-cars, and 3 AMT-
cars) manage to drive into their respective target lanes without
collisions or full stops. Acceleration/deceleration and left/right
steering, i.e., the same actions as human drivers, were dynam-
ically computed and executed, tracking a dynamic trajectory.
This scenario and task further reveal the potential of decen-
tralized cooperation of ICVs under dense and complex traffic
environments.

Readers may be interested with the optimality and safety
guarantees of distributed control. Such a distributed coopera-
tion (without any upper-level optimization) is probably non-
optimal, if judged from the sum of all objectives and the
combination of all action spaces, as expected when relying
on decentralized control. However, each vehicle node could
still guarantee safety, given a feasible initial state with enough
safety margin, and an optimal controller capable of satisfying
constraints.

V. CONCLUSION

We generalize the four-component framework from ve-
hicular platoon field to generic multi-vehicle tasks such as
unsignalized traffic junctions. We further propose a real-time
trajectory planning and distributed control method, where
downstream distributed controllers allow vehicles to share their
intentions to avoid collisions. Our planning method can adapt
to various urban scenarios, since it only requires easy-to-
acquire feature points, while our control method is distributed
and thus naturally scalable. We further verify the proposed
methods in an unsignalized intersection scenario involving up



(a) time = 1s (b) time = 3s

(c) time = 5s (d) time = 7s
Fig. 9. Trajectories of eight heterogeneous ICVs. Triangle dot: trajectory;
Solid line: planned trajectory.

to 8 heterogeneous vehicles planning individual collision-free
paths based on local communications.

Future work will consider the use of learning-based and
model-based methods to enhance the solution efficiency of
the constrained nonlinear optimal tracking problem, to both
improve performances and decrease computation time towards
real-time implementation under realistic conditions. Addition-
ally, we will investigate the framework’s generalizability with
more scenarios.
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