
CAtNIPP: Context-Aware Attention-based Network
for Informative Path Planning

Anonymous Author(s)
Affiliation
Address
email

Abstract:1

Informative path planning (IPP) is an NP-hard problem, which aims at planning2

a path allowing an agent to build an accurate belief about a quantity of interest3

throughout a given search domain, within constraints on resource budget (e.g.,4

path length for robots with limited battery life). IPP requires frequent online re-5

planning as this belief is updated with every new measurement (i.e., adaptive IPP),6

while balancing short-term exploitation and longer-term exploration to avoid sub-7

optimal, myopic behaviors. Encouraged by the recent developments in deep re-8

inforcement learning, we introduce CAtNIPP, a fully reactive, neural approach9

to the adaptive IPP problem. CAtNIPP relies on self-attention for its powerful10

ability to capture dependencies in data at multiple spatial scales. Specifically, our11

agent learns to form a context of its belief over the entire domain, which it uses12

to sequence local movement decision that optimize short- and longer-term search13

objectives. We experimentally demonstrate that CAtNIPP significantly outper-14

forms state-of-the-art non-learning IPP solvers in terms of solution quality and15

computing time, and present experimental results on hardware.16

Keywords: deep RL, informative path planning, context-aware decision-making17

1 Introduction18

In many real-life robotic deployments that involve data acquisition, such as mapping/exploration19

of unknown areas for inspection or search-and-rescue applications, environmental monitoring, and20

surface inspection/reconstruction [1, 2, 3], an autonomous robot needs to plan a path to visit a given21

domain and obtain measurements about a scalar field of interest, without a priori knowledge of the22

true underlying distribution of this information. That is, starting from a uniform distribution with23

high uncertainty, the agent must construct a belief over the distribution of interest throughout the24

domain (e.g., target likelihood, temperature, surface roughness) based on successive measurements25

along its path. This problem is known as the informative path planning (IPP) problem. Specifically,26

IPP aims to plan a path that maximizes information gain, while satisfying a budget constraint (e.g.,27

path length for robots with limited battery life). IPP problems can be further classified as either28

non-adaptive or adaptive. Non-adaptive solvers pre-plan a complete path offline and execute this29

pre-determined path, without any replanning upon obtaining new measurements online [4, 5, 6]. On30

the other hand, adaptive solvers replan the search path frequently as the agent’s belief is updated31

based on new measurements [2, 7, 1]. While our approach can also be used for non-adaptive IPP, we32

focus on the more general adaptive IPP problem for its wider applicability to real-life robotic tasks.33

Differently from general path planning problems, where the agent is often assigned a goal position,34

IPP requires the agent to identify and visit all potential interesting areas throughout the environment.35

Therefore, efficient IPP solvers must reason about the entire agent’s belief to make non-myopic36

decisions [8], which balance short-term exploitation of known interesting areas with longer-term37

exploration of unknown areas in the domain. Many IPP solvers rely on computationally expensive38

means to optimize long-horizon trajectories [4, 7, 5]. Trading off solution quality in favor of lower39

computing times, more recent approaches have embraced sampling-based planning [9, 7, 10].40

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

(a) (b) (c) (d)
Figure 1: CAtNIPP’s trajectory sampling variant for adaptive
IPP, showing the path executed by the agent so far (black), and
the long-horizon trajectory that was just (re-)planned (white), of
which the red portion will be executed until the next replanning
step. a) True interest map (unknown to the agent), b) Predicted
interest map from all measurements so far, c) Associated pre-
dicted standard deviation, and d) Predicted high-interest areas.

To further improve computing41

times and solution quality, we in-42

troduce CAtNIPP, a deep rein-43

forcement learning (dRL) based44

framework for 2D adaptive IPP.45

We first decrease the complexity46

of our continuous-space search47

domain by generating a proba-48

bilistic roadmap [11], i.e., a ran-49

dom sparse graph that covers the50

domain. We then associate this51

roadmap with the agent’s belief,52

and formulate adaptive IPP as a53

sequential decision-making problem on this graph. We propose and train an attention-based neural54

network that outputs a policy to select which neighboring node to visit next, thus allowing us to55

iteratively plan an (adaptive) informative path. There, self-attention over the graph nodes allows the56

agent to construct a global context, by embedding its entire belief into local decision features while57

identifying dependencies between nodes/areas at different spatial scales. In doing so, the neural-58

based, reactive nature of our approach drastically improves planning times, compared to planners59

that optimize full trajectories, while context-awareness helps improve solution quality by allowing60

our agent to identify and sequence non-myopic decisions that near-optimally balance short- and61

long-term objectives. The main contributions of this work are:62

• We propose a new fully reactive, policy-based dRL framework for adaptive IPP, which signifi-63

cantly outperforms state-of-the-art IPP solvers in terms of both solution quality and computing64

time. In CAtNIPP, the agent learns a subtle global representation of its entire belief over the65

domain, that allows it to sequence non-myopic decisions that can achieve longer-term objectives.66

• We further propose to rely on receding-horizon, sampling-based trajectory optimization (Fig. 1)67

to output higher-quality, longer-horizon trajectories by leveraging the nature of our stochastic68

policies, while remaining tractable and usable in real time. We demonstrate these variants of69

CAtNIPP in simulation as well as on hardware on a light-intensity-based IPP task.70

2 Related Work71

To reduce the computing time and improve solution quality, most recent IPP methods have relied on72

randomized, sampling-based methods. For non-adaptive IPP solvers, Karaman et al. [9] introduced73

the RIG-tree algorithm, which utilizes RRT-star (a Rapidly-exploring Random Tree variant [12]) to74

randomly build a tree structure used to explore the environment and maximize information gain.75

Hitz et al. [5] combined Constraint Satisfaction and Travelling Salesman Problems to introduce76

Randomized Anytime Orienteering (RAOr). RAOr iteratively samples the search space and solves77

a TSP instance to visit all sampled locations within the given budget constraints. According to78

Popović et al. [1], despite RIG-tree and RAOr not having been initially designed for adaptive IPP,79

they only require seconds to plan, which allows them to be generalized to adaptive online replanning80

scheme in a traditional receding-horizon manner. Regarding solvers initially designed for adaptive81

IPP, Hitz et al. [7] proposed an evolutionary strategy to achieve state-of-the-art performance. They82

applied CMA-ES to generate candidate solutions from a multi-variate Gaussian distribution, where83

the mean and covariance matrices are adaptively updated according to the evaluation of the candi-84

dates. Apart from these conventional solvers, there has been a couple of recent, value-based RL85

solvers for IPP. Wei et al. [6] proposed an RNN-based solver, which reasons about the positions86

of measurement (for their predicted reduction in uncertainty) but without considering measurement87

values, thus limiting its use to non-adaptive IPP problems. Ruckin et al. [13] proposed a specialized88

CNN-based solver for 3D IPP, developed for a specific problem statement that assumes image-like89

measurements and relies on Kalman Filtering for belief update.90

2

3 Background91

In this section, we first introduce Gaussian Processes (GPs), which are used to model the agent’s92

belief (i.e., predicted interest map). We then formulate the general definition of our IPP problem93

based on such a GP. Finally, we describe the adaptive replanning requirement for adaptive IPP.94

Gaussian Process In IPP, interest (e.g., target distribution, temperature, or radiation level), is asso-95

ciated with the 2D environment E ⊂ R2 and modeled as a continuous function ζ : E −→ R. Gaussian96

Processes have been widely used to represent such a continuous interest distribution, by providing97

a natural means to interpolate between discrete measurements [7, 1, 6], so that ζ ≈ GP(µ, P).98

Specifically, given a set of n′ locations X ∗ ⊂ E at which interest is to be inferred, a set of n99

observed locations X ⊂ E and the corresponding measurements set Y , the mean and covariance100

of the GP are regressed as: µ = µ(X ∗) + K(X ∗,X)[K(X ,X) + σ2
nI]

−1(Y − µ(X)), P =101

K(X ∗,X ∗)−K(X ∗,X)[K(X ,X) + σ2
nI]

−1 ×K(X ∗,X)T , where K(·) is a pre-trained/selected102

kernel function, σ2
n is a hyperparameter describing the measurement noise, and I is the n×n identity103

matrix. In this work, following [1, 10], we use the Matérn 3/2 kernel function.104

Informative Path Planning The general IPP problem aims to find an optimal trajectory ψ∗ in the105

space of all available trajectories Ψ for maximum gain in some information-theoretic measures:106

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B, (1)

where I : ψ −→ R+ is the information gained from the measurements obtained along the trajectory107

ψ , C : ψ −→ R+ maps a trajectory ψ to its associated execution cost, and B ∈ R+ is the given108

path-length budget. Following [5, 6, 7], the trajectory ψ is given a start and a destination but we109

note that our method can be easily extended to remove the need for a destination. To evaluate the110

information gained from measurements, following [4, 1], we use the variance reduction of the GP to111

represent information gain: I(ψ) = Tr(P−) − Tr(P+), where Tr(·) denotes the trace of a matrix,112

P− and P+ are the prior and posterior covariances, which are obtained before and after taking113

measurements along the trajectory ψ. In this work, to model the data collection of common sensors,114

we let the agent take a measurement every time it has traveled a fixed distance from the previous115

measurement, thus the number of measurement is only determined by the path length budget B.116

Adaptive Replanning If the information gain only depends on P , i.e., the location of measure-117

ments, the objective is considered non-adaptive since the trajectory could be entirely planned offline118

ahead of time, based on the agent’s initial (often uniform) belief. However, in real-world appli-119

cations such as search-and-rescue, we usually aim to discover regions of high interest and further120

cover (exploit) them. To this end, following [7, 1], we rely on the upper confidence bound to define121

high-interest areas XI : XI = {xi ∈ X ∗|µ−
i + βP−

i,i ≥ µth}, where µ−
i and P−

i,i are the mean122

and variance of the GP at the measurement location xi. µth, while β ∈ R+ is used to control the123

threshold and confidence interval respectively (µth = 0.4, β = 1, in practice). By replacing X ∗ with124

XI in the covariance calculation, we restrict the information gain in the objective function Eq. (1)125

to the high-value areas predicted by the GP. This formulation makes the IPP objective dependent126

on the measurement values in addition to their location, making the problem truly adaptive. There-127

fore, frequent online replanning of the trajectory is required to minimize uncertainty in the (now128

dynamically defined) high-interest areas XI .129

4 Method130

In this section, we cast adaptive IPP as an RL problem and detail our attention-based neural network,131

as well as our long-horizon planning strategy to further boost the performance of a learned policy.132

4.1 IPP as a RL Problem133

Sequential Decision-making Problem First, to avoid the complexity associated with a continuous134

search domain, we rely on probabilistic roadmaps (PRM) [11] to build a route graph G = (V,E),135

3

with V a set of uniformly-random-sampled nodes over the domain, and E a set of edges. Each node136

vi = (xi, yi) ∈ V is connected to its k nearest neighboring nodes and v0 is the destination. Then,137

to solve the adaptive IPP using RL, we formulate it as a sequential decision-making problem on this138

graph. That is, we let agent interact with the environment by choosing which node to move to from139

amongst the neighbors of its current node. Movement between nodes happens as a straight line. As a140

result, the agent’s trajectory ψ can be represented as an ordered set (ψs, ψ1, ..., ψd),∀ψi ∈ V , where141

ψs and ψd denote the start and destination nodes respectively. As a result, the trajectory is adaptively142

planned, since it is constructed from sequential movements, each depending on the agent’s global143

belief, which gets updated online based on new measurements.144

Observation The observation st = {G′, vc, Bc, ψs,c,M} of our IPP agent consists of three parts:145

the augmented graph, the planning state, and the budget mask.146

The augmented graph G′ = (V ′, E) is used to describe the environment modeled by the GP. It147

is a combination of the route graph G = (V,E) and the GP GP(µ, P), where each node v′i =148

(vi, µ(vi), P (vi)) ∈ V ′. This augmented graph stores the information about the agent’s global149

belief and determines the agent’s local action space. The planning state is defined by {vc, Bc, ψs,c},150

where vc ∈ V is the current position of the agent, Bc = B − C(ψs,c) the remaining budget,151

and ψs,c = (ψs, ψ1, ..., vc) the executed trajectory so far. The budget mask M is a binary vector152

containing one element for each node in the route graph, stating whether selecting this node at the153

current step would result in violating the budget constraint. To obtain this mask, we pre-solve the154

shortest path problem using Dijkstra [14] to compute the minimal cost di to the destination from each155

node vi. We then compute a virtual budget B∗
i = Bc − C(vc, vi) − di for each node based on the156

planning state. Finally, according to B∗, we compute each entry of M as Mi =

{
1 if B∗

i < 0
0 otherwise.

157

Action Each time the agent reaches a node, the GP is updated based on all new measurements,158

and the agent immediately selects its next action. Specifically, at each such decision step t, given159

the agent’s observation, our attention-based neural network outputs a stochastic policy to select the160

next node to visit out of all neighboring nodes. The policy is parameterized by the set of weights θ:161

πθ(ψt = vi, (vc, vi) ∈ E | st), where E is the edge set of the underlying graph.162

Reward At each decision step, to maximize information gain, the agent is given a positive reward163

based on the reduction in uncertainty associated with its most recent action: rt = (Tr(P t−1) −164

Tr(P t))/Tr(P t−1), where we experimentally found that scaling the reward by Tr(P t−1) helped165

stabilize training by keeping the rewards consistent in magnitude. However, this normalization166

introduces a deviation between the training objective and the IPP objective. Therefore, at the last167

decision step of each episode, we introduce a negative correction reward rd = −α · Tr(P d), where168

P d is the covariance after executing the whole trajectory ψ, and α is a scaling factor (1 in practice).169

4.2 Neural Network Structure170

The proposed attention-based neural network consists of an encoder and a decoder modules (see171

Fig. 2). We use the encoder to model the observed environment by learning the dependencies be-172

tween nodes in the augmented graph G′, i.e., the context. Based on the features extracted by the173

encoder, the planning state {vc, Bc, ψs,c}, and the budget mask M , the decoder then outputs the174

policy over which neighboring node to visit next. To handle graphs with arbitrary topologies, our175

encoder uses a standard Transformer attention layer with graph Positional Encoding (PE) based on176

the graph Laplacian’s eigenvector [15], thus providing the neural network with the ability to reason177

about node connectivity. While general policy-based RL agents have a fixed action space, our de-178

coder is inspired by the Pointer Network [16] to allow the dimension of the final policy to depend179

on the number of neighboring nodes, allowing our network to generalize to arbitrary graphs.180

Attention Layer The Transformer attention layer [17] is used as the fundamental building block181

in our model. The input of such an attention layer consists of the query source hq and the key-182

and-value source hk,v . The attention layer updates the query source using the weighted sum of183

the value vector, where the attention weight depends on the similarity between query and key. We184

4

Node Input

Node Features Context-aware Node Features

Current Node Feature

Neighboring Features

Enhanced Current Node Feature

Encoder

Gaussian Process

Graph

Positional
Embedding

LSTM

Policy

Action

Decoder

Value

Selecting Neighboring Nodes

Construct
Augmented Graph

Mask

Planning state

Figure 2: CAtNIPP’s attention-based neural network. The encoder module relies on self-
attention to identify and represent the global dependencies between nodes in the agent’s belief (i.e.,
augmented graph) as context-aware node features. Relying on the current and neighboring context-
aware node features (grey dashed circle), the planning state, and the mask, the decoder relies on
cross-attention to output the final, context-aware policy (and value estimate during training).

compute the updated feature h′i as: qi = WQhqi , ki = W khk,vi , vi = W vhk,vi , uij =
qTi ·kj√

d
, aij =185

euij∑n
j=1 e

uij , h
′
i =

∑n
j=1 aijvj , where WQ,WK ,WV are all learnable matrices with size d× d. The186

updated features are then passed through the feed forward sublayer, which contains two linear layers187

and a ReLU activation. Note that layer normalization and residual connections are used within these188

two sublayers as in [17].189

Encoder The encoder is used to model the observed environment by learning dependen-190

cies between nodes in the augmented graph G′. We first embed the node inputs V ′191

into d-dimensional node features hni and add Laplacian positional embeddings: hni =192 {
WLv′i + bL +WPEλi + bPE i > 0
WDv′0 + bD +WPEλ0 + bPE i = 0

where λi is the pre-computed k-dimensional Laplacian193

eigenvector, and WL,WD ∈ Rd×4, WPE ∈ Rd×k, bL, bD, bPE ∈ Rd are learnable parameters.194

Note that the destination node V ′
0 is embedded by another linear layer. The node features are then195

passed to an attention layer, where hq = hk,v = hn, as is commonly done in self-attention mecha-196

nisms. We term the output of the encoder, hen, the context-aware node features, since each of these197

updated node features heni contains the dependencies of v′i with all other nodes.198

Decoder The decoder is used to output a policy based on the context-aware node features, the199

planning state {vc, Bc, ψs,c}, and the budget mask M . We first merge the information about the200

budget and the high-interest areas to the context-aware node features: ĥeni = WB [heni , B
∗
i , µth] +201

bB , where WB ∈ Rd×(d+2) and bB ∈ Rd are learnable parameters. Then, according to the current202

position vc and the edge set E, we select the current node feature hc, the neighboring features203

hnfrom ĥen, and the neighbor mask Mn from M . After that, the current node feature hc are passed204

to a LSTM block, where the hidden state and cell state are input from previous current node feature205

along the executed trajectory ψs,c. The LSTM output ĥc is merged with the destination feature206

ĥen0 to compute the enhanced current node feature hec: hec = WC [ĥc, ĥen0] + bC , where WC ∈207

Rd×2d and bC ∈ Rd are learnable parameters. We feed the enhanced node current feature and208

the neighboring features to an attention layer, where hq = hec and hk,v = hn. We denote the209

output of this attention layer ĥec, which is simultaneously passed to a linear layer to output the state210

value V (st), and to the final attention layer with the neighboring features, where hq = ĥec and211

hk,v = hn. For this final attention layer, we directly treat the attention weights ai as the final policy212

ui for the IPP agent, where invalid nodes are explicitly masked using Mn. After masking, ui is213

finally normalized to yield the probability distribution π for the next node to visit: πi = πθ(ψt =214

vi|st) = eui/
∑n
i=1 e

ui .215

5

4.3 Training216

Our model is trained using PPO [18]. At the beginning of each training episode, we average 8 to 12217

random 2-dimensional Gaussian distributions in the unit square [0, 1]2, to construct the true interest218

map. The robot’s belief starts as a uniform distribution GP(0, 1). The start and destination positions219

are randomly generated in [0, 1]2. During training, the number of nodes for our graph is randomized220

within [200, 400] for each episode, the number of neighboring nodes is fixed to k = 20, and the221

budget is randomized within [6, 8]. A measurement is obtained every time the agent has traveled222

0.2 from the previous measurement. We set the max episode length to 256 time steps, and the batch223

size to 1024. We use the Adam optimizer with learning rate 10−4, which decays every 32 steps224

by a factor of 0.96. For each training episode, PPO runs 8 iterations. Our model is trained on a225

workstation equipped with a i9-10980XE CPU and four NVIDIA GeForce RTX 3090 GPUs. We226

train our model utilizing Ray, a distributed framework for machine learning [19]. We run 32 IPP227

instances in parallel to accelerate the data collection and training, and need around 24h to converge.228

4.4 Trajectory Sampling229

Until now, we discussed solving the IPP in the standard RL manner, i.e., iteratively selecting the230

next node to visit each time the agent reaches a node. Inspired by conventional non-learning IPP231

solvers, we further propose a receding-horizon strategy for our RL agent, where anm-step trajectory232

is output at each (re)planning step but only a portion of it is executed before the next replanning step233

(see Fig. 1). We utilize the learned policy for further optimization by sampling, which has been234

shown to be a reliable optimization strategy for learning-based routing planner [20, 21]. That is, at235

each planning step, based on the learned policy, our trajectory sampling method parallely plans a236

number s of m-step trajectories, and then selects the trajectory that maximizes the information gain237

as the final trajectory ψ∗. During the m-step planning process, only the covariance of the GP can be238

predicted, since no measurement is actually taken before executing the trajectory.239

5 Experiments240

In this section, we compare CAtNIPP with state-of-the-art (SOTA) baselines IPP solvers on a fixed241

set of randomly generated environments with identical randomized conditions. We also present242

numerical and experimental validation of CAtNIPP on an light-intensity-based adaptive IPP task. In243

our supplemental material, we also tested a number of variants of our model and its generalizability.244

5.1 Comparison Results245

We compare CAtNIPP against a number of state-of-the-art IPP solvers: (a) CMA-ES [7] (we use246

linear B-spline for the CMA-ES solver for a fair comparison), (b) RAOr [5], and (c) RIG-tree [9].247

Following [1], we implement RAOr and RIG-tree in a receding-horizon manner to make them adap-248

tive. All considered solvers (except our fully reactive, greedy variants) replan paths after executing249

0.4 of their previously planned trajectory. Starting from hyperparameters suggested by their original250

papers, we tuned these solvers to output highest-quality solutions, while keeping the total planning251

time similar to our trajectory sampling variants. This enables us to offer a fair comparison between252

our methods and these baselines. CAtNIPP’s greedy and trajectory sampling variant are denoted253

by g.(n) and ts.(m) respectively, where n is the number of nodes for the route graph and m is the254

number of trajectories sampled at each planning step (n is fixed to 400 for ts.). Greedy variants255

work in the standard RL manner, i.e., the agent always selects the action with highest activation in256

its policy. Trajectory sampling variants plan a 15-step trajectory and execute the first 3 steps before257

replanning (in practice, ∼ 0.4 of traveled distance), following the receding-horizon setup in [7].258

Note that trajectory sampling is accelerated by multithreading using up to 8 threads.259

We report the uncertainty remaining (covariance matrix trace Tr(P), lower is better) after fin-260

ishing the mission, as well as the total planning time in Table 1. The evolution of these261

two metrics during path planning, uncertainty remaining, and root mean square error (RMSE)262

6

Table 1: Comparison with SOTA IPP solvers (10 trials on 30 instances for each budget). Tr(P) is the
covariance matrix trace after running out of budget. T(s) is the total planning time.

Method Budget 6 Budget 8 Budget 10 Budget 12
Tr(P) T(s) Tr(P) T(s) Tr(P) T(s) Tr(P) T(s)

RIG-Tree 32.69(±12.86) 132.36 15.44(±5.49) 192.74 7.74(±3.01) 240.58 4.80(±2.21) 291.31
RAOr 26.80(±15.16) 17.12 11.17(±3.87) 40.13 6.28(±2.25) 73.60 4.71(±1.13) 127.44
CMA-ES 17.44(±6.09) 124.23 10.48(±5.38) 181.41 6.77(±3.74) 241.47 4.51(±2.42) 268.69
g.(800) 22.86(±6.42) 1.23 7.72(±2.77) 1.68 3.97(±1.46) 2.20 2.70(±1.18) 2.52
ts.(4) 20.19(±3.88) 90.31 7.04(±1.44) 123.56 3.82(±0.61) 158.44 2.52(±0.41) 194.97

Figure 4: Attention weights visualization
from the trained encoder. The query source is
the node at the current position (black) and the
keys source are nodes in the augmented graph
(blue). One attention head and three attention
heads pay attention to longer- and shorter-term
high-interest areas respectively.

0 2 4 6 8 10
Used budget

101

102

103

Tr
(P

) ts.(4)
g.(800)
CMA-ES
RIG-tree
RAOr

0 2 4 6 8 10
Used budget

0.1

0.2

0.3

R
M

SE

Figure 3: Comparison with SOTA IPP solvers
for a fixed budget of 10 (10 trials on 30 in-
stances). Our two CAtNIPP variants significantly
outperform all solvers in reducing uncertainty
(left) as well as root mean square error (right).

263

||µ − ζ||2 compared to the ground truth are plotted in Fig. 3. Upon closer inspection, we note that264

RAOr tends to plan trajectories that exploit nearby high-interest areas, thus reducing the uncertainty265

slowly in the early stage of a mission and more rapidly in later stages. RIG-tree, on the other hand,266

has a strong tendency for exploration, which leads to a fast uncertainty reduction earlier on, but267

a slower one in the later stages of an episode. As a meta-heuristic solver, CMA-ES finds a good268

trade-off between exploration and exploitation, resulting in the best overall performance among269

non-learning solvers (even better than CAtNIPP with budget 6).270

Fig. 3 shows that CAtNIPP maintains best overall performance with respect to all metrics throughout271

the whole budget span. Regarding the CAtNIPP variants, we note that trajectory sampling variants272

exhibit improved solution quality over greedy variants (8% better in average). However, greedy273

variants plan up to 100x faster than trajectory sampling variants and SOTA IPP solvers.274

5.2 Attention Visualization: Learning to Be Context-aware275

Table 2: Tr(P) of CAtNIPP WTIHOUT encoder.
Method Budget 6 Budget 8 Budget 10

g.(800) 44.01(±28.37) 18.40(±13.48) 11.80(±11.37)
ts.(4) 29.88(±14.80) 9.97(±5.73) 5.86(±2.84)

We believe that the superior solution276

quality of CAtNIPP mainly comes from277

its ability to be context-aware, and thus278

to avoid the type of short-sightedness279

usually associated with local, reactive280

IPP planners. We investigated the learned attention mechanism at the core of CAtNIPP by visual-281

izing learned attention weights (larger dots means higher weight) at representative time steps. In282

particular, Fig. 4 shows that the left attention head and the right three attention heads of the en-283

coder have learned to focus on the longer- and shorter-term high-interest regions respectively. Given284

these context-aware node features, the agent finally learns to make local decisions that can optimize285

objectives at the different scales identified by the encoder. Our ablation results (Table 2) further286

confirm that the presence of the encoder is critical: without it, performance is drastically degraded,287

as the agent mostly sequences locally greedy decisions into suboptimal search paths. Nevertheless,288

we note that relying on receding-horizon optimization, trajectory sampling drastically improves the289

solution quality of the model without encoder.290

5.3 Numerical and Experimental Validation291

We carried out experiments to validate CAtNIPP’s performance on a TurtleBot3 robot, over a printed292

7

(a) True interest map (b) Early agent belief (c) Final agent belief
Figure 5: Experimental validation of CAtNIPP on Turtle-
Bot3. Selected nodes are shown in green, and robot trajectory
in red (intermediate path in (b), and full final path in (c)).

grayscale image of 2.38×2.38m2293

representing the ground truth in-294

terest map (see Fig. 5). The295

robot is equipped with an on-296

board camera used to measure the297

ground light (grayscale) intensity298

(as an example of a simple on-299

board intensity-level sensor, e.g.,300

temperature/radioactivity/gas lev-301

els), while its position is obtained302

by a downward-facing, overhead303

camera. In this experiment, a trained CAtNIPP model adaptively outputs the next node location304

to visit based on the agent’s current belief, using a 400-nodes graph, and the agent only takes mea-305

surements when reaching a node. This experiment confirms that CAtNIPP is easily deployable on306

robot for online, reactive planning, and highlights its low computational cost (≤ 0.1s per decision307

on CPU). Our supplemental material includes simulation videos in environments of up to 8× 8m2.308

6 Limitations309

We believe that the limitations of CAtNIPP lie at three different levels: generalizability, area dis-310

cretization, and implementation readiness:311

• As a model-free approach, CAtNIPP learns to implicitly comprehend the upper confidence bound312

used to define high-interest areas, as well as the kernel function of the GP used to represent the313

agent’s sensor model. Therefore, the model requires retraining if any of these parameters change314

(e.g., change in sensor used, or in task specifications), thus limiting its generalizability. Future315

work will look at model-based RL approaches, which may allow the agent to explicitly reason316

about these mission parameters and adapt to new settings without the need for retraining.317

• We currently assume uniform sampling of the route graph, which may prevent the agent from318

reaching an interesting area due to insufficient graph coverage. However, CAtNIPP is already319

able to handle arbitrary graphs. To address this issue, especially in later stages of the planning, we320

will further investigate online re-sampling of graph nodes, e.g., according to the current belief.321

• We currently plan paths in a simplified graph, where paths between nodes are straight lines, ignor-322

ing most real-life robot motion constraints (i.e., holonomic robot assumption). Future work will323

explicitly consider the robot’s motion model, e.g., in the state representation (velocity, heading,324

kinematic/dynamics constraints), to better trade-off robot-specificity with ease of implementation.325

7 Conclusion326

In this paper, we introduce CAtNIPP, a policy-gradient-based dRL method for adaptive IPP that re-327

lies on self-attention to endow the agent with the ability to sequence local decisions, informed by its328

global context over the search domain to avoid short-sightenedness. In addition to solving adaptive329

IPP by simply greedily exploiting our learned policy, which can be done at very low computational330

cost (∼ 0.1s per decision), we propose a sampling-based strategy that utilizes the learned policy331

more efficiently to output higher-quality solutions, while keeping the computing time on par with332

existing IPP solvers. We experimentally demonstrate that both variants of CAtNIPP significantly333

outperform state-of-the-art IPP solvers in terms of solution quality. Finally, we present experimen-334

tal results on physical and simulated robots in a representative online, adaptive IPP task, showing335

promises for robotic deployments in real-life monitoring, inspection, or mapping scenarios.336

Future work will mainly focus on extending our model to multi-agent IPP, where robots need to rea-337

son about each other to cooperatively plan informative paths, by leveraging synergies and avoiding338

redundant work. We also plan to investigate the use of CAtNIPP for robot exploration tasks, where339

more real-world object such as obstacles and sensors need to be considered in the planning process.340

8

References341

[1] M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart, and J. Nieto. An infor-342

mative path planning framework for uav-based terrain monitoring. Autonomous Robots, 44(6):343

889–911, 2020.344

[2] Z. W. Lim, D. Hsu, and W. S. Lee. Adaptive informative path planning in metric spaces. The345

International Journal of Robotics Research, 35(5):585–598, 2016.346

[3] A. Bircher, M. S. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding horizon path347

planning for 3d exploration and surface inspection. Autonomous Robots, 42, 02 2018. doi:348

10.1007/s10514-016-9610-0.349

[4] J. Binney and G. S. Sukhatme. Branch and bound for informative path planning. In 2012 IEEE350

international conference on robotics and automation, pages 2147–2154. IEEE, 2012.351

[5] S. Arora and S. Scherer. Randomized algorithm for informative path planning with budget352

constraints. In 2017 IEEE International Conference on Robotics and Automation (ICRA),353

pages 4997–5004. IEEE, 2017.354

[6] Y. Wei and R. Zheng. Informative path planning for mobile sensing with reinforcement learn-355

ing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pages 864–356

873. IEEE, 2020.357

[7] G. Hitz, E. Galceran, M.-È. Garneau, F. Pomerleau, and R. Siegwart. Adaptive continuous-358

space informative path planning for online environmental monitoring. Journal of Field359

Robotics, 34(8):1427–1449, 2017.360

[8] A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein. Nonmyopic informative path plan-361

ning in spatio-temporal models. In AAAI, volume 10, pages 16–7, 2007.362

[9] G. A. Hollinger and G. S. Sukhatme. Sampling-based robotic information gathering algo-363

rithms. The International Journal of Robotics Research, 33(9):1271–1287, 2014.364

[10] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake. Sampling-based incremental infor-365

mation gathering with applications to robotic exploration and environmental monitoring. The366

International Journal of Robotics Research, 38(6):658–685, 2019.367

[11] R. Geraerts and M. H. Overmars. A comparative study of probabilistic roadmap planners. In368

Algorithmic foundations of robotics V, pages 43–57. Springer, 2004.369

[12] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The370

international journal of robotics research, 30(7):846–894, 2011.371

[13] J. Rückin, L. Jin, and M. Popović. Adaptive informative path planning using deep reinforce-372

ment learning for uav-based active sensing. arXiv preprint arXiv:2109.13570, 2021.373

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1374

(1):269–271, 1959.375

[15] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. arXiv376

preprint arXiv:2012.09699, 2020.377

[16] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. arXiv preprint arXiv:1506.03134,378

2015.379

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-380

sukhin. Attention is all you need. In Advances in neural information processing systems, pages381

5998–6008, 2017.382

9

http://dx.doi.org/10.1007/s10514-016-9610-0
http://dx.doi.org/10.1007/s10514-016-9610-0
http://dx.doi.org/10.1007/s10514-016-9610-0

[18] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto. An efficient sampling-383

based method for online informative path planning in unknown environments. IEEE Robotics384

and Automation Letters, 5(2):1500–1507, 2020.385

[19] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul,386

M. I. Jordan, et al. Ray: A distributed framework for emerging ai applications. In Proceedings387

of OSDI, pages 561–577, 2018.388

[20] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! arXiv389

preprint arXiv:1803.08475, 2018.390

[21] Y. Cao, Z. Sun, and G. Sartoretti. DAN: Decentralized attention-based neural network to solve391

the minmax multiple traveling salesman problem. arXiv preprint arXiv:2109.04205, 2021.392

10

	Introduction
	Related Work
	Background
	Method
	IPP as a RL Problem
	Neural Network Structure
	Training
	Trajectory Sampling

	Experiments
	Comparison Results
	Attention Visualization: Learning to Be Context-aware
	Numerical and Experimental Validation

	Limitations
	Conclusion

