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Abstract. The multiple traveling salesman problem (mTSP) is a well-
known NP-hard problem with numerous real-world applications. In par-
ticular, this work addresses MinMax mTSP, where the objective is to
minimize the max tour length among all agents. Many robotic deploy-
ments require recomputing potentially large mTSP instances frequently,
making the natural trade-off between computing time and solution qual-
ity of great importance. However, exact and heuristic algorithms become
inefficient as the number of cities increases, due to their computational
complexity. Encouraged by the recent developments in deep reinforce-
ment learning (dRL), this work approaches the mTSP as a cooperative
task and introduces DAN, a decentralized attention-based neural method
that aims at tackling this key trade-off. In DAN, agents learn fully de-
centralized policies to collaboratively construct a tour, by predicting
each other’s future decisions. Our model relies on attention mechanisms
and is trained using multi-agent RL with parameter sharing, providing
natural scalability to the numbers of agents and cities. Our experimen-
tal results on small- to large-scale mTSP instances (50 to 1000 cities
and 5 to 20 agents) show that DAN is able to match or outperform
state-of-the-art solvers while keeping planning times low. In particular,
given the same computation time budget, DAN outperforms all conven-
tional and dRL-based baselines on larger-scale instances (more than 100
cities, more than 5 agents), and exhibits enhanced agent collaboration.
A video explaining our approach and presenting our results is available
at https://youtu.be/xi3cLsDsLvs.

Keywords: multiple traveling salesman problem, decentralized plan-
ning, deep reinforcement learning

1 INTRODUCTION

The traveling salesman problem (TSP) is a challenging NP-hard problem, where
given a group of cities (i.e., nodes) of a given complete graph, an agent needs to
find a complete tour of this graph, i.e., a closed path from a given starting node
that visits all other nodes exactly once with minimal path length. The TSP can
be further extended to the multiple traveling salesman problem (mTSP), where

https://youtu.be/xi3cLsDsLvs
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multiple agents collaborate with each other to visit all cities from a common
starting node with minimal cost. In particular, MinMax (minimizing the max
tour length among agents, i.e., total task duration) and MinSum (minimizing
total tour length) are two most common objectives for mTSP [1,2,3]. Although
simple in nature, the TSP and mTSP are ubiquitous in robotics problems that
need to address agent distribution, task allocation, and/or path planning, such
as multi-robot patrolling, last mile delivery, or distributed search/coverage. For
example, Faigl et al. [4], Obwald et al. [5] and Cao et al. [6] proposed methods for
robot/multi-robot exploration tasks, at the core of which is such a TSP/mTSP
instance, whose solution quality will influence the overall performance. More gen-
erally, dynamic environments are involved in many robotic deployments, where
the underlying graph may change with time and thus require the TSP/mTSP
solution be recomputed frequently and rapidly (within seconds or tens of seconds
if possible). While state-of-the-art exact algorithms (e.g., CPLEX [7], LKH3 [8],
and Gurobi [9]) can find near-optimal solutions to TSP instances in a few sec-
onds, exact algorithms become unusable for mTSP instances if computing time
is limited [2]. As an alternative, meta-heuristic algorithms like OR Tools [10]
were proposed to balance solution quality and computing time. In recent years,
neural-based methods have been developed to solve TSP instances [11,12,13]
and showed promising advantages over heuristic algorithms both in terms of
computing time and solution quality. However, neural-based methods for mTSP
are scarce[3,2]. In this work, we introduce DAN, a decentralized attention-based
neural approach for the MinMax mTSP, which is able to quickly and distribut-
edly generate tours that minimize the time needed for the whole team to visit
all cities and return to the depot (i.e., the makespan).

Fig. 1. DAN’s final solu-
tion to an example mTSP
problem.

We focus on solving mTSP as a decentralized co-
operation problem, where agents each construct their
own tour towards a common objective. To this end, we
rely on a threefold approach: first, we formulate mTSP
as a sequential decision-making problem where agents
make decisions asynchronously towards enhanced col-
laboration. Second, we propose an attention based
neural network to allow agents to make individual
decisions according to their own observations, which
provides agents with the ability to implicitly predict
other agents’ future decisions, by modeling the depen-
dencies of all the agents and cities. Third, we train our
model using multi-agent reinforcement learning with parameter sharing, which
provides our model with natural scalability to arbitrary team sizes.

We present test results on randomized mTSP instances involving 50 to 1000
cities and 5 to 20 agents, and compare DAN’s performance with that of ex-
act, meta-heuristic, and dRL methods. Our results highlight that DAN achieves
performance close to OR Tools, a highly optimized meta-heuristic baseline [10],
in relatively small-scale mTSP (fewer than 100 cities). In relatively large-scale
mTSP, our model is able to significantly outperform OR Tools both in terms
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of solution quality and computing time. We believe this advantage makes DAN
more reliable in dynamic robotic tasks than non-learning approaches. DAN also
outperforms two recent dRL based methods in terms of solution quality for
nearly all instances.

2 PRIOR WORKS

For TSP, exact algorithms like dynamic programming and integer program-
ming can theoretically guarantee optimal solutions. However, these algorithms do
not scale well. Nevertheless, exact algorithms with handcrafted heuristics (e.g.,
CPLEX [7]) remain state-of-the-art, since they can reduce the search space ef-
ficiently. Neural network methods for TSP became competitive after the recent
advancements in dRL. Vinyals et al. [11] first built the connection between deep
learning and TSP by proposing the Pointer network, a sequence-to-sequence
model with a modified attention mechanism, which allows one neural network to
solve TSP instances composed of an arbitrary number of cities. Kool et al. [13]
replaced the recurrent unit in the Pointer Network and proposed a model based
on a Transformer unit [14]. Taking the advantage of self-attention on modeling
the dependencies among cities, Kool et al.’s achieved significant improvement in
term of solution quality.

In mTSP, cities need to be partitioned and allocated to each agent in ad-
dition to finding optimal sequences/tours. This added complexity makes state-
of-the-art exact algorithm TSP solvers impractical for larger mTSP instances.
OR Tools [10], developed by Google, is a highly optimized meta-heuristic algo-
rithm. Although it does not guarantee optimal solutions, OR Tools is one of the
most popular mTSP solvers because it effectively balances the trade-off between
solution quality and computing time. A few recent neural-based methods have
also approached the mTSP in a decentralized manner. Notably, Hu et al. [2]
proposed a model based on a shared graph neural network and distributed at-
tention mechanism networks to first allocate cities to agents. OR Tools can then
be used to quickly generate the tour associated with each agent. Park et al. [3]
presented an end-to-end decentralized model based on graph attention network,
which could solve mTSP instances with arbitrary numbers of agents and cities.
They used a type-ware graph attention mechanism to learn the dependencies
between cities and agents, where the extracted agents’ feature and cities’ fea-
tures are then concatenated during the embedding procedure before outputting
the final policy.

3 PROBLEM FORMULATION

The mTSP is defined on a graph G = (V,E), where V = {1, ..., n} is a set of n
nodes (cities), and E is a set of edges. In this work, we consider G to be complete,
i.e., (i, j) ∈ E for all i ̸= j. Node 1 is defined as the depot, where all m agents
are initially placed, and the remaining nodes as cities to be visited. The cities
must be visited exactly once by any agent. After all cities are visited, all agents
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return to the depot to finish their tour. Following the usual mTSP statement
in robotics [15], we use the Euclidean distance between cities as edge weights,
i.e., this work addresses the Euclidean mTSP. We define a solution to mTSP
π =

{
π1, ..., πm

}
as a set of agent tours. Each agent tour πi = (πi

1, π
i
2, ..., π

i
ni
) is

an ordered set of the cities visited by this agent, where πi
t ∈ V and πi

1 = πi
ni

is the
depot. ni denotes the number of cities in this agent tour, so

∑m
i=1 ni = n+2m−1

since all agent tours involve the depot twice. Denoting the Euclidean distance

between cities i and j as cij , the cost of agent i’s tour reads: L(π
i) =

ni−1∑
j=1

cπi
jπ

i
j+1

.

As discussed in Section 1, we consider MinMax (minimize max
i∈{1,...,m}

L(πi)) as the

objective of our model.

4 mTSP as an RL PROBLEM

In this section, we cast mTSP into a decentralized multi-agent reinforcement
learning (MARL) framework. In our work, we consider mTSP as a cooperative
task instead of an optimization task. We first formulate mTSP as a sequential
decision making problem, which allows RL to tackle mTSP. We then detail the
agents’ state and action spaces, and the reward structure used in our work.

Sequential Decision Making Building upon recent works on neural-based
TSP solvers, we consider mTSP as a sequential decision-making problem. That
is, we let agents interact with the environment by performing a sequence of
decisions, which in mTSP are to select the next city to visit. These decisions
are made sequentially and asynchronously by each agent based on their own
observation, upon arriving at the next city along their tour, thus constructing
a global solution collaboratively and iteratively. Each decision (i.e., RL action)
will transfer the agent from the current city to the next city it selects. Assuming
all agents move at the same, uniform velocity, each transition takes time directly
proportional to the Euclidean distance between the current city and the next
city. We denote the remaining time until the next decision of agent i as gi (i.e.,
its remaining travel time). In practice, we discretize time in steps, and let gi
decrease by ∆g at each time step, which defines the agents’ velocity. This as-
sumption respects the actual time needed by agents to move about the domain,
but also lets agents make decisions asynchronously (i.e., only when they reach
the next city on their tour). We note that staggering the agents’ decision in time
naturally helps avoid potential conflicts in the city selection process, by allowing
agents to select cities in a sequentially-conditional manner (i.e., agents select
one after the other, each having access to the decisions already made by agents
before them in this sequence). We empirically found that this significantly im-
proves collaboration and performance.

Observation We consider a fully observable world where each agent can access
the states of all cities and all agents. Although a partial observation is more
common in decentralized MARL [16], a global observation is necessary to make
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Algorithm 1 Sequential decision making to solve mTSP.

Input: number of agents m, graph G = (V,E)
Output: Solution π

Initialize mask M = {0}, remaining travel time g = {0}, and
empty tours starting at the depot πi = {1} (1 ≤ i ≤ m).
while sum(M) < n do

for i = 1, ...,m do
if gi ≤ 0 then

Observe sci , s
a
i of agent i and outputs p

Select next city πi
t from p (t = Length(πi) + 1)

Append πi
t to πi, M [πi

t]← 1, gi ← cπi
t−1π

i
t

end if
gi ← gi −∆g

end for
end while
return π = {π1, ..., πm}

our model comparable to baseline algorithms, and partial observability will be
considered in future works. Each agent’s observation consists of three parts: the
cities state, the agents state, and a global mask.

The cities state sci = (xc
i , y

c
i ), i ∈ {1, ..., n} contains the Euclidean coordinates of

all cities relative to the observing agent. Compared to absolute information, we
empirically found that relative coordinates can help prevent premature conver-
gence and lead to a better final policy.

The agents state sai = (xa
i , y

a
i , gi), i ∈ {1, ...,m} contains the Euclidean coor-

dinates of all agents relative to the observing agent, and the agents’ remaining
travel time gi. As mTSP is a cooperative task, one agent can benefit from ob-
serving the state of other agents, e.g., to predict their future decisions.

Finally, agents can observe a global mask M : an n-dimensional binary vector
containing the visit history of all n cities. Each entry of M is initially 0, and is
set to 1 after any agent has visited the corresponding city. Note that the depot
is always unmasked during the task. This help agents avoid to be forced to visit
remaining cities even it would lead to worse solutions.

Action At each decision step of agent i, based on its current observation (sci , s
a
i ,M),

our decentralized attention-based neural network outputs a stochastic policy
p(πi

t), parameterized by the set of weights θ: pθ(π
i
t = j|sci , sai ,M), where j de-

notes an unvisited city. Agent i takes an action based on this policy to select the
next city πi

t. By performing such actions iteratively, agent i constructs its tour πi.

Reward Structure To show the advantage of reinforcement learning, we try
to minimize the amount of domain knowledge introduced into our approach.
In this work, the reward is simply the negative of the max tour length among
agents: R(π) = − max

i∈{1,..,m}
(L(πi)), and all agents share it as a global reward.

This reward structure is sparse, i.e., agents only get rewarded after all agents
finish their tours.
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5 DAN: DECENTRALIZED ATTENTION-BASED
NETWORK

We propose an attention-based neural network, composed of a city encoder,
an agent encoder, a city-agent encoder, and a decoder. Its structure is used to
model three kinds of dependencies in mTSP, i.e., the agent-agent dependencies,
the city-city dependencies, and the agent-city dependencies. To achieve good col-
laboration in mTSP, it is important for agents to learn all of these dependencies
to make decisions that benefit the whole team. Each agent uses its local DAN
network to select the next city based on its own observation. Compared to ex-
isting attention-based TSP solvers, which only learn dependencies among cities
and finds good individual tours, DAN further endows agents with the ability to
predict each others’ future decision to improve agent-city allocation, by adding
the agent and the city-agent encoders.

Fig. 2 shows the structure of DAN. Based on the observations of the deciding
agent, we first use the city encoder and the agent encoder to model the depen-
dencies among cities and among agents respectively. In the city-agent encoder,
we then update the city features by considering other agents’ potential decisions
according to their features. Finally, in the decoder, based on the deciding agent’s
current state and the updated city features, we allocate attention weights to each
city, which we directly use as its policy.

Attention Layer The Transformer attention layer [14] is used as the funda-
mental building block in our model. The input of such an attention layer consists
of the query source hq and the key-and-value source hk,v, which are both vectors
with the same dimension. The attention layer updates the query source using
the weighted sum of the value, where the attention weight depends on the simi-
larity between query and key. We compute the query qi, key ki and value vi as:
qi = WQhq

i , ki = W khk,v
i , vi = W vhk,v

i , where WQ,WK ,WV are all learnable
matrices with size d× d. Next, we compute the similarity uij between the query

qi and the key kj using a scaled dot product: uij =
qTi ·kj√

d
. Then we calculate

the attention weights aij using a softmax: aij = euij∑n
j=1 euij . Finally, we compute

a weighted sum of these values as the output embedding from this attention
layer: h

′

i =
∑n

j=1 aijvj . The embedding content is then passed through the feed
forward sublayer (containing two linear layer and a ReLU activation). Layer nor-
malization and residual connections are used within these two sublayers as in [14].

City Encoder The city encoder is used to extract features from the cities state
sci and model their dependencies. The city encoder first embeds the relative Eu-
clidean coordinates xc

i of city i, i ∈ {2, ..., n} into a d-dimensional (d = 128
in practice) initial city embedding hc

i using a linear layer. Similarly, the depot’s
Euclidean coordinates xc

1 are embedded by another linear layer to hc
1. The initial

city embedding is then passed through an attention layer. Here hq = hk,v = hc,
as is commonly done in self-attention mechanisms. Self-attention achieved good
performance to model the dependencies of cities in single TSP approaches [13],
and we propose to rely on the same fundamental idea to model the dependencies



DAN: Decentralized Attention-based Neural Network for the MinMax mTSP 7

City Encoder

Agent Encoder

City-agentEncoder

Agents States

Cities States

City Embedding

Agent Embedding

Aggregated Embedding

City-agent Embedding

Decoder

First Attention Layer

Second Attention Layer

Third Attention Layer

Policy

Current StateEmbedding

Final CandidateEmbedding

Neural Network

Hidden States

Input/Output

Query Source

Key & Value Source

Key Source

Hidden Output

Fig. 2. DAN consists of a city encoder, an agent encoder, a city-agent encoder and
a final decoder, which allows each agent to individually process its inputs (the cities
states, and the agents states), to finally obtain its own city selection policy. In partic-
ular, the agent and city-agent encoders are introduced in this work to endow agents
with the ability to predict each others’ future decision and improve the decentralized
distribution of agents.

in mTSP. We term the output of the city encoder, h
′c, the city embedding. It

contains the dependencies between each city i and all other cities.

Agent Encoder The agent encoder is used to extract features from the agents
state sai and model their dependencies. A linear layer is used to separately embed
each (3-dimensional) component of sai into the initial agent embedding ha

i . This
embedding is then passed through an attention layer, where hq = hk,v = ha.
We term the output of this encoder, h

′a the agent embedding. It contains the
dependencies between each agent i and all other agents.

City-agent Encoder The city-agent encoder is used to model the dependen-
cies between cities and agents. The city-agent encoder applies an attention layer
with cross-attention, where hq = h

′c, hkk, v = h
′a. We term the output hca of

this encoder the city-agent embedding. It contains the relationship between each
city i and each agent j and implicitly predicts whether city i is likely to be se-
lected by another agent j, which is one of the keys to the improved performance
of our model.

Decoder The decoder is used to decode the different embeddings into a policy
for selecting the next city to visit. The decoder starts with encoding the deciding
agent’s current state. We choose to express the current agent state implicitly by
computing an aggregated embedding hs which is the mean of the city embedding.
This operation is similar to the graph embedding used in [13].
The first attention layer then adds the agent embedding to the aggregated em-
bedding. In doing so, it relates the state of the deciding agent to that of all
other agents. Here hq = hs and hk,v = h

′a. This layer outputs the current state
embedding h

′s. After that, a second attention layer is used to compute the fi-
nal candidate embedding hf , where hq = h

′s, hk,v = hca. This layer serves as a
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glimpse which is common to improve attention mechanisms [12]. There, when
computing the similarity, we rely on the global mask M to manually set the
similarity ui = −∞ if the corresponding city i has already been visited to ensure
the attention weights of visited cities are 0. The final candidate embedding hf

then passes through a third and final attention layer. The query source is the
final candidate embedding hf , and the key source is the city-agent embedding
hca. For this final layer only only, following [11], we directly use the vector of
attention weights as the final policy for the deciding agent. The same masking
operation is also applied in this layer to satisfy the mTSP constraint. These simi-
larities are normalized using a Softmax operation, to finally yield the probability
distribution p for the next city to visit: pi = pθ(π

j
t = i|sci , sai ,M) = eui/

∑n
i=1 e

ui .

6 TRAINING

In this section, we describe how DAN is trained, including the choice of hyper-
parameters and hardware used.

REINFORCE with Rollout Baseline In order to train our model, we de-

fine the policy loss: L = −Epθ(πi)[R(π)], where pθ(π
i) =

ni∏
t=1

pθ(π
i
t|sci , sai ,M).

The policy loss is the expectation of the negative of the max length among the
tours of agents. The loss is optimized by gradient descent using the REINFORCE
algorithm with a greedy rollout baseline [13]. That is, we re-run the same ex-
act episode from the start a second time, and let all agents take decisions by
greedily exploiting the best policy so far (i.e., the “baseline model” explained in
Section 6 below). The cumulative reward b(π) of this baseline episode is then
used to estimate the advantage function: A(π) = R(π)− b(π) (with R(π) the cu-
mulative reward at each state of the RL episode). This helps reduce the gradient
variance and avoids the burden of training the model to explicitly estimate the
state value, as in traditional actor-critic algorithms. The final gradient estimator
for the policy loss reads: L = −Epθ(πi)[(R(π)− b(π))∇logpθ(π

i)].

Distributed Training We train our model using parameter sharing, a general
method for MARL [17]. That is, we allow agents to share the parameters of
a common neural network, thus making the training more efficient by relying
on the sum of experience from all agents. Our model is trained on a worksta-
tion equipped with a i9-10980XE CPU and four NVIDIA GeForce RTX 3090
GPUs. We train our model utilizing Ray, a distributed framework for machine
learning [18] to accelerate training by parallelizing the code. With Ray, we run
8 mTSP instances in parallel and pass gradients to be applied to the global
network under the A2C structure [19]. At each training episode, the positions
of cities are generated uniformly at random in the unit square [0, 1]2 and the
velocity of agents is set to ∆g = 0.1. The number of agent is randomized within
[5, 10] and the number of cites is randomized within [20, 100] during early train-
ing, which needs 96 hours to converge. After initial convergence of the policy,
the number of cities is randomized within [20, 200] for further refinement, re-
quiring 24 hours of training. We formulate one training batch after 8 mTSP
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instances are solved, and perform one gradient update for each agent. We train
the model with the Adam optimizer [20] and use an initial learning rate of 10−5

and decay every 1024 steps by a factor of 0.96. Every 2048 steps we update the
baseline model if the current training model is significantly better than the base-
line model according to a t-test. Our full training and testing code is available
at https://bit.ly/DAN mTSP.

7 Experiments

We test our decentralized attention-based neural network (DAN) on numerous
sets of 500 mTSP instances each, generated uniformly at random in the unit
square [0, 1]2. We test two different variants of our model, which utilize the same
trained policy differently:

– Greedy: each agent always selects the action with highest activation in its
policy.

– Sampling: each agent selects the city stochastically according to its policy.

For our sampling variant, we run our model multiple times on the same instance
and report the solution with the highest quality. While [13] sample 1280 solutions
for single TSP, we only sample 64 solutions (denoted as s.64) for each mTSP
instance to balance the trade-off between computing time and solution quality.
In the test, the velocity of agents is set to∆g = 0.01 to improves the performance
of our model by allowing more finely-grained asynchronous action selection.

7.1 Results

We compare the performance of our model with both conventional and neural-
based methods. For conventional methods, we test OR Tools, evolutionary algo-
rithm (EA), and self organizing maps (SOM) [21] on the same test set. OR Tools
initially gets a solution using meta-heuristic algorithms (path-cheapest-arc) and
then further improves it by local search (2-opt) [22] (denoted as OR). We allow
OR Tools to run for a similar amount of time as our sampling variant, for fair
comparison. Note that OR Tools is always allowed to perform local search if
there is computing time left after finding an initial solution. Exact algorithms
need hours of time to solve one mTSP instances. Here, we report the results of
Gurobi [9], one of the state-of-the-art integer linear programming solver, from
Hu et al.’s paper [2], where 1 hour of computation was allowed for each instance.
Table 1 reports the average MinMax cost (lower is better) for small-scale mTSP
instances (from 50 to 200 cities), as well as the average computing time per
instance for each solver.

For neural-based methods, we report Park et al.’s results [3] and Hu et al.’s
results [2] from their papers, since they did not make their code available publicly.
Since Park et al.’s paper does not report the computing time of their approach,
we leave the corresponding cells blank in Table 1. Similarly, since Hu et al. did
not provide any results for cases involving more than 100 cities or more than 10

https://bit.ly/DAN_mTSP
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Table 1. Results on random mTSP set (500 instances each). n denotes the number of
cities and m denotes the number of agents

Method
n=50 m=5 n=50 m=7 n=50 m=10 n=100 m=5 n=100 m=10
Max. T(s) Max. T(s) Max. T(s) Max. T(s) Max. T(s)

EA 2.35 7.82 2.08 9.58 1.96 11.50 3.55 12.80 2.75 17.52
SOM 2.57 0.76 2.30 0.78 2.16 0.76 3.10 1.58 2.41 1.58
OR 2.04 12.00 1.96 12.00 1.96 12.00 2.36 18.00 2.29 18.00
Gurobi 2.54 3600 2.42 3600 7.29 3600 7.17 3600

Kool et al. 2.84 0.20 2.64 0.22 2.52 0.25 3.28 0.37 2.77 0.41
Park et al. 2.37 2.18 2.10 2.88 2.23
Hu et al. 2.12 0.01 1.95 0.02 2.48 0.04 2.09 0.04

DAN(g.) 2.29 0.25 2.11 0.26 2.03 0.30 2.72 0.43 2.17 0.48
DAN(s.64) 2.12 7.87 1.99 9.38 1.95 11.26 2.55 12.18 2.05 14.81

Method
n=100 m=15 n=200 m=10 n=200 m=15 n=200 m=20
Max. T(s) Max. T(s) Max. T(s) Max. T(s)

EA 2.51 21.63 4.07 29.91 3.62 34.33 3.37 39.34
SOM 2.22 1.57 2.81 3.01 2.50 3.04 2.34 3.04
OR 2.25 18.00 2.57 63.70 2.59 60.29 2.59 61.74

Kool et al. 2.64 0.46 3.27 0.78 2.92 0.83 2.77 0.89
Park et al. 2.16 2.50 2.38 2.44

DAN(g.) 2.09 0.58 2.40 0.93 2.20 0.98 2.15 1.07
DAN(s.64) 2.00 19.13 2.29 23.49 2.13 26.27 2.07 29.83

agents, these cells are also left blank. Note that the test sets used by Park et al.
and Hu et al. are likely different from ours, since they have not been made public.
However, the values reported here from their paper are also averaged over 500
instances under the same exact conditions as the ones used in this work. Finally,
for completeness, we also test Kool et al.’s (TSP) model on our mTSP instances,
by simply replacing our neural network structure with theirs in our distributed
RL framework.

Table 2 shows the average MinMax cost for large-scale mTSP instances (from
500 to 1000 cities), where the number of agents is fixed to 10 (due to the limita-
tion of Hu et al.’s model). When testing our sampling variant, we set C = 100 in
the third decoder layer for efficient exploration (since the tour is much longer).
Except DAN and Hu et al.’s model, no method can handle such large-scale
mTSP within reasonable time, but we still report the results of OR Tools from
Hu et al.’s paper, as well as SOM results as the best-performing meta-heuristic
algorithms for completeness.

Table 3 shows the test results on TSPlib [23] instances, a well-known bench-
mark library, where city distributions come from real-world data. There, we
extend the computing time of OR Tools to 600s and increase the sample size of
DAN to 256, to yield solutions as optimal as possible. Note that the computing
time of DAN never exceeds 100s. LKH3 results are reported from [8], where long
enough computing time were allowed to yield exact solutions.
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Table 2. Results on the large-scale mTSP set (500 instances each) where the number
of agents is fixed to 10.

Method
n=500 n=600 n=700 n=800 n=900 n=1000

Max. T(s) Max. T(s) Max. T(s) Max. T(s) Max. T(s) Max. T(s)

OR [2] 7.75 1800 9.64 1800 11.24 1800 12.34 1800 13.71 1800 14.84 1800
SOM [21] 3.86 7.63 4.24 9.39 4.54 10.86 4.93 14.28 5.21 16.65 5.53 17.89
Hu et al. [2] 3.32 0.56 3.65 0.81 3.95 1.22 4.20 1.69 4.59 2.21 4.81 2.87
DAN(g.) 3.29 2.15 3.60 2.58 3.91 3.03 4.23 3.36 4.55 3.81 4.84 4.21
DAN(s.64) 3.14 48.91 3.46 57.81 3.75 67.69 4.10 77.08 4.42 87.03 4.75 97.26

Table 3. Results on TSPlib instances where longer computing time is allowed.

Method
eil51 eil76 eil101 kroa150 tsp225

m=5 m=10 m=5 m=10 m=5 m=10 m=10 m=20 m=10 m=20

LKH3 [8] 119 112 142 126 147 113 1554 1554 998 999
OR (600s) 119 114 145 130 153 116 1580 1560 1068 1143
DAN (s.256) 126 113 160 128 168 116 1610 1571 1111 1032

7.2 Discussion

We first notice that DAN significantly outperforms OR Tools in larger-scale
mTSP instances (m > 5, n ≥ 50), but is outperformed by OR Tools in smaller-
scale instances (as can be expected). In smaller-scale mTSP, OR Tools can ex-
plore the search space sufficiently to produce near-optimal solutions. In this
situation, DAN and all other decentralized methods considered find it difficult
to achieve the same level of performance.
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Fig. 3. Planning time for the different solvers
from n = 20 to n = 140 while m = 5. The
computing time of our model only increases lin-
early with respect to the number of cities, while
the computing time of OR Tools (without local
search) increases exponentially.

However, DAN outperforms
OR Tools in larger-scale mTSP
instances, where OR Tools can
only yield sub-optimal solutions
within the same time budget. In
mTSP100(m ≥ 10), our sam-
pling variant is 10% better than
OR Tools. The advantage of our
model becomes more significant
as the scale of the instance grows,
even when using our greedy vari-
ant. For instances on instances in-
volving 500 or more cities, OR Tools becomes impractical even when allowing
up to 1800s per instance, while our greedy variant still outputs solutions with
good quality in a matter of seconds. In general, the computing time of our model
increases linearly with the scale of the mTSP instance, as shown in Fig. 3.

Second, we notice that DAN’s structure helps achieve better agent collabo-
ration than the other decentralized dRL methods, thus yielding better overall
results. In particular, we note that simply applying a generic encoder-decoder
structure (Kool et al.’s model) only provides mediocre to low-quality solutions
across mTSP instances. This supports our claim that DAN’s extended network
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structure is key in yielding drastically improved performance over this original
work. More generally, we note that all four dRL methods tested in our work (i.e.,
DAN, Hu et al.’s model, Park et al.’s model, and Kool et al.’s model) contain
similar network structures as our city encoder and decoder. Therefore, our over-
all better performance seem to indicate that our additional agent encoder and
city-agent encoder are responsible for most of DAN’s increased performance.

Finally, we notice that DAN can provide near-optimal solutions for larger
teams in medium-scale mTSP instances, while keeping computing times much
lower than non-learning baselines (at least one order of magnitude). As shown
in Table 1 and 3, although exact solvers cannot find reasonable mTSP solutions
in seconds/minutes like OR Tools and DAN, by running for long enough they
still can guarantee near-optimal solutions. However, DAN’s performance is still
close (within 4%) to LKH3 in problems involving 10 agents.

8 Conclusion

This work introduced DAN, a decentralized attention-based neural network to
solve the MinMax multiple travelling salesman (mTSP) problem. We approach
mTSP as a cooperative task and formulate mTSP as a sequential decision mak-
ing problem, where agents distributedly construct a collaborative mTSP solution
iteratively and asynchronously. In doing so, our attention-based neural model al-
lows agents to achieve implicit coordination to solve the mTSP instance together,
in a fully decentralized manner. Through our results, we showed that our model
exhibits excellent performance for small- to large-scale mTSP instances, which
involve 50 to 1000 cities and 5 to 20 agents. Compared to state-of-the-art conven-
tional baseline, our model achieves better performance both in terms of solution
quality and computing time in large-scale mTSP instances, while achieving com-
parable performance in small-scale mTSP instances. We notice such a feature
may make DAN more interesting for robotics tasks, where mTSP needs to be
solved frequently and within seconds or a few minutes.

We believe that the developments made in the design of DAN can extend to
more general robotic problems where agent allocation/distribution is key, such
as multi-robot patrolling, distributed search/coverage, or collaborative manu-
facturing. We also acknowledge that robotic applications of mTSP may benefit
from the consideration of real-life deployment constraints directly at the core of
planning. We note that such constraints as agent capacity, time window, city
demand were added to learning-based TSP solvers with minimal change in net-
work structure [13]. We believe that the same should hold true for DAN, and
such developments will be the subject of future works as well.

9 ACKNOWLEDGEMENTS

This work was supported by Temasek Laboratories (TL@NUS) under grants
TL/SRP/20/03 and TL/SRP/21/19. We thank colleagues at TL@NUS and DSO
for useful discussions, and Mehul Damani for his help with the initial manuscript.
Detailed comments from anonymous referees contributed to the quality of this
paper.



DAN: Decentralized Attention-based Neural Network for the MinMax mTSP 13

References

1. Kaempfer, Y., Wolf, L.: Learning the multiple traveling salesmen problem with
permutation invariant pooling networks. arXiv preprint arXiv:1803.09621 (2018)

2. Hu, Y., Yao, Y., Lee, W.S.: A reinforcement learning approach for optimizing
multiple traveling salesman problems over graphs. Knowledge-Based Systems 204,
106,244 (2020)

3. Park, J., Bakhtiyar, S., Park, J.: Schedulenet: Learn to solve multi-agent scheduling
problems with reinforcement learning. arXiv preprint arXiv:2106.03051 (2021)

4. Faigl, J., Kulich, M., Přeučil, L.: Goal assignment using distance cost in multi-robot
exploration. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3741–3746. IEEE (2012)

5. Oßwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-up robot ex-
ploration by exploiting background information. IEEE Robotics and Automation
Letters 1(2), 716–723 (2016)

6. Chao, C., Hongbiao, Z., Howie, C., Ji, Z.: Tare: A hierarchical framework for ef-
ficiently exploring complex 3d environments. In: Robotics: Science and Systems
Conference (RSS). Virtual (2021)

7. IBM: CPLEX Optimizer (2018). URL https://www.ibm.com/analytics/
cplex-optimizer

8. Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for constrained
traveling salesman and vehicle routing problems. Roskilde: Roskilde University
(2017)

9. Gurobi Optimizer (2020). URL https://www.gurobi.com

10. Google: OR Tools (2012). URL https://developers.google.com/optimization/
routing/vrp

11. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. arXiv preprint
arXiv:1506.03134 (2015)

12. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

13. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Proceedings of NeurIPS, pp. 5998–
6008 (2017)

15. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006). DOI 10.1016/j.omega.
2004.10.004
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