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Abstract. This paper presents a novel, sparse sensing motion planning
algorithm for autonomous mobile robots in resource limited coverage
problems. Optimizing usage of limited resources while effectively explor-
ing an area is vital in scenarios where sensing is expensive, has adverse
effects, or is exhaustive. We approach this problem using ergodic search
techniques, which optimize how long a robot spends in a region based
on the likelihood of obtaining informative measurements which guaran-
tee coverage of a space. We recast the ergodic search problem to take
into account when to take sensing measurements. This amounts to a
mixed-integer program that optimizes when and where a sensor measure-
ment should be taken while optimizing the agent’s paths for coverage.
Using a continuous relaxation, we show that our formulation performs
comparably to dense sampling methods, collecting information-rich mea-
surements while adhering to limited sensing measurements. Multi-agent
examples demonstrate the capability of our approach to automatically
distribute sensor resources across the team. Further comparisons show
comparable performance with the continuous relaxation of the mixed-
integer program while reducing computational resources.
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1 Introduction

There is a lack of capability of current robotic systems to explore and search for
information in resource limited settings. Such a problem occurs in several appli-
cations including planetary science robots with expensive sensors, agricultural
robots with limited available measurements, etc. Currently, arbitrary heuristics
are used to prioritize resources, but this approach does not consider the depen-
dence on what information the robot has acquired and its mobility capabilities.
There is a need for methods that can jointly optimize how robots search and
when to take measurements.

Prior works in coverage, especially those based on ergodic search processes,
assume that the sensor being used is consistently taking measurements, and
therefore, constantly uses energy. In robotic applications, taking a sensor mea-
surement incurs a cost, which this work strives to minimize without compro-
mising the efficacy of autonomous coverage, in terms of the ergodic metric. To
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improve the applicability and efficacy of robots, especially in resource limited
environments, we need to consider optimizing over when to record and acquire
sensor measurements (for example, in Fig 1). In this paper, we pose the prob-
lem of acquiring a set of optimal measurements as a sparse ergodic optimization
problem, where the decision to take a measurement is optimized as a vector of
decision variables, and show that placing an L1 norm can promote sparsity in
this vector.

Fig. 1: Proposed Approach for Sparse Ergodic
Optimization: Our approach automates how a
robot explores an area and what informative mea-
surements to collect in a joint optimization prob-
lem. Illustrated above is an example sparse sensing
solution for covering a one-dimensional information
distribution (gray distribution), where peaks corre-
spond to areas of high expected information, and the
green colored bar represents when the robot takes a
measurement.

Much prior work in resource-
limited robotics focuses on us-
ing sparse data to achieve
goals like localization [1] and
depth reconstruction [2]. How-
ever, these formulations pose
complex optimizations, which
are hard to solve or re-
quire forming heuristics that
neglect optimality of sensor
measurement placement. Un-
like many other information-
based search methods, trajec-
tories planned using ergodic
search processes can be opti-
mized over longer time hori-
zons, and drive the robot to
spend time in areas of the
search domain in proportion
to the amount of expected in-
formation at those locations,
thus efficiently balancing exploration and exploitation. Optimizing the ergodic
metric ties to better coverage of the a priori information distribution. Further-
more, ergodic search processes yield special structure in the formulation of the
optimization problem, which we leverage to formulate sampling decision times
that are solutions to a convex optimization problem. The sampling solutions re-
sult in a near-optimal set of sensing measurements along the robot’s trajectory.

The organization of this paper is as follows: In Section 2 we discuss existing
search and coverage methods, as well as recent advances in sparse sensing. A brief
background on ergodic search processes is also presented in Section 2. Details
on our sparse ergodic optimization approach, and its application to distributing
sensing resources across a multi-agent team are discussed in Section 3. In Sec-
tion 4 we present and discuss the results of our systematic set of experiments, in
which we observe that our approach can maintain coverage performance while
significantly decreasing sensing costs, in both single and multi-agent settings.
Finally, we presenting concluding remarks in Section 5.
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2 Prior Work

Search and Coverage Methods: Search and coverage methods have widespread
uses in a number of important applications, including search and rescue, cleaning
robots, and automated agriculture techniques. Both object search and coverage
involve motion planning, typically based on an a priori information distribu-
tion in a domain. Most search and coverage techniques involve the construction
and use of some kind of information map which encodes the utility of the robot
exploring specific regions of the search space.

Broadly, area search and coverage methods fall into three categories: geo-
metric, gradient-based and trajectory optimization-based approaches. Geomet-
ric methods, like lawnmower search, are good techniques for uniformly covering
a search domain [3, 4]. Such approaches are useful when no a priori informa-
tion is provided, or when the a priori information is presumed to be a uniform
probability distribution over the search domain. On the other hand, since these
approaches do not utilize any a priori information about regions of interest, the
efficacy of exploration and object search is upper bounded.

When a priori information is available, a representation of how information
is distributed across a search domain (i.e. an a priori information map or in-
formation distribution) can be leveraged to develop better search and coverage
techniques. In gradient-based (i.e. “information surfing”) methods [5, 6, 7], the
short-term information gain is greedily maximized by guiding the search agent in
the direction of the derivative of the information map around its position. Since
the agent is always driven in the direction of greatest information gain, it is led
to areas with higher likelihood of finding objects. However, these approaches can
leave areas unexplored, because they generally do not take into account the un-
certainty associated with the a priori information distribution, which can help
differentiate between unexplored areas with low information and areas with no
information to be gained. These approaches are very sensitive to noise in the
information map. This is because noise leads to inaccurate gradient estimations,
which in turn leads to agents greedily over-exploiting local information maxima.

Trajectory optimization-based methods formulate search as an information
gathering maximization problem, which is then solved by planning a path for
the search agent [8]. The cost function that drives the optimization in many of
these approaches combines both the information distribution and its associated
uncertainty, thereby reducing the likelihood of leaving areas unexplored.
Sparse Sensing: Many real-world robotic applications are plagued by resource
limitations. Sparse sensing techniques are useful in these scenarios. Most prior
work in applications involving sparse sensing focus on using sparse sensor mea-
surements (and therefore sparse data) to accomplish tasks like localization and
SLAM [1], depth reconstruction [2] and wall-following [9]. These works mostly
explore methods to better use limited data that has already been acquired, or
that is actively being acquired. However, in all of these approaches, the robot
still has to acquire the measurements, and post-optimizing for sparse data points
does not help reduce costs for limited onboard resources. While intelligently us-
ing limited data does help improve the performance of resource-limited robotic
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systems, further improvements can be made by decided where to take these
limited measurements.
Ergodic Search: Most information-based search and coverage methods view
the information gathering problem through one of two lenses: exploration or
exploitation. Through the exploratory lens, the information acquisition problem
is framed as the wide space search for diffused information, for applications like
localization or coverage [10, 11]. On the other hand, through the exploitative
lens, the information gathering problem is framed as the direct search for highly
structured information peaks, such as in object search [12, 11]. Ergodic search is
able to balance both exploration and exploitation goals by accounting for both
diffused information densities and highly focused points of information [13, 8,
14]. By doing this, ergodic control trajectories are able to conduct both broad-
stroke coverage for diffused information densities and localized search for more
focused high information points, thereby balancing exploration and exploitation.
Specifically, an ergodic path will drive a robot to spend more time in regions of
higher expected information in an a priori information map, and less time in
regions of low information.

Ergodic coverage [8] produces trajectories for agents, such that they spend
time in each area of the domain proportional to the expected amount of in-
formation present in that area. In order to control agents to accomplish this
behavior, we pose an optimization problem that minimizes the distance between
the time-average statistics of the agent Eq 1 and the underlying information
map.

Ct(x, γt) =
1

t

t−1∑
τ=0

δ(x− γi(τ)), (1)

where γ is the agent’s trajectory, defined as γ : (0, t] → X , t is the discrete time
horizon, and δ is the Dirac delta function, with X ⊂ IRd in the d-dimensional
search domain. The spatial time-average statistics of an agent’s trajectory quan-
tifies the fraction of time spent at a position x ∈ X .

The expected information distribution, or information map, over the domain
to be explored and searched is determined by a target distribution which defines
the likelihood of generating informative measurements at any given location in
the search domain. Formally, the agent’s time-averaged trajectory statistics are
optimized against this expected information distribution over the whole domain,
by minimizing the distance between the Fourier spectral decomposition of each
distribution. This is obtained by minimizing the ergodic metric Φ(·), expressed
as the weighted sum of the difference between the spectral coefficients of these
two distributions [8]:

Φ(γ(t)) =

m∑
k=0

αk |ck(γt)− ξk|2 , (2)

where ck and ξk are the Fourier coefficients of the time-average statistics of an
agent’s trajectory γ(t) and the desired spatial distribution respectively, and αk

are the weights of each coefficient difference. In practice, αk =
√
(1 + ∥k∥2)−(d+1)

is usually defined to place higher weights on the lower frequency components,
which correspond to larger spatial-scale variations in the information distribu-
tion.
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The goal of ergodic coverage is to generate optimal controls u∗(t) for an
agent, whose dynamics are described by a function f : Q×U → T Q, such that

u∗(t) = argminu Φ(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(3)

where q ∈ Q is the state and u ∈ U denotes the set of controls. Eq.3 is solved
directly for the optimal control input at each time-step, by trajectory optimiza-
tion to plan feed-forward trajectories over a specified time horizon [14], or by
using sampling-based motion planners [15], where it is straightforward to pose
additional constraints such as obstacle avoidance. Note that in this optimization,
each point x(t) in the robot’s trajectory is considered a sample point during the
exploration of the search domain, which can be detrimental in scenarios where
the robot’s trajectory traverses over large regions of low expected information.
In the following section, we describe our approach to selecting the sampling
decision times as a part of the optimization.

3 Sparse Sensing in Ergodic Optimization

Fig. 2: Sparse Ergodic Trajectory Ex-
ample: Trajectories are generated with a
decision variable for when to take a sensor
measurement. This approach automatically
updates trajectories which provide maximal
information gathering with minimal sensing
resources.

We approach sparse sensing in ergodic
coverage in two steps. First, we extend
ergodic optimization to formulate a
sparse ergodic optimization problem
to jointly optimize for both an agent’s
trajectory, and the importance of tak-
ing a sensor measurement at each
point along the trajectory. Second, we
apply this formulation to ergodic cov-
erage using multi-agent teams, and
jointly optimize the trajectories and
sensing decisions of each agent in the
team, resulting in the optimal dis-
tribution of limited sensing resources
amongst agents.

3.1 Sparse Ergodic
Optimization

In many search and coverage applica-
tions, only a few sensor measurements
or data points are required to fully
comprehend and optimize a model.
Note that in the optimization in Eq 3,
the locations at which sensor measurements are obtained are uniform in time,
that is, each measurement along the trajectory is treated as being equally im-
portant and contributing equally to minimizing the ergodic metric. In many
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scenarios, due to both the non-uniform distribution of information in the re-
gion being covered, as well as the dynamic constraints of the robotic agents
being used, this can lead to extraneous measurements that do not contribute to
reconstructing the information prior.

For example, if there are few regions of high information, which are sepa-
rated by larger regions of low expected information, uniform sensor measure-
ments would result in many measurements that provide no information gain
(see Fig. 2). In this case, ergodic performance would be improved by only taking
sensor measurements near the areas of higher information.

In this work we extend ergodic optimization in order to find this set of optimal
measurements for a given search scenario. We optimize for the set of optimal
sensor measurements by posing the following ergodic optimization,

u∗(t), λ∗(t) = argminu,λ Φ
′(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(4)

where q ∈ Q is the state, u ∈ U denotes the set of controls, and λ(t) ∈ {0, 1}.
Note that here we define λ as a decision variable. We promote sparsity in the
sample measurements by regularizing λ with an L1 optimization which promotes
sparsity [16].

We augment the ergodic metric in Eq. 2 in the following manner

Φ′(γ(t)) =

m∑
k=0

αk |ck(γ(t), λ(t))− ξk|2 +
∑

|λk|, (5)

where ck and ξk are the Fourier coefficients of the time-average statistics of
the set of agents’ trajectories γ(t) and the desired spatial distribution of agents
respectively, and αk are the weights of each coefficient difference.

The spatial time-average statistics of the agent’s trajectory (from Eq. 1) are
also modified to be,

C ′t(x, γ(t)) =
1∑
t λ(t)

t∑
0

λ(t)δ(x− γi(τ)), (6)

where λ(t) ∈ {0, 1}.
λ(t) represents the decision variable for choosing whether to take a sensor

measurement or not at a given location in the search domain. Thus far, λ(t)
is defined to be an integer (i.e. λ(t) ∈ {0, 1}), resulting in Eq 4 being a mixed
integer programming problem. However, such mixed integer programming prob-
lems are difficult to solve, due to a lack of gradient information from the integer
variables [17], and due to requiring direct search methods that do not scale with
longer time horizons. For this reason, we employ a relaxation of the problem
Eq 4 by defining λ(t) to be a bounded continuous variable λ(t) ∈ [0, 1] and opti-
mize over the new domain. After optimization, we project λ from the continuous
domain to the nearest integer value, while adhering to the sensing budget. This
allows us to continuously optimize Eq 4, and then map the resultant continuous
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values of λ(t) to discrete values {0, 1}. The procedure for optimizing the sparse
ergodic problem Eq 4 is depicted in Fig 3.

(a)

(b)

(c)

(d)

Fig. 3: Mixed-Integer Continuous Relaxation for Sparse Ergodic Optimiza-
tion: Illustrated is the process with which we jointly optimize for trajectories and when
to sample. The decision variable λ is relaxed to be continuous [0, 1] where solutions
are projected into the integer 0, 1 space. As input, our approach takes information
prior distributions which guide the planning and sensing. Output trajectory solutions
(shown on the right) show concentrated samples over areas of high information with
minimal use of sensor resources.

When we investigate the numerical values of the decision variables λ(t) cal-
culated in sparse ergodic optimization Eq. 4, we see that there are peaks formed
that correspond to peaks in information in the a priori information distribu-
tion (Fig 3). When these continuous numerical values are mapped back to
λ(t) ∈ {0, 1}, this results in λ(t) = 1 being more likely in areas of higher in-
formation, and λ(t) = 0 being more likely in areas of lower information. This
shows that the sparse ergodic optimization drives the likelihood of taking a sen-
sor measurement in an area of higher expected information to be higher, which
follows intuition. Additionally, we also see some peaks in regions of lower infor-
mation, which typically correspond with areas between relatively closely places
areas of high information, or with regions of low information where no sensor
measurements have been taken for a considerable amount of time.

3.2 Multi-Agent Sparse Ergodic Optimization

For a multi-agent team covering a given information prior, the limited number
of measurements required to fully cover the region can be distributed among
the different agents. We apply sparse ergodic optimization (Eq. 4), as described
in Section 3.1 to distribute sensing resources amongst a multi-agent team. A
sample result is shown in Fig 4.
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For N agents, the modified joint spatial time-average statistics of the set of
agent trajectories {γi}Ni=1 are defined as

C ′t(x, γ(t)) =
1

Nt
∑N

i=1

∑
t λi(t)

t∑
0

λi(t)δ(x− γi(τ)), (7)

where λi(t) ∈ {0, 1} for all integers i ∈ [0, N).

Fig. 4: Mutli-Agent Sparse Ergodic
Trajectory Example: Trajectories for a
multi-agent team are generated with a de-
cision variable for when to take a sensor
measurement. This approach automatically
updates trajectories which provide maximal
information gathering with minimal sensing
resources.

We use the augmented ergodic
metric defined in Eq 5 to drive the
joint optimization of the set of agent
trajectories and sensing decision vari-
ables. The ergodic optimization posed
in Eq 4 is used to generate opti-
mal controls and set of optimal sensor
measurements for each agent.

We again employ a relaxation of
the problem described by Eq 4 by
defining each λi(t) to be a bounded
continuous variable λi(t) ∈ [0, 1] for
all integers i ∈ [0, N) and optimize
over the new domain. After optimiza-
tion, we project the λi for each agent i
for all integers i ∈ [0, N) from the con-
tinuous domain to the nearest inte-
ger value, while adhering to the sens-
ing budget. We take into account all
of the agent trajectories when map-
ping from the continuous domain to
discrete integers in order to distribute
sensing measurements across all of the
agents.

4 Results and Discussion

In this section we empirically show that for a specific ergodic coverage prob-
lem, there exists a minimal set of sensor measurements to take in order to gain
enough information to fully characterize and solve the coverage task. Through
our experiments we illustrate that optimizing for this set of samples, or sensor
measurements, leads to improvements in ergodicity for coverage problems. This
supports our intuition that in many coverage scenarios, extraneous samples are
taken that either do not contribute to or negatively impact the optimization.
Further, we show that our sparse ergodic optimization approach can be applied
to multi-agent coverage tasks in order to optimally distribute a given sensing
budget amongst all of the agents. In multi-agent coverage scenarios as well, we
empirically show that for a specific ergodic coverage problem, there is a minimal
set of sensor measurements required to cover the information prior.
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4.1 Experimental Details

In our set of systematic experiments, the dynamics of the agent considered are
defined as the constrained discrete time dynamical system

x(t+ 1) = f(x, u) = x(t) + tanh(u) (8)

where x(t) ∈ R2 and u ∈ R2 is constrained by the tanh function to be bounded
∈ [0, 1].

The sensor footprint of the agent is modeled as a Gaussian distribution cen-
tered at the agent’s position, whose variance prescribes a circular observation
range ρ > 0. The information maps are built using information distributions
that are distributed within the continuous search space X ∈ [0, L]2 ⊂ R2, which
is defined as

p(x) =

3∑
i=1

ηiexp(||x− ci||2∑−1
i

) (9)

where p(x) : X → R+, and ηi, ci,
∑

i are the normalizing factor, the Gaussian
center, and the Gaussian variance respectively.

As described in Section 3.1, the sparse ergodic optimization problem Eq. 4 is
a mixed integer programming problem. Since mixed integer programming prob-
lems are difficult to solve, we relax this formulation by defining λ(t) to be a
bounded continuous variable λ(t) ∈ [0, 1], and map the resultant values to dis-
crete values in {0, 1}. We use a solver to compare the results of the mixed integer
programming formulation to our relaxed problem to show that this relaxation
greatly improves the computational cost of the optimization, without negatively
impacting performance.

We investigate the performance of the sparse ergodic optimization described
in Section 3.1 in terms of coverage performance, using ergodicity as the met-
ric. We compare our coverage results to two different approaches. The first is
standard ergodic optimization Eq. 2, where sensor measurements are uniformly
distributed along the robot’s trajectory. The second is a probabilistic heuristic
with a two step process: first we optimize an ergodic trajectory, then we sample
measurement locations from the distribution of information under the optimized
trajectory.

Further, we investigate the performance of multi-agent sparse ergodic opti-
mization described in Section 3.2 in terms of coverage performance, with ergod-
icity as the metric. We compare our results to the two baselines described above,
averaged across different team sizes.

The performance statistics for each method and sensing budget are averaged
across 25 randomized experiment setups each, where initial information map is
varied between experiments. Agents starting positions, initial information maps,
and sensing budgets are kept identical among experiments with different con-
trollers to ensure that our results are comparable.

4.2 Single Agent Sensing Distribution
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Fig. 5: Standard Ergodic and Sparse
Ergodic Trajectory Comparison: Stan-
dard ergodic optimization results in a dif-
ferent final trajectory (orange trajectory)
than jointly optimizing for both trajectory
and sensor weight (blue and yellow trajec-
tory). This implies a cross-effect between
agent position and if a sensing measurement
is taken, due to which joint optimization
becomes more important as the coverage
problem scales.

When looking at results of the
sparse ergodic optimization approach
in terms of overall coverage perfor-
mance, measured through the ergodic
metric, we observe that there is a min-
imal number of sensor measurements
to be taken to minimize ergodicity
(see Fig 6). In our experiments, this
number of sensor measurements varies
with changes in information map be-
ing covered, sample rate, time hori-
zon and initial sample weights. How-
ever, for a set of fixed experiment hy-
perparameters, the minimal number
of samples required is consistent. For
any fixed experiment setup, when we
take fewer than this minimal number
of sensor measurements, the optimiza-
tion lacks relevant information, and
so, we see a decrease in coverage per-
formance. On the other hand, when
we take more sensor measurements
than the minimal required number,
the ergodic value increases, due to extraneous measurements negatively impact-
ing coverage.

Fig. 6: Comparison of Baseline Ap-
proaches and Sparse Optimization:
Results show that sparse ergodic optimiza-
tion has better coverage performance in
terms of the ergodic metric when compared
to standard ergodic optimization with uni-
formly distributed sparse measurements.
Using the probabilistic heuristic results in
comparable performance.

We also experimentally demon-
strate that it is better to selectively
choose measurements along the stan-
dard ergodic trajectory, since in all
cases, the coverage performance of
the probabilistic heuristic is much
better than that of standard er-
godic optimization with uniformly
distributed measurements. On the
other hand, the probabilistic heuristic
has very similar coverage performance
to sparse ergodic optimization for a
single agent. We see that optimizing
for trajectory alone, and jointly op-
timizing for trajectory and measure-
ment placement creates different re-
sultant trajectories (Fig 5), implying
that trajectory optimization and mea-
surement choice impact each other.
Jointly optimizing for trajectory and
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sensing measurements leads to lower control cost, as you are directly taking into
account the cost of moving between chosen sensing measurements. For a single
agent in the simple coverage problems being considered, there aren’t large dif-
ferences in control cost, leading to very similar performance of the probabilistic
heuristic and sparse ergodic optimization.

Further, we compare the performance statistics and computation cost of our
approach to that of solving the mixed integer programming formulation of the
sparse ergodic optimization problem. We see in Fig 7 that our relaxation of the
sparse ergodic optimization problems leads to much lower computational costs
(i.e. lower run times), while retaining comparable coverage performance in terms
of the ergodic metric.

(a) (b)

Fig. 7: Comparison of Mixed Integer Optimization Problem and Relaxed
Sparse Optimization Problem: Solving the mixed integer formulation of the sparse
sensing problem leads to slightly better coverage performance (a), in terms of the
ergodic metric, but has a much higher computational cost (b).

4.3 Multi-Agent Sparse Ergodic Optimization

Fig. 8: Comparison of Baseline Ap-
proaches and Sparse Optimization for
Multi-Agent Coverage: Results show
that multi-agent sparse ergodic optimiza-
tion has better coverage performance in
terms of the ergodic metric when compared
to standard ergodic optimization with con-
tinuous sensing, and with uniformly dis-
tributed sparse measurements.

When optimizing limited sensing re-
sources (specifically a sensing budget
in terms of a restricted number of
sensing measurements) for a multi-
agent team using the sparse ergodic
optimization approach, we see that
the ’workload’ of covering different
peaks in a given a priori information
map is distributed among the agents,
and the sensing measurements are dis-
tributed in order to support the re-
quirements of each coverage workload.

Similar to our single agent sparse
ergodic optimization results, we see
than using sparse ergodic optimiza-
tion to distribute a limited sensing
budget across a multi-agent team re-
sults in improved coverage perfor-
mance in terms of the ergodic metric
with fewer sensing measurements (i.e.
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for lower sensing budgets) (see Fig 8). We also observe that there is a minimal
number of sensor measurements that are required in order to minimize ergodic-
ity, and this minimal number varies with changes in experiment hyperparameters
like information map being covered, sample rate, time horizon and initial sample
weights. For a fixed set of experiment hyperparameters, the ergodicity increases
when the sensing budget is increased past this minimum required number, since
there are extraneous measurements being taken, while the ergodicity increases
with decrease in sensing budget below the minimum required number, since the
optimization is missing information.

For multi-agent teams we see that the probabilistic heuristic has worse cov-
erage performance compared to sparse ergodic optimization (see Fig 8). As ex-
plained in in Section 4.2, jointly optimizing for trajectory and sensing measure-
ments leads to lower control cost. As we scale up the optimization problem,
control cost becomes more substantial, as we need to optimize multiple trajecto-
ries. Further, the cross-effect of the agents’ trajectories and if they take sensing
measurements increased for multiple agents, since coverage performance is now
impacted by several trajectories with potential areas of overlap. Thus, it be-
comes more necessary to jointly optimize for trajectory and choosing sensing
measurements in multi-agent sparse sensing coverage problems.

5 Conclusion

In this paper we investigate the idea that there is an optimal set of sensing mea-
surements that can be taken during coverage, in order to fully characterize the
problem, reduce sensing costs and avoid local sensing optima. To this end, we
formulate a novel approach to sensing-resource limited coverage by modifying
ergodic optimization to jointly optimize for both the sensing trajectory and the
decision of where to take sensing measurements. Specifically, the set of optimal
sensor measurements is posed as a sparse ergodic optimization problem, where
the choice to take a measurement is encoded in a vector of sample weights. Our
set of experiments show that there exists an optimal set of sensing measure-
ments for a given coverage scenario, in both single and multi agent cases, using
ergodicity, a state-of-the-art coverage metric. We also infer that there exists a
cross-effect between an agent’s trajectory and sensing decisions, which make it
important to jointly optimize these in cases with limited sensing measurements.
This effect is stronger for multi-agent scenarios.

This work experimentally shows that there are improvements to be made in
resource-limited coverage scenarios through sparse sensing. Specifically, we show
that there exists an optimal set of measurements required to solve a coverage
problem. Future work will focus on proving theoretical guarantees regarding
the existence of this optimal set of sensing measurements. This work assumes
the availability of accurate a priori information maps, which is not the case
for many real-world coverage applications. Future work will seek to use sparse
ergodic optimization in order to identify and account for inaccurate information
priors with minimum sensor measurements.
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