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Deep Reinforcement Learning for UAV Routing in
The Presence of Multiple Charging Stations

Mingfeng Fan, Yaoxin Wu, Tianjun Liao, Zhiguang Cao, Hongliang Guo, Guillaume Sartoretti, Guohua Wu

Abstract—Deploying Unmanned Aerial Vehicles (UAVs) for
traffic monitoring has been a hotspot given their flexibility
and broader view. However, a UAV is usually constrained by
battery capacity due to limited payload. On the other hand,
the development of wireless charging technology has allowed
UAVs to replenish energy from charging stations. In this paper,
we study a UAV routing problem in the presence of multiple
charging stations (URPMCS) with the objective of minimizing
the total distance traveled by the UAV during traffic monitoring.
We present a deep reinforcement learning based method, where
a multi-head heterogeneous attention mechanism is designed to
facilitate learning a policy that automatically and sequentially
constructs the route, while taking the energy consumption into
account. In our method, two types of attentions are leveraged
to learn the relations between monitoring targets and charging
station nodes, adopting an encoder-decoder-like policy network.
Moreover, we also employ a curriculum learning strategy to
enhance generalization to different numbers of charging sta-
tions. Computational results show that our method outperforms
conventional algorithms with higher solution quality (except for
exact methods such as Gurobi) and shorter runtime in general,
and also exhibits strong generalized performance on problem
instances with different distributions and sizes.

Index Terms—Deep reinforcement learning, UAV routing, com-
binatorial optimization problems, heuristics.

I. INTRODUCTION

THE rapid urbanization and the surge in car ownership
have brought around severe traffic congestion and safety

issues, especially in large cities [1]. A commonly used method
to mitigate those issues is monitoring the real-time traffic on
roads, based on which some effective preventive measures
could be taken in advance. Traditional technologies for traffic
monitoring rely on sensors that are deployed in the road
network, such as inductive loop detectors and video cameras,
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Fig. 1: Example path allowing a UAV to cover all monitoring targets
while visiting several stations for recharging along the way.

to track traffic flow. However, these devices are usually placed
at fixed locations and thus are less effective in capturing
information like the global view of traffic flows over space,
vehicle trajectories, and the layout of road networks [2]. On
the other hand, with the fast advances in unmanned aerial
vehicles (UAVs) in both academia and industry [3]–[6], such
as navigation technology [7], [8], UAVs have been widely
exploited for traffic monitoring in recent years. With onboard
cameras, UAVs are able to collect traffic information (data) and
send it to a cloud-based server in real time. Compared with
traditional technologies in the context of traffic data collection,
UAVs enjoy a number of advantages, e.g., they are able to
provide a broader view of traffic flows while also allowing
to freely emphasize on local areas of interest; they can more
easily handle obstacles, and relatively low-cost [9].

Given a series of targets (nodes) to be monitored, it is
critical to optimize the route of a UAV so that the information
about the respective targets could be returned as fast as
possible. Assuming a roughly constant speed, it is expected
that the UAV covers the targets by visiting them in an order
with the shortest distance. On the other hand, UAVs are often
limited by the battery capacity [10], and it is impossible for
a UAV to monitor a relatively large area without recharging.
However, a number of charging stations spread across a city
are often available to supply power to UAVs, such as in
the new electric grid paradigms like Smart Grids (SG) and
intermittent Renewable Energy Resources (RER), which allow
the UAV to be recharged directly in independently scattered
charging stations [11]. In light of those practical conditions,
this paper aims to study the UAV routing problem in the
presence of multiple charging stations (URPMCS) for a traffic
monitoring task. Specifically, a UAV starts from the depot to
collect information of a group of targets (nodes) by visiting
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them sequentially and returns to the depot after all targets are
covered. To complete the monitoring task, the UAV usually
needs to reach a charging station to replenish its battery
whenever it is going to run out of power and then restarts to
visit the remaining targets. The solution (route) to an example
URPMCS instance is depicted in Fig. 1, where the UAV
monitors (or visits) each target exactly once during the travel,
while each charging station is allowed to be visited more
than once or never. In this paper, we consider minimizing the
total travel distance of the UAV as the objective for solving
URPMCS while respecting the power constraints.

In general, URPMCS can be regarded as a variant of the
classic traveling salesman problem (TSP), and thus it inherits
the NP-hard characteristic of most combinatorial optimization
problems. Additionally, URPMCS is also related to the green
VRPs [12], since it aims to optimize routes for fuel-less
vehicles. Despite its importance, less attention has been paid
to URPMCS compared to other routing problems. On the
other hand, conventional heuristics, e.g., simulated anneal-
ing (SA) and genetic algorithm (GA), are often used to solve
NP-hard routing problems, delivering fairly good solutions
in reasonable time. However, their performance highly rely
on domain-specific engineering. In contrast, learning-based
heuristics train neural networks to automatically construct or
improve routes in a data-driven fashion. Among the paradigms,
deep reinforcement learning (DRL) based methods only need
the cost of any solution as the reward signal to update its
policy network, in contrast to the supervised learning methods
which require vast and expensive labels that are achieved by
solving the routing problems in prior [13]–[15]. While DRL
can generally produce high-quality solutions, most existing
works focus on problems like TSP [16] and capacitated vehicle
routing problem (CVRP). They will become less effective in
solving URPMCS, as the targets and charging stations are two
completely different types of nodes, especially given that a
charging station is able to expand the travel range of a UAV
and can be visited more than once or never.

Motivated by the above issues, we propose a heterogeneous
attention based DRL (HADRL) method to automatically learn
a construction heuristic for solving URPMCS. The problem is
first modeled as a Markov decision process (MDP), and then
we design the policy network in conjunction with a multi-head
heterogeneous attention to learn the advanced representation
of the relation between targets and charging stations. Finally,
we train the network with reinforcement learning (RL) and
boost its generalization against different numbers of charging
stations with a curriculum learning strategy. The main contri-
butions are summarized as follows:

1) We formulate both mathematical programming and
MDP for URPMCS.

2) We exploit heterogeneous attention in policy network
for relation embedding between targets and charging
stations to obtain more effective feature extraction from
input, which can promote the performance in route
generation for URPMCS.

3) We leverage a curriculum learning strategy in the train-
ing algorithm to improve the performance and general-
ization to different numbers of charging stations.

4) We conduct extensive experiments and the results show
that our method outperforms relevant conventional and
learning-based approaches, and generalizes well across
different problem sizes and distributions. Furthermore,
we extend our method in multi-UAV cases (see Section
V-F).

The remainder of this paper is organized as follows: Section
II reviews related works; Section III presents the formulation
of the URPMCS as a mathematical programming and MDP;
Section IV details the proposed method and policy network;
Section V presents and analyzes our experimental results;
Section VI concludes this paper.

II. RELATED WORK

In this section, we review the related works on UAV routing
problem for traffic monitoring and existing DRL methods for
similar vehicle routing problems, respectively.

A. UAV Routing for Traffic Monitoring

UAV routing plays a key role in the deployment of UAVs
for traffic monitoring [17], where approaches for classic
vehicle routing problems (VRPs), e.g., TSP and CVRP, are
usually used or adapted. Among them, Shetty et al. [18]
decomposed the strategic routing for UAVs into two phases,
i.e., target assignment and TSP based route planning for
respective UAVs. Casbeer and Holsapple [19] converted the
UAV assignment into a VRP with precedence constraints and
solved it with a column generation algorithm. Karaman and
Frazzoli [20] transformed the multi-UAV mission planning as
a VRP with temporal logic specifications. Similarly, Thibbo-
tuwawa et al. [21] tackled UAV mission planning as a CVRP
considering battery and payload weight. In addition, some
other works leveraged approaches for dynamic VRPs to handle
UAV routing in uncertain environments [22], [23]. Kinney et
al. [24] developed an operational UAV routing system based
on a quick-running routing heuristic. Guerrero and Bestaoui
[25] adopted a Zermelo-TSP method to compute the optimal
route for a UAV considering the influence of the wind. Savuran
and Karakaya [26] studied the routing problem for a UAV on
a moving carrier, and modeled it as a CVRP with a mobile
depot. Different from the above ones which optimized a
single objective, some other works focused on multi-objective
optimization. For example, Wen et al. [27] minimized the total
travel time and the fleet size of homogeneous UAVs for an
extension to the CVRP, which contains two factors of distance
and weight. Lamont et al. [28] proposed a multi-objective
evolutionary algorithm to minimize both the cost and risk for
a UAV swarm. Guerriero et al. [29] studied a UAV routing
problem with time windows, whose objective is to maximize
customer satisfaction while minimizing the number of used
UAVs simultaneously.

Despite those diverse works, only a few of them considered
en route refueling (or recharging) for UAVs. Sunder and
Rathinam [30] studied a routing problem for UAV of fixed
wing where the heading angle is constrained in the presence
of several depots for refueling. Li et al. [1] investigated the
UAV scheduling problem with uncertain demands for traffic
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TABLE I: Comparative summary of related literature on UAV routing
problems

CS setup UAV setup Method

Klein et al. [22]
No CS Single UAV Expert knowledgeGuerrero and Bestaoui [25]

Savuran and Karakaya [26]

Shetty et al. [18]

No CS Multi-UAV Expert knowledge

Casbeer and Holsapple [19]
Karaman and Frazzoli [20]

O’Rourke et al. [23]
Kinney et al. [24]

Wen et al. [27]
Lamont et al. [28]

Guerriero et al. [29]

Li et al. [1] Single CS
(The depot) Multi-UAV Expert knowledgeThibbotuwawa et al. [21]

Sundar and Rathinam [30] Multi-CS Single UAV Expert knowledge

Coelho et al. [31] Multi-CS Multi-UAV Expert knowledge

Our work Multi-CS Single UAV,
Multi-UAV Data driven

The CS is the abbreviation of charging station.

monitoring, where UAVs are only charged at the depot. Coelho
et al. [31] introduced a multi-objective green UAV routing
problem that allows UAVs to be recharged at charging stations.

Table I further compares the our work and the studies
above. Although we have a similar problem setup as Coelho
et al. [31], their main contribution lies in the mathematical
programming model, while ours focuses on devising an ef-
fective routing algorithm. Furthermore, most existing methods
for UAV routing are developed based on classic heuristics,
which are labor-intensive for algorithmic design. They may
suffer from inferior performance and inefficient computation,
especially in large-scale problems.

B. Learning for Vehicle Routing

Applying DRL to solve vehicle routing problems has made
a great success in recent years. Most existing deep mod-
els follow an encoder-decoder structure. The encoder learns
advanced node representations from raw features, while the
decoder infers solutions according to the node and graph em-
beddings from the encoder. There are two primary paradigms
for decoding to solve the routing problems, which result in
learning based construction or improvement approaches [32].

In construction approaches, the decoder picks a node at
each decoding step to form a complete solution (i.e., a route).
Vinyals et al. [33] designed the Pointer Network (PN) by
equipping a recurrent neural network (RNN) with an attention
mechanism [34], and trained it to predict the optimal tour for
TSP in a supervised fashion. However, acquiring the optimal
solutions to TSP instances is rather time-consuming, especially
for large-scale problems. Bello et al. [35] proposed a DRL
based method to train the PN, which outperforms the original
one on TSP with 100 nodes. Nazari et al. [36] then discovered
that encoding the permutation of the input nodes is illogical,
so they replaced the RNN in PN with element-wise projections
and applied it to solve CVRP. On top of [36], Kool et al. [37]
exploited a Transformer-style model to solve a series of rout-
ing problems, which exhibited superior performance to several

classic (meta-)heuristic methods. Subsequently, considerable
methods are adapted from it and applied to solve a variety of
VRPs [38]–[42].

In improvement approaches, the decoder adopts a local
search operator to improve the solution iteratively until a
stopping criterion is met. Chen and Tian [43] proposed a
NeuRewriter model that consists of a region-picking and
a rule-picking policy network. However, its performance is
significantly affected by the quality of the initial solution
since it only partially improves it. Lu et al. [44] presented
a model to pick local operators at each step, which yields
superior solutions to NeuRewriter but requires prohibitively
longer training time. Wu et al. [45] proposed a self-attention
based policy network to refine a solution iteratively with
a pairwise local operator. Based on [45], Ma et al. [46]
proposed a novel neural architecture based on Transformer
to learn representations of node location and their position
in a sequence separately. More learning based methods for
routing problems can be found in [15]. In this paper, we
present a DRL based method to learn a construction approach
for URPMCS, which exhibits better performance than classic
heuristic methods and other learning based ones.

III. PROBLEM FORMULATION

A. Formulation as Mathematical Programming

An URPMCS instance comprises a depot, z charging sta-
tions, and n target points. It is assumed that those charging
stations have been set up in the region of interest. The
quantity and locations of targets and charging stations are
also predefined. The UAV can be recharged at any station
as long as it is able to reach there. Since more than one
charging stations exist, each of them may be visited by the
UAV multiple times or never. We also assume that once the
UAV visits a charging station, it will be fully recharged. Each
target must be monitored (or visited) exactly once by the UAV,
which starts from and finally returns back to the depot.

We use the directed graph G = (V,A) to represent an
URPMCS instance, where the node set V includes the depot,
the target set N = {1, 2, · · · , n} and the charging station
set C = {1, 2, · · · , z}, and the edge set A contains all
edges between nodes in V . The UAV starts and ends at
the depot and is fully charged upon departure. The charging
stations are always available and allow the UAV to be fully
charged each time. Therefore, the UAV must fly to the nearby
charging station when the power cannot support its remaining
monitoring task. Note that the depot only serves as the origin
and final destination of the UAV, and does not provide charging
service en route. We use vertices 0 and n + 1 to denote the
depot, representing the origin and destination, respectively. To
distinguish the individual visits to the same charging station,
we introduce a unique node for each potential visit. We assume
that there are additional nk-1 dummy nodes for charging
station k who share the same location as the original one.
Therefore, nk nodes exist for charging station k. Consequently,
in the resulting augmented graph, the total number of nodes
in V is calculated as,
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TABLE II: Variable and parameter definitions

Variable Description

0, n+ 1 The depot.
N The set of target points.
C The set of charging stations.
k The index for charge stations, k ∈ C.

Ck

The set of dummy nodes added to the graph G
corresponding to potential visits to the charging station,
k ∈ C.

C′ The set of potential visits to charging stations,
C′ = C0 ∪ C1 ∪ · · · ∪ Cz .

V ′ The set of target points and visits of charging stations;
V ′ = N ∪ C′.

V ′
0

The set of target points and visits of charging stations
including the depot 0; V0 = N ∪ C′ ∪ {0}.

V ′
n+1

The set of target points and visits of charging stations
including the depot n+ 1; V0 = N ∪ C′ ∪ {n+ 1}.

dij
Distance from node i to node j, where a node can be
a target point, the depot, or a charging station.

Q The battery capacity.

eu
Energy consumption of the UAV lifting from the depot
or charging stations.

ed
Energy consumption of the UAV landing on the depot
or charging stations.

eh
Energy consumption of the UAV hovering and
collecting information at target points.

ep
Propulsion energy consumption of the UAV alofting
and flying.

Vmr The maximum-range speed.

r
The UAV energy consumption per unit traveling
distance with Vmr .

Lmax The maximum flight range of the UAV.

xij
Binary decision variable: if the UAV flies from node i
to node j, xij = 1; otherwise, xij = 0.

yi
Decision variable specifying the remaining battery
capacity when the UAV arrives at node i.

ui The position of node i in the UAV route.

toln = n+

z∑
k=0

nk + 2. (1)

A feasible UAV route starts from the depot 0, passes through
all target nodes and a number of charging stations (might
be more than once for each), and ends at the depot n + 1.
Following the custom [47], we assume that the UAV ascends
vertically at the depot or charging stations to the desired
altitude, then travels at a constant speed, and finally descends
vertically to the depot or charging stations. We assume that
lifting, landing and hovering related power are constant, which
are denoted as eu, ed and eh, respectively. Inspired by the
work [48], we assume that the UAV flies at the maximum-
range speed Vmr (i.e., the optimal UAV speed that maximizes
the total traveling distance given the onboard energy Q).
r and Lmax represent the UAV’s energy consumption per
unit traveling distance and maximum flight range with Vmr,
respectively. Therefore, rLmax is equal to the propulsion
energy consumption of the UAV, denoted as ep. All used
parameters and variables are listed in Table II. Accordingly, the
mathematical formulation of URPMCS is described as follows:

min
∑

i∈V ′
0 ,j∈V ′

n+1,i̸=j

dijxij , (2)

s.t.
∑

j∈V ′
n+1,i̸=j

xij = 1,∀i ∈ N, (3)

∑
j∈V ′

n+1,i̸=j

xij ≤ 1,∀i ∈ C ′, (4)

∑
j∈V ′

0 ,i̸=j

xji −
∑

j∈V ′
n+1,i̸=j

xij = 0,∀i ∈ V ′, (5)

0 < yj ≤ yi − (rdij + eh)xij +Q (1− xij) ,

∀i ∈ N, j ∈ N, i ̸= j,
(6)

0 ≤ yj ≤ yi − (rdij + ed)xij +Q (1− xij) ,

∀i ∈ N, j ∈ C ′ ∪ {n+ 1} , i ̸= j,
(7)

0 < yj ≤ Q− (rdij + eh + eu)xij ,∀i ∈ C ′ ∪ {0} ,
∀j ∈ N, i ̸= j,

(8)

0 ≤ yj ≤ Q− (rdij + eu + ed)xij ,∀i ∈ C ′ ∪ {0} ,
∀j ∈ C ′ ∪ {n+ 1} , i ̸= j,

(9)

ui − uj +1 ≤ toln (1− xij) ,∀i ∈ V ′, j ∈ V ′
n+1, i ̸= j, (10)

1 ≤ ui ≤ toln, i ∈ V ′
n+1, (11)

xij ∈ {0, 1} ,∀i, j ∈ V ′
0 , i ̸= j. (12)

We consider the objective of minimizing the traveled dis-
tance as defined in formula (2). Constraint (3) enforces that
each target node is visited exactly once. Constraint (4) ensures
that each charging station (including the dummy nodes) is
visited once at most. Constraint (5) guarantees that the number
of incoming edges at each node in set V ′ (i.e., the set of target
points and visits of charging stations) equals the number of
outgoing edges. Constraints (6-9) keep the UAV battery always
above 0 and ensure the UAV satisfies the energy restriction. For
example, constraint (6) restricts the remaining battery capacity
of the UAV at target node i to equal the sum of UAV’s battery
capacity at target node j and the energy consumption of flying
from target i to target j if the decision variable xij = 1.
Constraints (10) and (11) are used for subtour elimination [49].
Finally, constraint (12) defines the domain of binary variables.

B. Formulation as Markov Decision Process

The route construction in URPMCS can be viewed as a
sequential decision process, which can be naturally modeled
as a Markov decision process (MDP) and solved using RL
accordingly. We define the elements of MDP, including the
state space, the action space, the transition rule, and the reward
function as follows.

State: The state st = (Nt;Qt) consists of the partial
solution Nt and the remaining battery capacity Qt at time step
t. Nt contains all visited nodes until time step t. At time step
0, N0 represents the depot and Q0 is equal to the maximum
battery capacity Q.

Action: The action space at time step t is represented as
At = (Vt;Ct), where Vt denotes the set of available targets
who have not been visited but could be reached by the UAV
at time step t, and Ct denotes the set of available charging
stations which the UAV could reach at time step t. The RL



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022 5

Fig. 2: Illustration of our neural network for two instances with a depot, two charging stations, and four target nodes. The neural network
consists of an encoder with three attention layers and a decoder with a multi-head attention layer and a single head attention layer.

agent needs to select an action at from At at time step t unless
meeting the terminal state.

Transition: The next state st+1 = (Nt+1;Qt+1) is de-
termined by the node chosen at time step t. The partial
solution is concatenated with the newly selected node oj , i.e.,
Nt+1 = (Nt; {oj}). If oj is a target node, Qt+1 = Qt − qij ,
where qij denotes the power consumed by the UAV for flying
from last node oi to oj . If oj is a charging station, then
Qt+1 = Q. If all targets have been visited and the newly
selected node is the depot, the next state st+1 is the terminal
state.

Reward: To minimize the total travel distance of the UAV,
we define the reward as the negative of the objective value.
Hence, the reward is the accumulation of the negative travel
distances of all intervals, denoted as R = −

∑T
t=1 dij where

dij is the distance between node i and node j selected at time
step t− 1 and time step t.

IV. METHODOLOGY

In this section, we present a heterogeneous attention based
network to parameterize and learn the agent policy pθ, which
automatically selects a node at each time step. The final output
solution of the policy network is a permutation of nodes
consisting of all targets, the depot and (partial or full) charging
stations, described as π = {π0, π1, · · · , πT } , πt ∈ V . The
probability of a solution is determined by the learnt policy pθ,
described as follows,

P (π | λ) =
T∏

t=0

pθ (πt | λ, π1:t−1) , (13)

where λ is the current problem instance and T is the time step
limits for route construction.

Fig. 3: Illustration of our multi-head heterogeneous attention for an
instance with a depot, two charging stations and four target nodes.

A. Heterogeneous Attention based Policy Network

URPMCS is a node selection problem. The input to the
problem is an unordered sequence of nodes, and the solution
to the problem is a sequence of nodes permuted in order.
The encoder-decoder architecture is a sequence-to-sequence
paradigm and can predict decisions directly from the input. In
this way, the expensive search space exploration is avoided,
and the complexity of an NP-hard problem solver becomes
polynomial to the problem size [45]. A solution can then be
returned instantly for real-time decision-making. Therefore,
we design an encoder-decoder-like policy network to learn the
policy pθ, which is depicted in Fig. 2. Our HADRL neural
network exploits an architecture akin to Kool et al. [37],
and extend it with a heterogeneous attention mechanism and
a modified Feed-forward (FF) layer. Since there are two
primary types of nodes, i.e., targets and charging stations,
the heterogeneous attention is responsible for learning the
respective relations between them.

1) Encoder: We exploit a multi-head heterogeneous atten-
tion mechanism to learn representations. We encode the input
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node sequence X = {o1, o2, · · · , oi, · · · , on+z+1} to yield
the initial node embeddings h0

i with dimension dh = 128
through a linear projection, where, 1) oi is a 3D vector,
including 2D coordinates of the node and a binary variable
din, which equals 1 if the node is a charging station, otherwise
0; 2) i is the node index. Then the initial node embeddings
are transformed into advanced node embeddings hL

i through
L attention layers, each of which consists of a multi-head
heterogeneous attention sublayer and a modified FF sublayer.

Multi-head Heterogeneous Attention Sublayer. The orig-
inal multi-head attention (MHA) uses self-attention to learn
the relationship between two arbitrary nodes in the input
sequence. However, different from classic routing problems
such as TSP or CVRP, which mainly involve one type of
nodes excluding the depot, the nodes in URPMCS have
heterogeneous roles. Thus, the relations between nodes in
URPMCS are more complex, requiring a more subtle network
to learn the representations. To tackle this issue, we rely on
two types of attentions, i.e., self-attention and cross-attention
for each target node to identify the relations to all charging
nodes, as depicted in Fig. 3. The details of the heterogeneous
attention mechanism are introduced below.

To extract features, self-attention calculates three vectors,
i.e., query, key and value, based on the input sequence. Let
hl−1
i denote the node embedding of the attention layer l-1

(l ∈ L), and dq, dv denote the dimensions of query/key and
value, respectively, where dq = dv = dh

M and M = 8 refers to
the number of heads. Query, key and value are expressed as
follows,

qi = Wqh
l−1
i , ki = Wkh

l−1
i , vi = Wvh

l−1
i , (14)

where qi, ki and vi refer to query, key and value of node i,
respectively, and Wq,Wk ∈ Rdh×dq and Wv ∈ Rdh×dv are
trainable parameters. The compatibility between node i and
node j is computed as the scaled dot product of the query of
node i and key of node j, and then further processed by a
softmax function to obtain the node weight as follows,

µij =
qi⊤kj√

dq
(15)

aij =
eµij∑
j′ e

µij′
. (16)

At the same time, another attention mechanism is leveraged
to learn the relationship between charging nodes and target
nodes. Suppose that ht

i is the embedding of the ith target node,
and hc

j is the embedding of the jth charging node, where we
omit l-1 for simplicity. Accordingly, the query, key and value
in this attention are computed as follows,

qti = Wqth
t
i, k

c
j = Wkch

c
j , v

c
j = Wvch

c
j , (17)

where all parameter matrices are trainable. Hence, the node
weights between charging nodes and target nodes are calcu-
lated as follows,

µtc
ij =

qti⊤kcj√
dq

(18)

atcij =
eµ

tc
ij∑

j′ e
µtc
ij′

. (19)

The single head vector hm
i is the sum of the heads from all

types of attention as follows,

hm
i =

∑
j

aijvj +
∑
j

atcijv
c
j . (20)

Note that the attention heads from target nodes to charging
nodes only contribute to the target node embeddings, while
the heads added to the charging nodes embeddings are all
zeros. Afterwards, the multi-head vector concatenates different
messages from different heads, and then passes through a skip-
connection layer and a batch normalization (BN) layer [50] as
follows,

hl
i

′
= BN

(
hl−1
i +WoutCat

(
h1
i , · · · , hM

i

))
, (21)

where Wout is a trainable parameter and Cat is the concate-
nation operator.

Feed-forward Sublayer. In the original attention
model [37], the feed-forward (FF) sublayer takes a vector
as the input and passes it through two learned linear
transformations, between which a rectified-linear (ReLU)
activation function is applied. In this paper, we exploit a new
FF network, which employs a Gaussian Error Linear Unit
(GELU) to replace the ReLU activation function as follows,

FF
(
hl′

i ,W1,W2

)
= GELU

(
hl′

i W1

)
W2, (22)

where W1 and W2 are trainable parameters. As proved to
be of high-performance for neural network [51], the GELU
activation function is defined as xΦ (x), where Φ (x) is the
standard Gaussian cumulative distribution function [52].

The output vector of the modified FF sublayer then passes
through a skip-connection and a BN layer as follows,

hl
i = BN

(
hl′

i + FF
(
hl′

i ,W1,W2

))
. (23)

The advanced node embeddings are finally obtained by passing
through L attention layers. Subsequently, the graph embedding
is computed to represent the global graph information as
follows,

h̄ =
1

n+ z + 1

n+z+1∑
i=0

hL
i . (24)

Both the advanced node embeddings and the graph embedding
are used as inputs to the decoder.

2) Decoder: The decoder outputs a probability distribution
over the input nodes at each decoding step based on the graph
embedding and node embeddings produced by the encoder.
A vector hcon

t representing the context is also computed at
each decoding step, which combines the graph embedding h̄,
the node embedding of the last visited node hL

t−1 and the
remaining battery capacity Qt as follows,

hcon
t = h̄Wgraph + Cat

(
hL
t−1, Qt

)
Wcon, (25)

where Wgraph and Wcon are trainable parameter matrices. In
addition, at the first decoding step, the last node embedding
is replaced with trainable parameters.

The decoder is made of a MHA layer and a single head
attention layer. A glimpse hg

t aggregates the messages from
different parts of nodes through a MHA layer as follows,

hg
t = MHA

(
hcon
t ,W g

k h
L,W g

v h
L
)
, (26)
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where W g
k and W g

v are trainable parameter matrices, and hL

is the node embeddings output by the encoder.
The query and key vectors in the single head attention are

computed following Eq. (27) where WQ and WK are trainable
parameter matrices. Then, the compatibility between the query
and the key is calculated following Eq. (28), where Cp is the
clip range for better exploration (10 in practice).

qt = WQh
g
t ; k

t
i = WKhL

i , (27)

ht
i = Cp · tanh

(
qt⊤kti√

dq

)
. (28)

Meanwhile, invalid nodes are masked at each decoding step,
by setting the compatibility of those nodes to negative infinity.
There are four kinds of invalid nodes in URPMCS, i.e., 1)
target nodes that have been already visited; 2) nodes that the
UAV cannot reach at the current step due to the insufficient
battery capacity; 3) target nodes that would cause the UAV to
fail to reach any charging station at the next step if the UAV
visits them at the current step; and 4) the depot when there
are still remaining target nodes that need to be visited.

Afterwards, we compute the probability of the node to be
visited at the next step by a softmax function as follows,

P (πt | λ, π1:t−1) = softmax
(
ht
)
. (29)

The decoding process is iteratively performed until all target
nodes are covered and the UAV returns to the depot.

A potential method that lets the network learn to avoid allo-
cating probabilities to invalid nodes by itself is to add a penalty
term to the reward. Specifically, we can give bad actions that
choose an invalid node a negative reward as a penalty term.
Therefore, infeasible solutions violating constraints will have
low rewards; inversely, feasible paths will have a relatively
large reward. After dozens of training episodes, the network
may learn a policy that allocates low probabilities to invalid
nodes.

In this paper, we leverage two types of decoding strategies,
i.e., a greedy strategy that always chooses the node with the
maximum probability, and a sampling strategy that samples
nodes according to the probability. We use the sampling
strategy in the training process for better exploration. In the
inference process, the performances of the two strategies are
both investigated.

B. Training

The training algorithm we adopt in our method (i.e.
HADRL) is summarized in Algorithm 1, in which the RE-
INFORCE [53] is integrated with a rollout baseline [37].
Our HADRL encompasses two neural networks, i.e., a policy
network pθ which outputs a probability distribution over the
action space given the current state, and a baseline network bφ
(the rollout baseline) which calculates the baseline reward by
selecting the node with the greedy strategy to reduce variance.
The baseline network shares an identical structure to the policy
network. After dealing with a batch of instances and receiving

ALGORITHM 1: Training for HADRL
Input: Training dataset I , number of epochs E, steps per

epoch T , batch size B; policy network pθ with
parameters θ; baseline network bφ with parameters
φ

Output: A well-trained model pθ .
1 Initialize policy network parameters θ and baseline network

parameters φ;
2 for epoch = 1, 2, · · · , E do
3 Sample B instances from dataset I
4 for instance = 1, 2, · · · , B do
5 Set initial state of instance s0, t← 0;
6 while t < T do
7 P (πt | λ, π1:t−1)← the policy network pθ;
8 select an action πt with the sampling strategy;
9 Obtain the reward rt and transit the next state

st+1;
10 t = t+ 1;
11 end
12 Ri =

∑T
t=1 rt;

13 bφ (λ)← the reward obtained by the baseline
network with the greedy strategy;

14 end
15 Update θ according to Eq. (31);
16 if OneSidePairedTTest (pθ, bφ) < α then
17 bφ = pθ
18 end
19 end

the total rewards, the parameters θ of the policy network are
updated using the policy gradient algorithm as follows,

dθ =
1

B

B∑
λ=1

(R (λ)− bφ (λ))▽θ log pθ (πλ) , (30)

θt+1 = θt + αdθ. (31)

where dθ is the gradient of parameters of the policy network;
B is the batch size; R(λ) is the reward of instance λ calcu-
lated by the policy network; bφ(λ) is the baseline reward of
instance λ calculated by the baseline network and pθ(πλ) is
the probability of determining the solution πλ by the policy
network.

Furthermore, a paired t-test [54] is conducted at each epoch
to determine whether the parameters of the baseline network
should be updated. If the policy network is significantly
superior to the baseline network, the latter parameters will
be replaced with the former. After dozens of training steps in
each epoch, the trained policy network is able to yield high-
quality solutions.

We analyze the complexity of the proposed HADRL method
referring to the work in [55]. The complexity of the proposed
HADRL is O(nespnθCg), where ne is the number of epochs;
sp is the size of epoch divided by the batch size; nθ is the
number of elements of the parameter vector, and Cg is the
time complexity of calculating the gradient of each element in
the parameter vector θ.

C. Curriculum Learning Strategy

To further improve the generalization performance of our
HADRL, we propose a curriculum learning strategy. It is
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simple yet effective by increasing the difficulty of the learning
tasks in a gradual manner [56]. We found that the problems
with fewer charging stations are harder for the proposed
HADRL than those with more charging stations, given the
same number of target nodes. Hence, we gradually increase
the difficulty of the learning task by reducing the number of
charging stations. Specifically, we evenly reduce the number
of charging stations as epochs increase, where we empirically
reduce one charging station per 10 epochs. For instance, at
the beginning, there are 100 target nodes with 10 charging
stations, and there will be only one charging station left in
the end. Doing so allows the DRL agent to perform favorably
and robustly for problems with various numbers of charging
stations as it has learnt relevant knowledge properly during
training.

V. EXPERIMENT

In this section, we conduct extensive experiments to verify
the effectiveness of the proposed HADRL method at solving
URPMCS. The experiments are performed for a rotary-wing
UAV flying at a fixed height. Specifically, a UAV departs from
the depot to monitor the targets by visiting them sequentially,
goes to charging stations when the battery is going to run out,
and then returns to the depot when it has covered all targets.
The objective is to minimize the total distance traveled by the
UAV. Note that the URPMCS is a NP-hard problem whose
theoretical computation time (or runtime) grows exponentially
as the problem size scales up.

A. Experiment Setting

We describe the data generation method for the training
dataset and test dataset and the hyperparameters setting for
our HADRL model. Specifically, in URPMCS, the depot
and targets are uniformly sampled within the unit square
[0, 1]

2 following the conventions in [13], [32], [37], [41].
The charging stations are randomly sampled from the discrete
set [0, 0.25, 0.5, 0.75, 1]× [0, 0.25, 0.5, 0.75, 1]. In practice, we
ignore the hovering-related power eh at monitoring nodes, as
we assume that the time needed for it to hover there and collect
information is negligible. Moreover, since the UAV only needs
to take off and land at charging stations, and the related
power costs(i.e., eu and ed) are constant, we only consider
the remaining power (i.e., the battery capacity Q minus eu
and ed), i.e., the energy used to keep UAV alofting and flying,
termed as the propulsion energy consumption ep. In addition,
we set r to 1 for simplicity. Therefore, the maximum flight
range Lmax of the UAV, which is set to 3 in our experiments,
mostly depends on the propulsion energy consumption ep.
To comprehensively verify the performance, we evaluate our
HADRL on instances with different problem sizes, i.e., 20
targets with 2 charging stations, 50 targets with 5 charging
stations, and 100 targets with 10 charging stations, and term
them as T20C2, T50C5, T100C10, respectively. Moreover,
to assess its generalization capability, we further test our
method on larger problem sizes and different distributions.
We also conduct an ablation study to justify the effectiveness
of the designed heterogeneous attention and GELU activated
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Fig. 4: Training reward curves.

FF sublayer. Finally, we investigate the impact of different
numbers of charging stations on the performance of our
curriculum learning strategy.

During training, the hyperparameters are shared among all
problem sizes. The training instances are randomly generated
on-the-fly, where 1024 instances are generated for each batch,
with 1250 batches in each epoch. We empirically set the epoch
size to 100, since we found that extra epochs may only lead to
slight improvement in performance but much longer training
time. The dimensions of the node embeddings and the hidden
layers in the encoder and decoder are both set to 128. In
addition, we set the number of attention layers of the encoder
to 3. Similar to [37], we train our HADRL using the Adam
optimizer with learning rate 10−4, decaying rate 0.995, and
update the learning rate as follows:

decayed lr = lr ∗ (decaying rate)n epoch (32)

where decayed lr and lr are the learning rates for the next and
current epoch, respectively, and n epoch is the current number
of epochs. In addition, the indicator α in the paired t-test is
set to 0.05. Regarding the training cost, each epoch consumes
an average training time of 7.13min (minutes), 11.03min (with
single 3090 GPU) and 21.49min (with two GPUs) for problem
T20C2, T50C5 and T100C10, respectively. Pertaining to the
validation, 10000 instances are generated following a uniform
distribution for all problem sizes. All experiments are executed
on a server equipped with 8 RTX 3090 GPUs, of which we
use two. Our implementation code is publicly available1.

B. Comparison Analysis

With respect to the proposed HADRL method, we adopt two
versions of the decoding strategy, i.e., Greedy and Sampling.
Regarding the latter, we sample N solutions for each instance
and return the best one, where we set N to 1280 and 12800,
termed as HADRL(1280) and HADRL(12800), respectively.
To evaluate the effectiveness of our HADRL method against
others, we adopt various representative methods as baselines,
which include:

1https://github.com/mingfan321/HADRL

https://github.com/mingfan321/HADRL
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Fig. 5: Diagrams for all algorithms on URPMCS instances of different
sizes. (a) Tour length. (b) Runtime.

1) Gurobi, a state-of-the-art exact solver for combinatorial
optimization problems;

2) Variable Neighborhood Search (VNS), a heuristic
method based on neighborhoods;

3) SA, a meta-heuristic method with guided neighborhood
search;

4) GA, a meta-heuristic method based on population;
5) Attention Model (AM), a learning based method adapted

to solve URPMCS. The hyperparameters of AM are the
same as our HADRL.

Before conducting comprehensive comparisons, we first plot
the rewards training curves for our HADRL and the AM
method for all cases in Fig. 4. These curves show that the
rewards increase sharply for both methods at the beginning,
after which our HADRL eventually converges to a higher
reward than that of the AM. The reward becomes smaller as
the number of targets increases, which indicates longer total
distance traveled by the UAV, since the reward is negative.
Given that the computation complexity grows exponentially
as the URPMCS scales up, we allow reasonably long time
limit for Gurobi when solving T100C10, i.e., 1800 seconds.
Note that Gurobi needs less than 1800 seconds to compute
optimal solutions for T20C2 and T50C5. All the baselines are
implemented in Python.

As the conventional methods, including both exact and
heuristic ones, consume much more computation time, we
only generate 30 URPMCS instances for each problem size for
testing. They follow the same distribution as the training one,
which are shared by our HADRL method and all baselines.
We record the results of our method and baselines on all sizes
of URPMCS instances in Table III, which include average
objective value (Obj.), gap, and runtime (Time). The smaller
the Obj., the better the solution quality. The gap here is
calculated by comparing the objective value of a method with
the best one found among all methods to show the advantage of
the best algorithm over other algorithms. Moreover, the shorter
the runtime, the more computationally efficient the algorithm.

In Table III, Gurobi attains the best solutions for all problem
sizes (with considerably longer runtime) among all methods.

Hence, the gap of others is calculated by comparing them with
Gurobi. We observe that, among all heuristic methods, our
HADRL achieves the smallest objective value on T50C5 and
T100C10, while VNS performs the best on T20C2. However,
VNS is inferior to SA on T50C5 and T100C10. Furthermore,
GA obtains the worst solutions for all cases, except for AM
(Greedy) on T20C2 where the latter performs slightly inferior
to GA. Regarding the learning based methods, our HADRL
outperforms AM in all cases with either type of decoding
strategy. Both Sample 1280 and Sample 12800 yield smaller
objective values and gaps than that of Greedy, with Sample
12800 surpassing Sample 1280. Furthermore, AM (Greedy)
performs worse than SA for all cases while AM(12800)
performs much better, highlighting the ability of the sampling
strategy in improving the solution quality.

In terms of computation efficiency, we observe that the
runtime of Gurobi and conventional heuristic methods grows
almost exponentially as the problem scales up, while that
of the learning-based methods grows linearly. In particular,
the runtime of Gurobi and conventional heuristic methods is
significantly longer than that of the learning-based ones, the
latter of which is almost around 1 second. While the overall
runtime of our HADRL is slightly longer than that of AM, the
Sample 12800 is also longer than that of Sample 1280 for both
learning based methods, which are still far shorter than that of
the conventional methods. We also plot the trend of the tour
length and runtime of all algorithms along different problem
sizes in Fig.5, to highlight our advantage on computation
efficiency. The runtime of our HADRL only slightly increases
with the problem scale, which reveals a desirable trade-off
between solution quality and runtime.

C. Generalization Analysis

To assess the generalization performance of our HADRL
method, we conduct two types of experiments: 1) apply the
model learnt for a problem size to a larger one; 2) apply the
model learnt for a uniform distribution to other distributions,
i.e., Gaussian distribution and Rayleigh distribution.

Regarding the size generalization, we generate 30 instances
of larger sizes, i.e., 150 targets with 15 charging stations
and 200 targets with 20 charging stations, and term them
as T150C15 and T200C20, respectively. We adopt the model
learnt for T100C10 to solve T150C15 and T200C20 and
also compare it with Gurobi, VNS, SA, GA and AM. The
experimental results are given in Table IV. For each problem
size, our HADRL(12800) yields the smallest objective value,
while both HADRL (Greedy) and AM (Greedy) already per-
formed better than Gurobi, VNS, SA and GA, where HADRL
(Greedy) achieves higher solution quality than that of AM
(Greedy). These results show that our HADRL method has a
favorable generalization capability on larger problem sizes.

Regarding the distribution generalization, we generate 30 in-
stances in which targets locations are sampled from a Gaussian
distribution with different standard deviations and a Rayleigh
distribution with different scales for each problem size. The
standard deviations adopted in the Gaussian distribution are
1.0, 0.8 and 0.6, while the scales used in the Rayleigh
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TABLE III: Comparison results on URPMCS instances of different sizes.

T20C2 T50C5 T100C10
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Gurobi 4.091 0.00% 104s 5.899 0.00% 1076s 8.177 0.00% 1800s
VNS 4.155 1.55% 11s 6.717 13.86% 111s 10.511 28.54% 755s
SA 4.174 2.01% 106s 6.239 5.77% 466s 8.732 6.79% 1282s
GA 4.196 2.57% 72s 7.040 19.34% 628s 13.914 70.16% 1542s

AM(Greedy) 4.241 3.65% <0.01s 6.486 9.94% 0.01s 9.005 10.12% 0.02s
AM(1280) 4.171 1.95% 0.14s 6.217 5.39% 0.20s 8.653 5.82% 0.37s
AM(12800) 4.165 1.81% 0.89s 6.193 4.99% 1.13s 8.628 5.52% 1.79s

HADRL(Greedy) 4.207 2.82% <0.01s 6.295 6.71% 0.01s 8.675 6.09% 0.02s
HADRL(1280) 4.169 1.91% 0.15s 6.061 2.75% 0.21s 8.372 2.39% 0.39s

HADRL(12800) 4.162 1.73% 0.92s 6.031 2.23% 1.17s 8.344 2.05% 1.86s

TABLE IV: Results for generalization to larger sizes.

T150C15 T200C20
Method Obj. Gap Time Obj. Gap Time

Gurobi 11.195 9.81% 1800s 14.187 18.38% 1800s
VNS 14.190 39.18% 2485s 17.718 47.84% 5380s
SA 10.941 7.31% 2412s 13.069 9.05% 3948s
GA 23.023 125.82% 3273s 33.316 177.98% 5471s

AM(Greedy) 10.784 5.77% 0.03s 12.589 5.04% 0.05s
AM(1280) 10.380 1.81% 0.63s 12.271 2.39% 0.95s

AM(12800) 10.348 1.49% 1.99s 12.211 1.88% 2.79s
HADRL(Greedy) 10.541 3.38% 0.03s 12.313 2.74% 0.01s
HADRL(1280) 10.232 0.36% 0.66s 11.997 0.10% 0.97s

HADRL(12800) 10.196 0.00% 2.16s 11.985 0.00% 2.03s

The bold means the best result in each column, throughout the paper.

TABLE V: Generalization to Gaussian and Rayleigh distributions.

T20C2(1.0) T50C5(1.0) T100C10(1.0) T20C2(0.8) T50C5(0.8) T100C10(0.8) T20C2(0.6) T50C5(0.6) T100C10(0.6)
Method Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time
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n

Gurobi 4.288 199s 5.436 1538s 7.230 1800s 4.195 271s 5.558 1498s 7.410 1800s 4.149 395s 5.563 1484s 7.287 1749s
VNS 4.349 12s 6.106 105s 8.861 596s 4.268 11s 6.224 103s 8.865 594s 4.215 11s 6.269 102s 8.946 640s
SA 4.410 99s 5.703 334s 7.527 1052s 4.331 91s 5.836 341s 7.568 1031s 4.252 86s 5.868 345s 7.660 1021s
GA 4.370 142s 6.192 861s 10.551 1772s 4.299 133s 6.377 742s 10.691 1669s 4.198 132s 6.361 912s 10.867 1770s

AM(Greedy) 4.561 <0.01s 6.130 0.01s 8.032 0.01s 4.460 <0.01s 6.271 0.01s 8.075 0.01s 4.367 <0.01s 6.250 0.01s 8.231 0.01s
AM(1280) 4.436 0.16s 5.793 0.22s 7.707 0.41s 4.303 0.14s 5.904 0.19s 7.708 0.37s 4.220 0.15s 5.919 0.23s 7.746 0.44s
AM(12800) 4.423 0.96s 5.762 1.22s 7.650 1.90s 4.288 0.90s 5.870 1.11s 7.640 1.76s 4.221 0.89s 5.895 1.13s 7.688 1.76s

HADRL(Greedy) 4.468 <0.01s 5.811 0.01s 7.988 0.02s 4.447 <0.01s 6.031 0.01s 7.862 0.02s 4.311 <0.01s 6.041 0.01s 7.958 0.02s
HADRL(1280) 4.397 0.15s 5.559 0.20s 7.523 0.38s 4.273 0.15s 5.715 0.20s 7.497 0.38s 4.217 0.15s 5.741 0.20s 7.612 0.38s

HADRL(12800) 4.390 0.88s 5.538 1.12s 7.467 1.81s 4.267 0.90s 5.697 1.14s 7.471 1.84s 4.214 0.88s 5.721 1.13s 7.572 1.81s

T20C2(1) T50C5(1) T100C10(1) T20C2(2) T50C5(2) T100C10(2) T20C2(3) T50C5(3) T100C10(3)
Method Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time
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Gurobi 4.347 265s 5.467 1548s 7.318 1794s 4.179 171s 5.427 1532s 7.315 1800s 4.276 378s 5.568 1483s 7.496 1800s
VNS 4.417 11s 6.223 103s 9.042 622s 4.238 13s 6.119 111s 9.048 644s 4.377 12s 6.340 103s 9.259 620s
SA 4.440 88s 5.743 327s 7.725 1055s 4.258 88s 5.795 340s 7.667 1057s 4.384 96s 5.802 359s 7.780 1141s
GA 4.425 114s 6.277 725s 11.195 2019s 4.240 144s 6.313 722s 11.210 1940s 4.376 154s 6.443 736s 11.389 1961s

AM(Greedy) 4.620 <0.01s 6.141 0.01s 8.321 0.01s 4.384 <0.01s 6.091 0.01s 8.151 0.01s 4.578 <0.01s 6.225 0.01s 8.223 0.01s
AM(1280) 4.435 0.15s 5.804 0.20s 7.879 0.38s 4.263 0.15s 5.736 0.20s 7.746 0.37s 4.423 0.14s 5.888 0.20s 7.856 0.37s
AM(12800) 4.418 0.87s 5.771 1.11s 7.819 1.77s 4.254 0.88s 5.703 1.12s 7.709 1.77s 4.397 0.85s 5.861 1.11s 7.804 1.76s

HADRL(Greedy) 4.537 <0.01s 5.887 0.01s 8.118 0.02s 4.317 <0.01s 5.867 0.01s 8.038 0.02s 4.543 <0.01s 6.041 0.01s 8.239 0.02s
HADRL(1280) 4.437 0.14s 5.618 0.20s 7.697 0.38s 4.231 0.15s 5.593 0.21s 7.686 0.39s 4.408 0.15s 5.721 0.20s 7.796 0.39s

HADRL(12800) 4.424 0.89s 5.590 1.12s 7.668 1.81s 4.228 0.92s 5.556 1.16s 7.641 1.85s 4.403 0.88s 5.693 1.12s 7.758 1.81s
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Fig. 6: Instances on different distributions. The black square repre-
sents the depot, and red pentagons denote the charging stations while
blue circles denote targets.

distribution are 1, 2 and 3. An example instance in each of
the above 6 different distributions for T50C5 are displayed
in Fig. 6. We apply our model learnt for uniform distribution
to solve the instances from different distributions, comparing
with Gurobi, VNS, SA, GA and AM. The experimental
results for Gaussian distribution are gathered in the upper
half of Table V, where T20C2(1.0) refers to the instances
sampled from the Gaussian distribution with the standard
deviation of 1.0, and others follow the same naming con-
vention. Regarding the Gaussian distribution, HADRL(12800)
ranks second which is only slightly inferior to Gurobi on
T20C2(0.8), T50C5(1.0,0.8,0.6) and T100C10(1.0,0.8,0.6) in
terms of objective values. GA has smaller objective values than
HADRL(12800) on T20C2(1.0) and T20C2(0.6), while that of
VNS is smaller than HADRL(12800) on T20C2(1.0). Besides,
HADRL is superior to AM in all cases with either decoding
strategy. Meanwhile, the experimental results for the Rayleigh
distributions are gathered in the lower half of Table V, where
T20C2(1) refers to instances sampled with scale 1, and others
follow the same naming convention. We can observe that
Gurobi outperforms all other methods in all cases in terms
of objective value. Similar to the Gaussian distribution, the
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HADRL(12800) still ranks second on T20C2(2), T50C5(1,2,3)
and T100C10(1,2,3). Furthermore, our HADRL(12800) only
loses to Gurobi and VNS on T20C2(1). Regarding AM, our
HADRL is superior in most cases except for T20C2(1) and
T20C2(3). Still, HADRL and AM consume much less runtime
than Gurobi and SA. We conclude that our HADRL method
has favorable generalization to different distributions in terms
of objective value and runtime, especially on larger problem
sizes.

D. Ablation Study

We evaluate the effectiveness of our multi-head heteroge-
neous attention against the original one termed as DRL FF
on T20C2, T50C5 and T100C10, where DRL FF primarily
follows the AM architecture in [37], but with the modified
FF layer. Furthermore, we also evaluate the effectiveness of
the modified FF layer against the one equipped with multi-
head heterogeneous attention and the FF layer activated by
Relu function termed as DRL HA, on T20C2, T50C5 and
T100C10. The gaps of the three models averaged over 1000
instances are displayed in Fig. 7. We can observe that our
HADRL is superior to DRL FF on all problem sizes, which
supports the effectiveness of the proposed multi-head hetero-
geneous attention. On the other hand, while the results are
close on T20C2, the gaps of our HADRL are significantly
lower than that of DRL HA on larger problem sizes, which
suggests that the modified FF layer is able to improve the
performance of our method on larger instances. In addition,
the runtime of our HADRL, DRL FF and DRL HA here are
almost identical to that of HADRL in Table III.

E. Curriculum learning

We assess the performance of our method on problems
with fewer charging stations, i.e., 100 targets with one, two,
three charging stations, and term them as T100C1, T100C2,
T100C3, respectively. We generate 30 instances for each size
and adopt Gurobi, VNS, SA, GA and AM as baselines.
Furthermore, we still choose the objective value, gap and

TABLE VI: Results with different numbers of charging stations.

T100C1 T100C2 T100C3
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Gurobi 10.508 15.41% 1800s 8.808 0.00% 1800s 8.335 0.00% 1800s
VNS 11.029 21.13% 714s 11.109 26.12% 736s 10.673 28.05% 732s
SA 9.180 0.82% 1129s 9.128 3.63% 1393s 8.865 6.37% 1377s
GA 14.668 61.10% 1456s 14.686 66.73% 1450s 14.035 68.39% 1424s

AM(Greedy) 11.564 27.01% 0.02s 10.891 23.65% 0.02s 9.675 16.09% 0.04s
AM(1280) 10.225 12.31% 0.39s 9.741 10.59% 0.37s 9.090 9.07% 0.37s

AM(12800) 10.019 10.04% 1.28s 9.591 8.89% 1.30s 9.019 8.21% 1.30s
HADRL(Greedy) 10.983 20.62% <0.01s 9.971 13.20% <0.01s 9.354 12.22% <0.01s
HADRL(1280) 10.046 10.34% 0.30s 9.396 6.67% 0.30s 8.835 6.01% 0.30s
HADRL(12800) 9.804 7.68% 1.75s 9.302 5.60% 1.50s 8.750 4.98% 1.49s
HACL(Greedy) 9.810 7.74% <0.01s 9.669 9.77% <0.01s 9.327 11.91% <0.01s
HACL(1280) 9.164 0.65% 0.36s 9.100 3.31% 0.36s 8.841 6.07% 0.36s
HACL(12800) 9.105 0.00% 1.73s 9.019 2.40% 1.76s 8.773 5.26% 1.50s

computation time as the metrics. Experimental results are
collected in Table VI. We observe that Gurobi yields the best
solutions on T100C2 and T100C3 while SA performs best
on T100C1. Our HADRL (12800) performs better than SA
on T100C3 and worse on T100C1 and T100C2. Furthermore,
the gap between our HADRL(12800) and SA on T100C1 is
significantly larger than that on T100C2. We empirically found
that the generalizability of our HADRL method deteriorates
as the number of charging stations decreases. To improve the
robustness, we equip our HADRL with the aforementioned
curriculum learning strategy and term it as HACL, the learning
curve of which is plotted in Fig. 8. As the charging stations
change every 10 epochs, the learning curve drops sharply at
the beginning of every 250 training steps (one epoch includes
25 training steps) and rises quickly after a few training steps.
We observe that the proposed scheme converges for each size.
We also consider three decoding strategies for the developed
HACL, i.e., Greedy, Sample 1280 and Sample 12800. The
experiment results are recorded in Table VI as well. We
observe that the HACL(12800) achieves the smallest objective
value on T100C1 and also exhibits competitive performance
on T100C2 and T100C3, which suggests that the proposed CL
strategy significantly improves the generalizability of HADRL
to fewer charging stations. Since HACL and HADRL share the
same model structure, they have similar inference times.
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Fig. 9: Visualization of solutions to multi-UAV instances.

F. Multi-UAV case studies

We extend the proposed method HADRL to a more general
problem setting, i.e., Multi-UAV cases in which multiple ho-
mogeneous UAVs depart from the same depot to distributedly
monitor targets and then fly back to the depot after covering
all targets. We consider a shared scenario in which each
charging station can support charging multiple UAVs at the
same time [47]. We deem the URPMCS in multi-UAV cases as
a multi-agent collaborative problem wherein multi-agent work
together to maximize the total team reward, and each UAV
can be viewed as an agent. The encoders of HADRL models
for the single UAV and multi-UAV are the same. Hence,
their main difference lies in the decoding procedure. In multi-
UAV cases, the decoder follows a one-agent-per-decoding-step
routine [57]. Specifically, at each time step t, the decoder
first determines which UAV will make a decision, wherein
the current UAV index is equal to t% |A|, where A is the
set of UAVs and |A| is the number of UAVs. Moreover, the
current context consists of the graph embedding h̄, the last
node embedding hL

πα
|πα|

and the remaining battery capacity
Qα of the current agent α. The decoding procedure repeats
until all targets are visited and all UAVs return to the depot,
the other parts of decoding procedure remaining the same as in
the single-UAV case. The decoding procedure for multi-UAV
cases is detailed in Algorithm 2.

We evaluate the performance of our HADRL on multi-
UAV instances, i.e., 50 targets with 5 charging stations and 2
UAVs, 100 targets with 10 charging stations and 2 UAVs, and
100 targets with 10 charging stations and 3 UAVs, and term
them as T50C5U2, T100C10U2, T100C10U3, respectively.
The solutions of these three sets of experiments are plotted
in Fig.9: (a), (b), and (c), respectively, where the black square
represents the depot, and the red pentagons denote the charging
stations while blue circles denote targets. We draw lines with
different colors to represent different UAV routes. Generally,
we observe that the route of each UAV constructed by the
HADRL model avoids crossings, indicating that the learned
heuristic is able to perform well in multi-UAV cases. Notably,
the solutions are obtained in an extremely short runtime, less
than 0.1 seconds. Since we consider a shared scenario, several
UAVs may reach the same charging station simultaneously
in our solutions. We believe that considering communications
[58], [59] between UAVs may further foster the performance of

ALGORITHM 2: HADRL Decoding Procedure for
Multi-UAV Cases

Input: Node embeddings hL
i , graph embedding h̄, set of

UAVs A, the remaining battery capacity Qα of
UAV α.

Output: The tours of all UAVs π(= πi, . . . , π|A|).
1 Initialize the tour list of each UAVs, πα ← [0];
2 Initialize the remaining battery capacity of each UAV to the

maximum battery capacity, Qα,0 ← Q;
3 Set the decision time step t to 0.
4 while (not all target are visited)∪(any πα

|πα|! = 0) do
5 α← t% |A|;
6 hcon

α = h̄Wgraph + Cat
(
hL
πα
|πα|

, Qα

)
Wcon;

7 hg
α = MHA

(
hcon
α ,W g

k h
L,W g

v h
L
)
;

8 qα = WQh
g
α; ki = WKhL

i ;

9 hα
i = Cp · tanh

(
qα⊤ki√

dq

)
;

10 hα
i = hα

i −∞∗ (node i is masked);
11 P

(
πα
|πα| | λ, πα

1:|πα|−1

)
= softmax (hα);

12 if is training then
13 select an action πα

|πα| with the sampling strategy;
14 else
15 select an action πα

|πα| with the greedy strategy.
16 end
17 Update the remaining capacity Qα according to the

transition rule.
18 Add πα

|πα| to the tour πα.
19 t← t+ 1.
20 end

the HADRL in multi-UAV cases, e.g., to let each agent know
other agents’ positions when making decisions. However, it is
beyond the scope of this work and we leave it as future work.

VI. CONCLUSION

In this paper, we approach the UAV routing problem for traf-
fic monitoring, where multiple charging stations are available
to replenish energy for the UAV. To solve this problem, we
propose a deep reinforcement learning based method in con-
junction with a multi-head heterogeneous attention mechanism
to learn a policy for automatic route construction. We also
design a curriculum learning strategy to enhance the robustness
of our method against different numbers of charging stations.
Experimental result shows that the overall performance of our
method is superior to existing learning baseline (AM) and
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conventional methods. Moreover, the proposed method gener-
alizes well to larger problem sizes, different target distributions
and fewer charging stations.

Compared to conventional methods, the advantages of our
HADRL method are three-fold: 1) HADRL learns the heuristic
for automatically constructing a solution by itself instead
of exploiting domain-specific knowledge. 2) HADRL can
generate a route for a UAV very fast (in 1 second), while
other conventional methods need dozens of seconds or even
much longer. 3) HADRL can replan a route for a UAV im-
mediately facing a dynamic situation where some targets may
be cancelled, or some charging stations are filled. However,
conventional methods must recalculate the route from scratch
in such dynamic environments.

Future work will consider more advanced deep architectures
for routing, such as POMO [13] to further improve the perfor-
mance, and test our method on real-world problem instances.
Moreover, we will also investigate how to cooperatively route
multiple UAVs in the presence of non-shared charging stations.
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