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ABSTRACT
In this paper, we propose SCRIMP, a multi-agent reinforcement
learning approach for multi-agent path finding. Our method learns
individual policies from very small FOVs (3x3), by relying on a
highly-scalable global/local communication mechanism based on a
modified transformer. We further introduce a state-value-based tie-
breaking strategy to improve performance in symmetric situations
and intrinsic rewards to encourage exploration while mitigating
the long-term credit assignment problem. Empirical evaluations in-
dicate that SCRIMP can outperform other state-of-the-art learning-
based planners with larger FOVs and even yield similar performance
as a classical centralized planner.
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1 INTRODUCTION
Multi-Agent Path Finding (MAPF) is an NP-hard problem, aimed
at generating collision-free paths for a set of agents from their
initial position to their assigned goal on a given graph. Recently,
Multi-Agent Reinforcement Learning (MARL) has been used to
produce fast and scalable but suboptimal solutions to the MAPF by
relying on partial observability. However, this approach severely
limits the information available to agents, making cooperation
difficult. Introducing a communication mechanism in MAPF allows
agents to share information within a team, mitigating the risk of
partial observability and facilitating teamwork. However, designing
scalable communication mechanisms is challenging since, as the
team size increases, agents are more likely to be overwhelmed by
messages that essentially introduce noise (i.e., the chatter problem).
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Build upon our previous works [2, 7], this work propose a de-
centralized MAPF planner SCRIMP, where agents make individual
decisions based on their own field of view (FOV) and on highly-
scalable global/local communications based on Transformer. We
further propose a learning-based stochastic tie-breaking strategy
and an intrinsic reward structure. Throughout this work, to increase
speed and simplify implementation on robots with limited-range
onboard sensing, we train agents with a small 3×3 FOV. Evaluation
results show that SCRIMP can scale to larger teams without retrain-
ing and outperform other state-of-the-art learning-based planners
with larger FOVs. SCRIMP also perform similarly to the classical
centralized planner ODrM* [11], and even achieve a higher success
rate in a complex task requiring joint maneuvers.

2 LEARNING TECHNIQUES
2.1 Transformer-based Communication

Learning
Our communicationmechanism is based on the transformermodel [10],
which is able to integrate information over long sequences, scale
to large amounts of data, and capture dynamic pairwise relation-
ships, thus helping mitigate the chatter problem. To stabilize the
training of transformer, we removed dropout layers and modified
its submodule structure, as recommended in [6].

In our method, the observation of each agent is first encoded
by seven convolutional layers, two max pooling layers, three fully
connected layers, and one Long Short-Term Memory (LSTM) unit.
In parallel, messages from the previous timestep are processed by
the Transformer-Based Communication Block, where only the
transformer encoder is used. These messages are first augmented
with the unique agent ID using a sinusoidal positional embedding,
and passed through multiple iterative computation blocks. The
multi-head self-attention in each computation block encodes not
only the high-level information of messages but also their dynamic
interrelationships. For each agent 𝑖 , at each of the ℎ independent
attention heads, its own message is linearly projected to a Query
by learnable weights𝑤𝑞 , while all messages are linearly projected
to the Keys and Values by𝑊𝑘 ,𝑊𝑣 . The relationship between the
self-message of agent 𝑖 and all messages is then computed as:

𝛼𝑖 = softmax

(
𝒘𝑞 ¤𝑚𝑡−1

𝑖
·
(
𝑾𝑘

[
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√
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)
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where ¤𝑚𝑡−1
𝑖

is the messages processed by the previous layers;
√︁
𝑑𝐾

is the dimension of the Keys.
The final joint output of the communication block is concate-

nated with the output and input of the LSTM cell to generate a
message for the next time step, predicted state values, the agent’s
policy, and a “blocking” output [7]. Since the communication block
is placed before the output heads, agents’ decisions are conditioned
on their own observations and the messages exchanged within the
team. In addition, because the encoder is trained using the gra-
dient of all agents’ losses, it learns to capture useful information
and ignore noise/mitigate chatter to reduce the losses of all agents,
leading to enhanced, larger-scale cooperation.

2.2 Value-Based Tie Breaking
We expect large gains in performance if agents can reach a mean-
ingful consensus on the priority of competing moves before a vertex
or swap conflict occurs, thereby effectively breaking symmetries.
In this work, we propose to let agents check for conflicts before ex-
ecuting actions, and then (weighted-)randomly sample which agent
is allowed to perform its preferred action, based on a learning-based
priority probability. Other agents then re-sample a new action ac-
cording to their distribution of actions, where their former choice is
masked. The priority probability is constructed using the predicted
difference in team state-value (sum of individual state values [9],
representing long-term collective benefit) and the normalized Eu-
clidean distance between the agent and its goal (considering “target
symmetry” [3]). Their weighted sums are fed into a softmax layer
to generate the final priority probability, and the agent allowed to
move is sampled based on this probability.

2.3 Episodic Buffer for Improved Exploration
Exploring the state-action space efficiently is a major challenge
in RL [1], especially in MAPF tasks where agents need many low-
reward actions before significant signals of finding and staying on
goal (i.e., the long-term credit assignment problem). Encouraging
exploration has been explored in various ways, including by in-
troducing intrinsic rewards based on state familiarity. For MAPF
in a gridworld, our proposed method generates intrinsic rewards
based on visited grid cell coordinates (𝑥,𝑦) to encourage agents
to explore more new area in each episode, thus increase probabil-
ity of reaching goal and mitigate the long-term credit assignment
problem.

In our method, each agent keeps an independent buffer with a
limited capacity𝑀 , which starts each episode empty. At each step,
each off-goal agent first calculates the Euclidean distance between
its current location and all stored locations in the buffer. If the
maximum distance exceeds threshold 𝜏 , the agent gives itself a
bonus reward:

𝑟𝑖𝑡𝑖 = 𝜑 (𝛽 − 𝛿), 𝛿 =

{
1, if max distance < 𝜏

0, if max distance ≥ 𝜏,
(2)

where 𝜏 , 𝜑 ∈ R+ and 𝛽 ∈ {0, 1} are pre-defined hyperparameters.
The final reward is calculated as 𝑟𝑡

𝑖
= 𝑟𝑖𝑡

𝑖
+ 𝑟𝑒𝑡

𝑖
. After calculating

intrinsic rewards, each agent determines whether its current max-
imum distance exceeds threshold 𝜌 ; if so, the current location is
added to the episodic buffer [8]. When the buffer’s capacity exceeds
𝑀 , a random element in the buffer is replaced with the current
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Figure 1: Success rate of different algorithms. The world sizes for 8,
16,32,64 and 128 agents are 10 × 10,20 × 20,30 × 30,40 × 40 and 40 × 40,
respectively. All results are calculated by running 100 episodes with
randomly generated maps.

element. The above process continues until the episode ends, at
which point the buffer is emptied and a new episode begins.

3 COMPARISONWITH OTHER MAPF
PLANNERS

We compare SCRIMP1 with two other state-of-the-art RL methods,
namely the GNN-based communication method DHC with 9 × 9
FOV [5], and the ad-hoc routing communication method PICO [4]
with 11× 11 FOV. We also show the results of the bounded-optimal
centralized planner ODrM* as a reference. To further investigate the
practicality of SCRIMP in scenarios where global communication
may not be available, we extend SCRIMP with global communi-
cation into SCRIMP-local, a local communication model with a
restricted communication range of 5. The experimental setup and
the hyperparameters of our models are available in the Supplemen-
tary Material2.

Testing results in Figure 1 show that the Success Rate(SR) of
our models outperforms that of DHC and PICO in almost all cases.
SCRIMP-local is able to yield similar performance as ODrM*. In par-
ticular, it still achieves 45% SR in the most difficult task requiring a
high degree of agent cooperation (128 agents, 30% obstacle density),
while the SR of ODrM* is only 20%, and DHC and PICO simply
cannot solve the task. Moreover, local communication outperforms
global communication as the number of agents increases due to the
enhanced noise filtering mechanism.

4 CONCLUSION
This work introduces a new RL approach SCRIMP to MAPF that
relies on a highly scalable local/global communication mechanism
based on a modified transformer. We further propose to break ties
between agents using a stochastic priority-based system and employ
intrinsic rewards to encourage single-episode exploration while
mitigating the long-term credit assignment problem. Experimental
results show that SCRIMP with local/global communication outper-
forms other learning-based planners, while maintaining scalability
to larger teams. In most cases, our method performs similarly to a
classical centralized planner, and achieve higher success rate in the
complex task.

1The full code is available at https://github.com/marmotlab/SCRIMP
2Available at https://drive.google.com/file/d/1DWJb4flLXljCmFefxG6ozVjTMyiqtDWy
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