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Abstract:
Mapless navigation refers to a challenging task where a mobile robot must rapidly
navigate to a predefined destination using its partial knowledge of the environ-
ment, which is updated online along the way, instead of a prior map of the environ-
ment. Inspired by the recent developments in deep reinforcement learning (DRL),
we propose a learning-based framework for mapless navigation, which employs
a context-aware policy network to achieve efficient decision-making (i.e., maxi-
mize the likelihood of finding the shortest route towards the target destination),
especially in complex and large-scale environments. Specifically, our robot learns
to form a context of its belief over the entire known area, which it uses to reason
about long-term efficiency and sequence show-term movements. Additionally, we
propose a graph rarefaction algorithm to enable more efficient decision-making in
large-scale applications. We empirically demonstrate that our approach reduces
average travel time by up to 61.4% and average planning time by up to 88.2%
compared to benchmark planners (D*lite and BIT) on hundreds of test scenarios.
We also validate our approach both in high-fidelity Gazebo simulations as well
as on hardware, highlighting its promising applicability in the real world without
further training/tuning.

Keywords: deep reinforcement learning, mapless navigation, context-aware
decision-making

1 Introduction

Start

End

Figure 1: Illustration of navigation
through an unknown environment.
The ground vehicle generates a feasible
trajectory toward the destination relying
on the sensory inputs and destination.

Autonomous navigation is an essential capability for mo-
bile robots, and can be broadly divided into local and
global planning. Local planning typically focuses on
short-term collision avoidance, which provides the robot
with reactive kinematic commands to navigate through its
nearby surroundings [1, 2]. Global planning, on the other
hand, requires the robot to consider the broader environ-
mental information and provide movement decisions at
a higher level to determine a long-term route towards the
target destination [3, 4]. Although many works have stud-
ied map-based navigation, where the robot relies on prior
information about the environment, in this work, we fo-
cus on global planning for mapless navigation, where a
robot starts navigation to the destination in a completely
unknown/unmapped environment. Throughout the task,
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the robot incrementally constructs/updates its partial belief/map of the environment using onboard
sensors, to guide its global path planning. The robot is tasked with reaching the target destination as
quickly as possible (in other words, exploring the least amount of the environment).

Although map-based navigation has been relatively well-studied [5, 6, 7], mapless navigation re-
mains an open challenge: it requires the robot to explicitly or implicitly predict the potential path
to the target destination based on partial knowledge of the environment. For example, conventional
approaches often assume the shortest path lies behind the nearest frontier (i.e., the boundary between
traversable and unknown areas) to the destination. Such predictions naturally have a significant im-
pact on navigation efficiency; however, improving the accuracy of these predictions is non-trivial,
especially in complex scenarios with plenty of dead-ends and dense obstacles. We believe existing
approaches lack context-awareness when predicting potential paths. Being context-aware means
that the robot is capable of adaptively reason about potential global paths according to its belief over
the current environment, instead of following a fixed rule for all scenarios that may be significantly
different. It also allows the robot to make non-myopic decisions that benefit long-term efficiency
and maximize the likelihood of reaching the destination as fast as possible.

In this paper, we investigate and propose a context-aware DRL framework for mapless navigation.
Specifically, our robot reasons about the context of its belief over the entire known area using an
attention-based neural network. During the navigation task, our robot builds and updates its belief
(represented as a graph), which serves as input of our neural network. The policy network models
the inter-dependencies between distinct areas in the agent’s belief/graph, to finally output the next
waypoint for navigation. We further propose a graph rarefaction algorithm to filter out redundant
nodes and corresponding edges in this graph for more efficient policy learning in large-scale envi-
ronments. Compared to existing learning-based approaches [8, 9, 10], our model not only outputs a
near-optimal policy to sequence movement decisions towards the target destination, but also endows
the agent with time-efficient re-planning abilities even in complex, large-scale environments. To as-
sess the performance and generalizability of our approach, we compare our model to representative
state-of-the-art baselines in hundreds of simulated maps at three complexity levels, where we high-
light improvements up to 61% for average travel time and 88% for average planning time over these
baselines. We also validate the effectiveness of our approach in large-scale Gazebo simulations, and
deploy our planner on hardware in a real-world scenario. To the best of our knowledge, we are the
first work that proposes a DRL-based approach to mapless navigation [11]. Our full code and trained
model is available at https://github.com/marmotlab/Context_Aware_Navigation.

2 Related Works

Search-based approaches: These approaches are primarily based on discrete grids or a graph with
node priority evaluation, such as Dijkstra [12] and A* [5]. Given a prior map, they are able to search
for near-optimal paths [6]. Dynamic variants of search-based approaches, e.g., D* [13], LPA* [3],
D* lite [4], were proposed to approach dynamic planning in unknown environments. In most cases,
these algorithms replan at low frequency, by reusing the planned route from the previous search.
However, a robot may have to replan a new feasible route upon realizing that the current one is
impractical (e.g., reaching a dead-end) [14]. In this case, such incremental search comes at a high
computational cost, especially in complex environments. Furthermore, these algorithms are highly
dependent on heuristic function, which results in them being neither cognitive nor robust [15].

Sampling-based approaches: More recently, the rapidly-exploring Random Tree (RRT) [16] fam-
ily, which includes original RRT, RRT* [17], and RRT-Connect [18], has been leveraged for path
planning due to its low computation costs. Owing to the drawback of random sampling, the gener-
ated paths are typically sub-optimal and unstable [19], and are prone to being stuck in local minima,
especially in complex environments. To achieve effective sampling, several improvements have
been proposed [20, 21, 22, 23]. These approaches perform well in map-based navigation [7], but
typically suffer from long planning time in the absence of prior information [24], mainly due to
extensive sampling in both known and unknown areas.
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Figure 2: Framework of our context-aware DRL policy network. The initial and refined view-
point graphs are built from the agent’s partial belief and graph rarefaction, respectively. The encoder
first incorporates global information from the current partial map and the destination node through
self-attention. This embedded information is then used by the decoder to reason about the depen-
dencies between the current node and its neighbors, to finally generate the action policy.

Learning-based approaches: Learning-based mapless navigation approaches have aroused interest
and demonstrated effectiveness in recent years [2, 9]. They can be broadly subdivided into local
and global planning. Most of the previous learning-based works have focused on local planning
through end-to-end models [11], including vision-based, i.e., successor-feature-based [8], LiDAR-
based [9, 10, 25], or imitation-learning-based approaches [26, 27]. Both [9] and [28] note that a
global path planner should usually be used for trust-worthy navigation in unknown environments.
Furthermore, these local planners are typically trained and validated in simple environments, raising
concerns about their generalizability to more complex cases. To the best of our knowledge, we are
the first work that proposes a learning-based global planner for mapless navigation [11].

3 Approach

In this section, we consider mapless navigation as a sequential decision-making RL problem and de-
tail our context-aware policy network, as well as our graph rarefaction algorithm to further improve
longer-horizon and larger-scale planning.

3.1 Mapless navigation as a RL Problem

We formulate the mapless navigation task as a partially observable Markov decision process
(POMDP), expressed as a tuple (S,A, T ,R,Ω,O, γ) with the state space S, the action spaceA, the
state transition function T , the reward functionR, the observation space Ω, the observation function
given the true state s′ of the environmentO (ot ∈ Ω|s′, a) and the action state a, and the discount fac-
tor γ. To promote efficient navigation towards the target destination, the RL objective is aimed to find
an optimal policy π∗ that maximizes the expected discounted reward Eat∼π(·|ot)

[∑T
t=1 γ

t−1rt

]
.

The policy π can be considered as a mapping function from ot to the next action at.

Observation Ω: At each decision step t, our observation is represented as ot = (Gt, St), which
consists of the viewpoint graph Gt and the planning attributes St. The robot gets the updated obser-
vation in the limited sensor range ds (80 in practice training). The agent first obtains the viewpoint
set Vt, which is generated uniformly in the known area D. To construct a traversable graph, every
node in Vt constructs up to k nearest edges with each other, where the edges in Et can only connect
between collision-free nodes, i.e., nodes that are line of sight with each other. The construction of
Gt = (Vt, Et) eliminates the concerns of collision with obstacles. Moreover, the planning attributes
St provide additional information about the observed environment and the target for each node in Vt.
Inspired by [29], every node has a direction vector v⃗ which acts as a signpost for the target, which
consists of a unit vector v̂ indicating the direction towards the target and the Euclidean distance
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|v⃗| from the node to the target. St further include an indicator δi which records whether the node
has been visited before. With the knowledge of the former trajectory, the agent can produce a more
informed policy. St also includes the utility ui which is referred to as the number of observable fron-
tiers. These frontiers represent the areas with the potential to the target, which are generated at the
boundary of the observed and unknown areas. St of each node in Vt are formulated as {v⃗i, δi, ui}.

It is worth noting that in large-scale environments, Vt would be populated densely. Meanwhile, the
information contained within them is sparse. Therefore, we implement a graph rarefaction algorithm
(pseudo code in Appendix A) to prune irrelevant nodes and extract key edges of the viewpoints.
Specifically, graph rarefaction first clusters the non-zero utility node set U into multiple groups
according to the threshold radius dth (30 in practice). Then, the algorithm uses A* to search for the
shortest path ζ, from the robot’s current position pt to each group. After that, the refined node set
V r ⊆ U is constructed by waypoints on ζ, which is either out of dth or out of line of sight. The
computation complexity is O(M +NKd), where M is the number of non-zero utility nodes, N the
number of nodes chosen to compute the A* path, K the number of edges for each node, and d the
number of nodes on the resulting path. After the graph rarefaction process, the refined viewpoint
graph Gr = (V r, Er) would represent the complete information in the current robot belief. Finally,
the Gr along with the corresponding planning states Sr are concatenated as the input of the policy
network, i.e., the refined observation os = (Gr, Sr).

Action A: The collision-free graph extends incrementally along with the update of the agent’s
observations ot for every decision step. Our context-aware policy network outputs the stochastic
policy π for the agent to select the next waypoint among the neighboring nodes. Then, the agent
updates its partial map while moving to the next waypoint.

Reward R: To promote efficient navigation, the agent receives a reward consisting of three parts.
The first part rs is a constant time step penalty rs (−0.5 in practice). The second part rb = d(st−1)−
d(st) provides continuous feedback on the robot’s proximity to the target destination, where d(s) is
the distance between the agent current position pt and the destination location computed by A*. rb
is used to encourage the agent to reach the destination as fast as possible. The last part rf is a fixed
finishing reward, set to 20 while reaching the destination and 0 otherwise. To sum up, the overall
reward is rt (ot, at) = rs + cb · rb + rf , where cb is a scaling parameter (cb = 1/64 in practice).

3.2 Policy Network

Inspired by [30, 31], we design an attention-based neural network (shown in Fig. 2) to sequence
efficient movement decisions towards the destination. In our policy network, the encoder embeds
the overall information of the current partial map, and the decoder utilizes the learned global features
to reason about the dependencies between the current node and its neighbors and finally output an
action policy (probability distribution over neighboring nodes).

Encoder: The refined observation is first normalized and projected into d-dimensional (128 in prac-
tice), termed hn. The node features hn are then passed into multiple attention layers (6 in practice)
to aggregate the spatial representation of the current observation. The input of each attention layer
consists of a query vector hq and a key-value vector hk,v of the same dimension. The attention layer
updates the query vector with the weighted sum of the value, where the attention weight depends on
the similarity between the query and key. In each attention layer, the query qi, key ki and value vi
are first calculated as qi = WQhq

i , ki = WKhk,v
i and vi = WV hk,v

i respectively, where WQ, WK ,
WV ∈ Rd×d are learnable matrices. Next, the similarity between the query qi and the key kj is com-

puted with a scaled dot product as uij =
qTi ·kj√

d
. The attention weights aij are then obtained using a

softmax function: aij = euij∑n
j=1 euij . Finally, the output embedding from an attention layer, denoted

as h′
i, is calculated as the weighted sum of value vectors as vj : h′

i =
∑n

j=1 aijvj . Additionally, an
encoder edge mask M is applied to prevent each node from accessing its neighboring features. The
output of the encoder, which we term as the encoded embeddings ĥe, provides condensed spatial
information to the decoder.
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Decoder: In the decoder, the encoded embeddings of the current node (termed current encoded
embeddings, ĥc) are first extracted from the encoder as well as its neighboring encoded embeddings
(termed neighboring encoded embeddings, ĥn). Then the current encoded embeddings and encoded
embeddings are fed into an attention layer with hq = ĥc, hk,v = ĥn. This layer calculates the output
attention weights, representing the relevance of each neighboring node to the current node. These
attention weights are concatenated with hc and projected back to the d-dimensional feature together,
termed current decoded embeddings, h̃c. The current decoded embeddings incorporate information
from neighboring nodes into the representation of the current node. Finally, the current decoded
embeddings and the encoded embeddings of neighboring nodes are fed into a pointer layer [32],
which is an attention layer that directly uses the normalized attention weights θ as output.

3.3 Training Settings

Inspired by Chen et al. [33], we implement a random dungeon map dataset for training, where there
are a total of 800 maps (each map is 1000 × 1000 pixels) like figure 3. To build the updated
collision-free graph, the agent treats the points in the known free area as candidate viewpoints from
1600 points which are uniformly distributed to cover each dungeon map. Our model is trained using
the Soft Actor-Critic (SAC) algorithm [34], where the maximum episode step is set to 128, and the
size of the replay buffer is set to 10000. The target entropy is set to 0.01 · log k, where k represents
the number of neighboring nodes. We use the Adam optimizer to optimize policy and critic networks
with learning rates of 1 × 10−5 and 2 × 10−5 respectively. Our model is trained on a workstation
with one i9-10980XE CPU and one NVIDIA GeForce RTX 3090 GPU, and the training starts after
collecting 2,000 steps in the replay buffer. We utilize Ray [35], a distributed framework for machine
learning to parallelize data collection. Training requires around 12 hours to converge.

4 Experiments

Simple Medium Complex

Figure 3: Examples scenarios with different
complexity, showing the occupied area (grey
cells), free space (white cells), start points (yel-
low block), and target destination (red block).

We set a timeout, i.e., maximum decision steps
(128 in practice), to prevent infinite navigation
scenarios during testing, and a test is considered
a failure if it exceeds this limit. To obtain a com-
plete picture, we report the main performance
metrics for mapless navigation, including the av-
erage success rate S(p), average travel distance
D(m), and average travel time T (s) (including
failed cases for both latter ones). In particular,
T (s) is the sum of each algorithm’s step planning
time Tp(s) and the robot’s resulting motion execution time Te(s). We first compare our approach
with state-of-the-art conventional baselines in numerous dungeon environments (Fig. 3). Then, we
compare our model, some variants of our model, and the FAR planner (referred to as “FAR”) [24]
in a large-scale Gazebo environment (Fig. 5). Lastly, we deploy our trained model on hardware in a
real-world scenario (Fig. 6).

4.1 Comparisons in dungeon environments

To ensure a fair comparison, we create a random set of testing environments using the random dun-
geon map generator [33], which were never seen by our trained model. Fig. 3 shows the diverse
complexity of testing environments, which can be categorized into three types (50 scenarios each),
noted as simple, medium, and complex. We define the quantitative criteria of the scenario complex-
ity as follows: (i) The Euclidean distance between the start point and target destination in each sce-
nario. (ii) The overall number of connecting corridors in all rooms. (iii) The number of intersections
that will be encountered along the visually-optimal path. We consider two search-based approaches,
LPA* [3], D* lite [4], as well as two sampling-based approaches: RRT [16], and BIT [23].
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Table 1: Comparison results with state-of-the-art baselines in simple, medium, and complex
scenarios (50 scenarios for each test set, standard deviation in parentheses). Environments are
randomized 200 × 200 m2 dungeons, the LiDAR’s scanning range is 30 m, the robot’s constant
velocity 1.0 m/s, and the graph connectivity parameter k = 20 for our model.

Criteria Ours D* lite LPA* RRT BIT

S
D(m) 224(±72) 214(±83) 293(±116) 398(±208) 275(±166)
T (s) 285(±90) 383(±152) 414(±206) 662(±381) 404(±237)
Tp(s) 0.20(±0.08) 1.24(±0.56) 0.74(±0.47) 0.67(±0.54) 0.55(±0.46)
S(p) 100% 100% 100% 94% 98%

M
D(m) 259(±83) 237(±33) 383(±130) 497(±222) 360(±152)
T (s) 329(±105) 484(±87) 594(±298) 852(±565) 563(±285)
Tp(s) 0.18(±0.12) 1.52(±0.73) 0.79(±0.55) 0.68(±0.48) 0.53(±0.44)
S(p) 100% 98% 94% 92% 98%

C
D(m) 375(±119) 349(±94) 466(±163) 544(±222) 493(±215)
T (s) 477(±151) 680(±221) 754(±265) 1063(±782) 806(±407)
Tp(s) 0.22(±0.13) 1.66(±0.95) 0.83(±0.60) 0.62(±0.42) 0.55(±0.45)
S(p) 98% 94% 88% 86% 90%

Ours D* lite LPA* RRT (partial) BIT (partial)

Figure 4: Trajectory visualization in a representative complex scenario. The blue line is the
robot’s trajectory starting at the yellow dot and ending at the red dot. The green lines in RRT and
BIT are sampling trees in known areas, which are not included in D(m).

Evaluation results are reported in Table 1. For search-based approaches, our model outperforms
D* lite in terms of S(p), T (s), and Tp(s). Despite D* lite showing a lower D(m), our model still
surpasses it in terms of T (s) by 15-32%, primarily due to the significantly shorter Tp(s), which is
reduced by 83-88%. D* lite is known for finding near-optimal paths, by searching and assessing
node priorities incrementally. However, our results illustrate that D* lite results in high computation
times (the worst Tp(s) among all approaches), which prevents its use for real-time planning. More-
over, our model outperforms LPA* in three criteria by a substantial margin of approximately 23%,
45%, and 73%. For sampling-based approaches, our model surpasses RRT and BIT in all criteria.
Our model finishes the task more than 30-41% faster than BIT, and more than 56-61% faster than
RRT. Additionally, our model demonstrates superior performance in terms of D(m), with improve-
ments ranging from 18-28% to BIT and 31-49% to RRT. There, our results illustrate that both RRT
and BIT are prone to generate inefficient trajectories, which consequently increases D(m) and T (s).
Furthermore, we also conduct ablation experiments (reported in Appendix B) regarding the graph
rarefaction algorithm and design of the encoder.

Fig. 4 shows an example where our planner generates a more efficient trajectory, while other base-
lines suffer from the misleading placement of the target destination. There, our model can be seen
to exhibit more interest in unknown areas, with a higher drive toward the destination. We believe
that this strategy substantially reduces the likelihood of aimless exploration and consistently aids in
generating superior navigation trajectories.

4.2 Comparisons in Gazebo environment

We evaluate our planner and some variants (see Table 2) in a highly convoluted environment charac-
terized by narrow corridors and various obstacles. The robot is required to navigate through a series
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Table 2: Evaluations of our model and baselines in large-scale, complex Gazebo environment
(130 m × 100 m). We conduct these experiments to evaluate the performance of our model and
FAR [24] (An efficient planning framework capable of handling path planning in unknown envi-
ronments). The robot’s constant velocity is 2.0 m/s, the LiDAR’s scanning range is 30 m, and the
D(m) and T (s) are the overall values after traveling to 7 successive goals. Our models were trained
with k = 20, and used as is (no extra training) for the k = 5, 10 tests.

Ours FAR Ours (no GR) Ours (k = 10) Ours (k = 5)

D(m) 1367.2 2060.1 1483.5 1849.2 2103.6

T (s) 850.7 1359.4 1131.5 1112.1 1382.0

Tp(s) 0.83(±0.37) 2.42(±0.35) 1.96(±0.29) 0.38(±0.11) 0.36(±0.12)
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Figure 5: Trajectories comparison of two planners in large-scale indoor Gazebo environment.

of predefined target points successfully, similar to the setting presented in FAR [24]. To ensure fair-
ness and consistency in the evaluations, we reset the planners after reaching each target point, which
ensures each navigation task begins in a fully unknown environment.

As shown in Fig. 5(a) and 5(b), our model is capable of doing more informed exploration and gen-
erating efficient trajectories towards the target destinations. Our experimental results (see Table 2)
demonstrate that the significant reduction achieved by our model in terms of D(m) and T (s), by up
to 692.9m and 508.7s, when compared to FAR. It provides evidence that our model excels in gener-
ating more optimal paths than FAR in unknown environments. Additionally, our model outperforms
FAR in terms of Tp(s), needing only 0.83s per planning step.

In addition, we conduct further comparisons among several variants of our model, where we vary the
number of neighboring nodes k (20, 10, and 5 respectively). Our experimental results indicate that
k = 10 surpasses FAR in all criteria, without additional training. Furthermore, Tp(s) with k = 5
is less than that with k = 10 by only 0.02s, while the D(m) of k = 5 is larger than k = 10 up
to 254.4m, indicating much less efficient trajectories with k = 5. Thus, it is not wise to set k as a
smaller value due to too sparse connectivity between nodes. To evaluate the significance of graph
rarefaction, we test a variant of our model without sparsification, which results in more than 136%
Tp(s) and 8% D(m) compared to k = 20. Therefore, we believe that graph rarefaction significantly
benefits our model.

4.3 Hardware Validation in a Real-World Scenario

Our ground vehicle utilizes a Leishen C16 LiDAR for localization and mapping (shown in Fig. 6).
The real-world scenario is a 60 × 15 m2 laboratory with randomly placed obstacles (e.g., chairs,
boxes, and camera tripod). The vehicle should travel through a series of predefined points by fol-
lowing the waypoint published by our model. After receiving a waypoint, the local planner [36]
generates real-time and feasible motion commands for the ground vehicle. The experimental trajec-
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Figure 6: Validations in real-world environment. The ground vehicle, provided with partially
observed point-cloud data, starts at point 0 and subsequently traverses a series of consecutive points.

tory depicts a high-quality solution, which validates our model’s effectiveness and shows promising
applicability for real-world environments.

5 Limitations

The limitations of our method mainly revolve around adaptive sampling and smooth motion control:

• We currently sample the observations uniformly, which may not precisely capture the spa-
tial representation of the environment and leads to sub-optimal navigation strategies. To
tackle this, future work will develop an online adaptive sampling strategy.

• Our model currently plans the next waypoint under the assumption that the robot is omni-
directonial (i.e., has no motion constraints), which may make reaching this waypoint diffi-
cult in practice. The incorporation of a local motion planner (and its use to inform/train the
policy) may facilitate navigation in unknown environments with dynamic obstacles.

6 Conclusion

In this paper, we propose a context-aware DRL framework for mapless navigation that allows a robot
to build a context of its entire partial belief over the environment, to infer the shortest route towards
a target destination. Our model achieves high-quality decision-making, especially in complex and
large-scale environments, where it allows the robot to sequence short-term movement decisions
informed by global information about known areas. We also propose a graph rarefaction algorithm to
filter out redundant nodes and corresponding edges in the graph input of our neural network, towards
deployment in large-scale environments. We empirically demonstrate that our model outperforms
state-of-the-art baselines in terms of average travel time and average planning time, with powerful
generalizability to complex unknown environments never seen during training. Finally, we validate
our approach in high-fidelity Gazebo simulations as well as on hardware, revealing promises for
robotic deployments in the real world without further tuning.

Future work will first focus on the construction of a local planner with more considerations on kine-
matic/dynamics constraints. Then, we will extend our framework to multi-agent mapless navigation,
where robots need to reason about each other and plan efficient paths cooperatively, by leveraging
synergies and avoiding redundant work.
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Appendix

A Graph Rarefaction

Algorithm 1: Graph Rarefaction Algorithm
Input: non-zero utility node set U , mapM, robot position pt, threshold radius dth
Initialize refined node set V r ← U , covered node set U ← ∅;
for v ∈ U do

if v ∈ U then continue;
Find nearby node set N in dth;
for v′ ∈ N do

if line(v, v′) is collision free then Ū ← v′;
end
Find path ζ from pt to v, set ref node vref = v;
for i ∈ |ζ| do

if line(vref , ζi) is not collision free or L (vref , ζi) ≥ dth then
vref = ζi−1, V

r ← vref
end

end
Output: collision free edge set Er based on V r andM.

B Ablation experiments
We carried out ablation experiments on our model to evaluate the impact of its key parameters. We
first introduced the various ablation cases, which are our model with the original setting (termed
Ours), our model with original viewpoint graph (i.e., without graph rarefaction, termed Ours (no
GR)), and our model with two encoder layers (termed Ours (Encoder-2)). All the cases are evalu-
ated in 2D environments (same test set as in the paper) and reported in Table 3.

Table 3: Ablation experiments on our model in simple (S), medium (M), and complex (C)
scenarios (50 maps per test set). The comparison metrics are average travel distance D(m), motion
execution time T (s), step planning time Tp(s), and test success rate per scenario S(p), respectively.
The standard deviation of the comparative metrics is indicated by the parentheses.

Criteria Ours Ours (no GR) Ours (Encoder-2)

S
D(m) 224(±72) 245(±55) 382(±198)
T (s) 285(±90) 313(±101) 489(±253)
Tp(s) 0.20(±0.08) 0.34(±0.06) 0.18(±0.10)
S(p) 100% 100% 98%

M
D(m) 259(±83) 276(±104) 443(±233)
T (s) 329(±105) 452(±126) 561(±294)
Tp(s) 0.18(±0.12) 0.31(±0.09) 0.13(±0.03)
S(p) 100% 100% 88%

C
D(m) 375(±119) 410(±127) 611(±240)
T (s) 477(±151) 573(±235) 774(±305)
Tp(s) 0.22(±0.13) 0.38(±0.15) 0.16(±0.04)
S(p) 98% 96% 84%

As shown in Table 3, the model Ours (no GR) degrades slightly in terms of D(m), T (s), and S(p)
compared to our original model. However, we note that our original model achieves a computational
efficiency that is twice as fast as the step planning time Tp(s), which indicates the significance of
the graph rarefaction algorithm in our approach. Moreover, we find that the model Ours (Encoder-
2) exhibits a large drop in performance, particularly in the medium and complex scenarios. This
result indicates that an encoder with more layers assists the robot in avoiding myopic decisions,
particularly on long-term mapless navigation tasks.
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