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Abstract. Communication bandwidth is an important consideration in
multi-robot exploration, where information exchange among robots is
critical. While existing methods typically aim to reduce communication
throughput, they either require significant computation or significantly
compromise exploration efficiency. In this work, we propose a deep re-
inforcement learning framework based on communication and privileged
reinforcement learning to achieve a significant reduction in bandwidth
consumption, while minimally sacrificing exploration efficiency. Specifi-
cally, our approach allows robots to learn to embed the most salient in-
formation from their individual belief (partial map) over the environment
into fixed-sized messages. Robots then reason about their own belief as
well as received messages to distributedly explore the environment while
avoiding redundant work. In doing so, we employ privileged learning and
learned attention mechanisms to endow the critic (i.e., teacher) network
with ground truth map knowledge to effectively guide the policy (i.e.,
student) network during training. Compared to relevant baselines, our
model allows the team to reduce communication by up to two orders
of magnitude, while only sacrificing a marginal 2.4% in total travel dis-
tance, paving the way for efficient, distributed multi-robot exploration
in bandwidth-limited scenarios. We open-sourced our full code 3.

Keywords: Deep Reinforcement Learning, Communication Learning,
Multi-robot exploration, Distributed Path Planning

1 Introduction

Information sharing in multi-robot exploration is critical to generating high-
quality, distributed exploration paths [25]: robots must communicate with each
other to obtain more information beyond their own partial knowledge, to make
cooperative decisions that can speed up task completion and avoid redundant

3 https://github.com/marmotlab/Bandwidth-Limited-Multi-Robot-Exploration
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Fig. 1. Example application of our approach to a multi-robot exploration task in a
bandwidth-constrained environment (here, underwater).

work. Under normal circumstances, it is usually viable for most exploration
planners to share vast amounts of important information among team members
(such as full partial maps, or robot trajectories) continuously during the mis-
sion. However, these approaches become impractical in bandwidth-constrained
settings such as underwater and underground environments [11,22], where com-
munication range is often inversely linked to communication bandwidth. Recent
research shows that the transmission of an occupancy grid map usually requires
a bandwidth of ∼ 2 Mbps [23], but that underwater communication bandwidth
rarely exceeds 100kbps [11]. This problem of bandwidth constraints is further
exacerbated in larger teams, where (even modern) communication channels may
not be able to withstand high communication throughput between numerous
robots [14].

There are currently two main strategies to reduce communication throughput
among robots. The first strategy is to simply decrease the frequency of communi-
cations [17]. However, this strategy often leads to poor cooperation, mainly due
to the lack of up-to-date information from other robots. The second strategy is
to reduce the size of messages, e.g., by only sharing low-dimensional represen-
tations of each others’ partial map, which recipients can then process to recon-
struct/estimate the full map [10,30]. However, these approaches usually come
at important computational costs and may result in lower exploration efficiency
when essential details from the original map are lost during map exchange.

To address these problems, we propose a novel DRL-based multi-robot ex-
ploration framework based on communication learning and privilege learning,
tailored for bandwidth-limited scenarios. Our framework relies on learned mes-
sages as an alternative to conventional map sharing. Our approach primarily
relies on communication learning to allow robots to learn to encode their own
belief map into a small, fixed-sized message that is shared with other robots. In
doing so, our communication layer allows robots to learn to identify, encode, and
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share the most salient portion of their individual belief with each other, within
given constraints over message length (i.e., maximum bandwidth within the sys-
tem). Robots then learn to reason about their own knowledge/state as well as
receive messages to form an implicit representation of the overall explored en-
vironment. This enables the generation of high-quality, distributed exploration
paths. Following our recent work in single robot exploration [5], we rely on privi-
leged learning to boost the performance of our final model. Specifically, we let our
critic network access ground truth information during training only, allowing it
to provide more accurate action evaluation for the training of the robots’ policy
network. This training approach significantly enhances our final model’s long-
term planning capabilities, by allowing robots to reason about their knowledge,
as well as received messages, at different spatial and temporal scales.

We compare our model to a conventional multi-robot exploration planner in
a set of 100m×100m indoor maps and investigate the impact of using learned
messages over traditional partial map sharing. Our results show that our model
can reduce the volume of communications by up to 99.2%, at the cost of a
marginal 2.4% performance loss. These results highlight the capability of our
robots to understand and reason about the current global state of the exploration
task, without explicitly relying on other robots’ detailed map. We finally train a
variant of our DRL-based model, where robots are allowed to both share learned
messages and explicit partial maps. This model outperforms our map-sharing-
free approach and the conventional baseline by 11.4% and 9.2% respectively in
terms of exploration distance, highlighting the power of our general framework in
high-bandwidth scenarios where full maps may be reliably shared among robots.

2 Prior Works

2.1 Multi-robot Exploration

Approaches to conventional multi-robot exploration are methodologically classi-
fied into two main categories: frontier-based and sampling-based. For example,
Yu et al. [29] applied artificial potential fields to attract robots towards di-
verse frontiers while ensuring mutual repulsion to maintain distance between
each other. Most recently, Cao et al. [1] proposed an mTSP (Multiple Traveling
Salesman Problem) based global planner in conjunction with a sampling-based
local planner to explore large-scale environments. The centralized global plan-
ner segments exploration areas into several vital nodes and then assigns them
to robots. However, these approaches remain greedy and prioritize short-term
efficiency, often resulting in shortsighted path planning and suboptimal perfor-
mances.

Given the rapid advancement of neural networks, many works have looked
to deep learning to enhance autonomous exploration. Niroui et al. [19] first
pioneered the integration of frontier-based methods with deep reinforcement
learning to resolve short-sightedness problems in single-robot exploration. Yu
et al. [28] employed asynchronous multi-robot proximal policy optimization as
a training method to address multi-robot exploration. Concurrently, Luo et
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al. [16] leveraged graph convolutional neural networks to enhance the efficiency
of multi-robot exploration. Our most recent work proposed ARiADNE [3,5], an
attention-based neural network to achieve state-of-the-art in long-term planning
for single-robot exploration. In this work, we extend the ARiADNE framework
to multi-robot exploration under bandwidth limitations.

2.2 Communication in Multi-Robot Exploration

Many existing methods [16,28,29] adopt continuous communication to gather up-
to-date information that assists robots in making cooperative decisions. However,
this often comes at the cost of high communication bandwidth requirements.
Some methods reduce communication throughput by decreasing the frequency
of communications. For example, Masaba et al [17] proposed a method to utilize
a generalized Voronoi graph to segment the environment into sub-regions and
allocate robots into distinct regions to explore. Robots only communicate with
each others when their own region of responsibility has been fully explored, at
which point a new region will be allocated to them. However, this method rep-
resents a trade-off between exploration efficiency and communication frequency,
because the lack of real-time information from other robots often results in poor
cooperation. Alternatively, some methods chose to reduce the size of messages.
For instance, Gaussian Mixture Model (GMM) Maps [10] involves exchanging
key map parameters and then attempting to reconstruct the map. Nevertheless,
these approaches require substantial computational resources, hindering their
practical implementation for exploration tasks that demand real-time decision-
making. Another example [21,30] extracts semantic information from the map
to create a compact topological map that is shared with other robots. However,
this approach often results in lower exploration efficiency due to the loss of some
details from the original map in the topological representation.

2.3 Communication Learning

Foerster et al. [7] introduced the concept of communication learning in multi-
robot reinforcement learning: robots learn what information/message to share
within the team, thereby effectively augmenting the knowledge available to indi-
vidual robots and mitigating the challenges posed by partial observability. Fur-
thermore, Freed et al. [8] introduced a differentiable discrete binary channel for
communication learning and demonstrated that this approach surpasses the ro-
bustness and performance of the reinforced communication learning [7] proposed
by Foerster et al. The key component in communication learning is message
generation. Messages can be generated through two methods: by inputting each
robot’s observation into a message generation module [7,12,13] or by sequentially
processing a message that is circulated among the robots [20,26]. Specifically,
Kim et al. [13] introduced a novel scheme of intention-sharing within communi-
cation learning by swapping intentions that are encoded from partial observa-
tions. On the other hand, FCMNet[26] and FCMTran [26] let robots communi-
cate with each other by enabling sequential message processing among robots,
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achieving state-of-the-art status in StarCraft II Micromanagement benchmarks.
These works demonstrate that communication learning can enable robots to re-
construct and utilize information from high-dimensional compressed messages.

3 Problem Formulation

In this work, we consider multi-robot exploration under constraints over commu-
nication bandwidth. We let W be a bounded environment, which can be divided
into free areaWf and occupied areaWo, whereWf ∪Wo =W andWf ∩Wo = ∅.
The belief map Mi is locally maintained by the i-th robot about W , and is cat-
egorized into three components: free area Mf

i , occupied area Mo
i , and unknown

area Mu
i . Initially, each robot starts at p0i with an empty individual belief map,

such that Mi = Mu
i . During the exploration task, each robot makes individ-

ual decisions and generates/follows a trajectory, i.e., a sequence of waypoints
ψi = {p0i , p1i , ...}, each located in the free area Wf . Each robot updates its be-
lief map according to regular measurements along its path, by (re-)classifying
formerly-unknown area into either Mf or Mo.

The objective of multi-robot exploration can be formulated as a MinMax
function, where we aim to minimize the maximum trajectory length among all
robots (i.e., makespan of the task):

min max
i∈1,...,n

L(ψi), (1)

where L(ψi) =
∑m

t=1D(pt−1
i , pti) is the trajectory length to complete exploration,

with D(pt−1
i , pti) the distance between pt−1

i and pti. We consider the multi-robot
exploration completes when the exploration rate (i.e., the proportion of explored

free area |
⋃n

i=1M
f
i | compared to the true free area in the environment Wf )

exceeds a given threshold θ.
In this work, we further consider a bandwidth constraint for robots’ com-

munication during exploration, preventing robots from sharing their local belief
map M t

i with each others (in practice, we impose a maximum of 2̃56 bytes
per message). Instead, robots can only exchanges compact messages, containing
small amounts of information such as their current position. Note that, without
accurate map sharing, robots cannot fully confirm whether an area in the envi-
ronment has been explored by others or not. Therefore, in such a problem setup,
it is more reasonable to set the exploration objective as efficiently exploring most
of the environment rather than the whole environment. Consequently, we set the
exploration terminating threshold θ between [0.9, 1] in practice.

4 Distributed Bandwidth-Limited Exploration

4.1 Exploration As An RL Problem

We cast the exploration problem as a partially observable Markov Decision Pro-
cess, formulated using the tuple (S,A, Γ,R,Ω,O), where S denotes the state
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Fig. 2. Architecture of our policy and critic networks.

space, A the action space, Γ the state transition function, R the reward set,
Ω the observation space of the robot, and O the observation function. During
exploration, the robot does not have access to the true state st,∀st ∈ S; instead,
it operates based on its observation ot,∀ot ∈ Ω. According to its observation,
each robot selects and executes action at ∼ π(· | ot), where it selects and travels
to the next way-point pt. The next state st+1 is determined by the current state
st and the action at, through the state transition function Γ (st+1 | st, at) (un-
known to the ). Each roboti’s objective is to learn an optimal policy π∗(ati | oti)
that maximizes the long-term expected return E [

∑m
t=1 r

t], where rt ∈ R. In the
following sections, we detail the observation, action space, and reward structure
of our RL formulation.

4.2 Policy Network

Policy Network Observation Similar to our prior works [3,5], the observa-
tion for each robot is an informative graph Gt = (V t, Et

i ) defined over the free
explored space in each robot’s partial map. Et

i is defined as the collision-free
edges connecting each vertex in V t with its k nearest neighbors. Each vertex
vi = (ctx, c

t
y, u

t, gt, pt) ∈ V t has four components, namely coordinates, utility,
guidepost, and position indicator, where coordinates (ctx, c

t
y) represent the 2D

position of the graph vertex, utility ut measures the number of observable fron-
tiers from that vertex, and the guidepost gt component represents whether this
vertex has been visited previously. Extending [3] to a multi-robot setting, we fur-
ther augment the observation with an additional component called occupancy,
which indicates whether each vertex is currently occupied by the current robot,
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by another robot, or is unoccupied, with values -1, +1, and 0 respectively. This
component enables each robot to understand the geometric relationships between
their position and those of other robots, thereby improving their cooperative ca-
pabilities. To represent another robot located outside the area explored by the
robot so far (i.e., outside the area covered by its graph Gt), we manually insert
a temporary vertex v to the graph Gt.

Graph Encoder For each robot, we use a graph encoder to extract high-
dimensional and informative node features from its informative graph. The graph
encoder contains multiple consecutive attention layers [24], each learning to in-
telligently fuse neighboring node features. We first project every node from V t in
the informative graph Gt into a high-dimensional (dimension d = 64 in practice)
node feature. We denote those raw node features as F raw ∈ Rd×N , where N
is the number of nodes in the graph. Thereafter, we input F raw and the edge
mask M̂ into attention layers. The edge mask M̂ ∈ RN×N is calculated from

Et
i , where M̂ij =

{
0, (vi, vj) ∈ Et

i

1, (vi, vj) /∈ Et
i .
. It is applied in the attention layers to only

allow the merging of neighboring node features. Each attention layer reads:

qi =WQhqi , ki =WKhk,vi ,

vi =WV hk,vi , uij =
qTi ·kj√

d
,

wij =

{
euij∑n

j=1 euij , M̂ij = 0

0, M̂ij = 1
, h′i =

∑n
j=1 wijvj ,

(2)

where WQ,WK ,WV ∈ Rd×d denote learnable weight matrices, hq is the query
source, and hk,v is the key-and-value source. Note that in the graph encoder,
hq = hk,v (known as self-attention). For the first attention layer, hq = hk,v =
F raw. The following layers sequentially take the previous layer’s output as input.
We obtain the output of the final attention layer as enhanced node features
F̂ ∈ Rd×N .

Current State Decoder The current state decoder distills the relationships
between the current robot position and all other graph vertices. We first input
the enhanced node features of the current node F̂c as the query source and all
enhanced node features F̂ as the key and value source into an attention layer.
Thereafter, we concatenate the output features together with F̂c and re-project
the output to a d-dimensional feature µ. Here, µ represents the knowledge about
current accessible state (not global state, because our robot’s observation is
partial), capturing multi-scale dependencies among previously traversed areas.
Finally, µ is broadcast to all other robots as this robot’s message for this decision
step, as we discussed in section 3.

Cooperation Decoder The cooperation decoder aggregates relationships be-
tween an agent’s own learned message (output of the current state decoder) and
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Fig. 3. Observation structure for our policy and critic networks. The left part is
the ground truth observation used in our critic network, while the four plots on the right respectively
represent the partial observations used as input to the robots’ policy networks. The large dots in
red, blue, yellow, and green represent the current position of the robots, while the smaller nodes’
varying colors denote varying exploration utility. We omit the depiction of the collision-free graph
edges for visualization purposes.

the received learned messages from other robots to form an implicit representa-
tion of the overall explored environment. We first take roboti’s learned message
µt
i as the query source of a cross-attention layer. Concurrently, we concatenate

all other robots’ learned messages, µt
−i = µt

1:n \ µt
i, and pass it into the same

attention layer as the key-and-value source. From here, we derive the coopera-
tive feature F co ∈ Rd×1 , which represents the implicit context of the overall
explored environment reasoned from all robots’ learned messages. Notably, the
cooperation decoder can accept messages from an arbitrary number of robots,
highlighting the scalability of our approach to different team sizes.

Action Space The action space comprises all neighboring vertices to the cur-
rent vertex the robot is occupying. We pass the cooperative feature F co and
the neighboring nodes enhanced feature F̂nbr into the pointer layer [3,4,15]. Its
output takes the form of a logarithmic probability distribution, from which we
sample an action during training, and select an action greedily during test-
ing/deployment. Overall, the attention-based neural network outputs a stochas-
tic policy described by π(ati | oti) = pt+1

i , (pt+1
i , pti) ∈ Et

i .

4.3 Training

We employ parameter sharing to train a homogeneous policy for all agents.
Specifically, we rely on the soft actor-critic (SAC) algorithm [6,9], which trains a
policy networks and double critic networks. Compared to standard SAC, follow-
ing our previous work [5], we further propose a privileged critic network which
significantly boosts the performance of the trained model.

Privileged critic network We employ privileged learning to endow the critic
(i.e. teacher) model with ground truth map knowledge to effectively guide the
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policy (i.e. student) model during training. It aims to increase the accuracy of
the state-action values (the predicted long-term return) predicted by the critic
network, which is then used to guide the policy network training. In particular,
compared to our policy network discussed in the previous section, we modify
the observation and network structure of the critic network. First, our critic
network utilizes a ground truth graph Ĝt = (V̂ t, Êt) (derived from the ground
truth state st) as the observation instead of the partial informative graph Gt

(derived from belief map M t
i ), as illustrated in Figure 3. There, utilities of

nodes in V̂ t are determined by the number of neighboring unexplored free area.

Fig. 4. The ablation of Privi-
leged Learning. Both models have
been trained for 20,000 episodes to con-
verge. A lower travel distance signifies
better model performance.

Second, we eliminate the communication layer
from the critic network. As the model has ac-
cess to the global ground truth already, mes-
sages shared by other agents are not help-
ful for return estimation. As seen from fig-
ure 4, the introduction of privileged map in-
formation significantly enhanced training per-
formance by 23.8%. Moreover, we notice im-
proved training stability as seen from lower
variance compared to the standard SAC. This
demonstrates that the critic network can bet-
ter guide the policy network with more accu-
rate long-term return estimation derived from
privileged information.

Reward Structure We modify our training reward structure based on our
previous single robot exploration work [3] to encourage robots to collaboratively
explore the environment. The original reward structure in [3] consists of three
parts: (1) The first part ro, is the is the number of observed frontiers at the new
viewpoint. (2) The second part rc is a punishment on the distance between the
previous and new viewpoints. (3) The last part rf is a finishing reward given
after the environment has been fully explored. In our approach, we perform
three modifications to this original reward function. First, we change ro to the
unexplored area around the new viewpoint using the ground truth map. This
aims to provide a more accurate assessment of the exploration utility given the
selected position. Second, we introduce a team reward ξ, which is related to
the newly explored area discovered between the previous and current viewpoints
(i.e., ξt = ρ(

⋃n
i=1M

t+1
i \

⋃n
i=1M

t
i ), where ρ is a normalize factor). This reward is

designed to encourage robots to explore cooperatively instead of greedily pursu-
ing individual exploration reward ro . Third, we introduce a momentum reward
λti to encourage robots to move in any general direction with minimal back-
tracking. Its purpose is to shorten the highly random processes at the beginning
of training and optimize robot’s trajectory. The calculation of λti is detailed in
algorithm 1. Thus, the overall reward at decision step t is

rt(at, ot) = ro + λti + ξt + rf − rc, (3)
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Algorithm 1 momentum reward calculation

Require: current position pt = (x1, y1), next way-point pt+1 = (x2, y2), previous step
movement direction α⃗;

1: current step movement direction β⃗ ← pt · pt+1 = (x1x2, y1y2);

2: momentum reward λt ← 0.1× (α⃗ · β⃗);

3: α⃗← β⃗;
4: Return: λt

Training Details Our model is trained on a set of 4000 dungeon maps like
figure 3, each 100m× 100m. The sensor range of our robots is 20 meters. Nodes
are uniformly distributed 4 meters apart in the free area. Each node connect to
its neighboring nodes up to 12 meters away (i.e., max 24 neighboring nodes).
During training, we set the number of robots N = 4, the max episode length is
set to 128 steps, the batch size to 256, the learning rate to 1e− 5, and discount
factor γ = 1. We set the episode buffer size to 20000, and commence training
when at least 5000-step data have been collected. We utilize Ray [18] for parallel
data collection. The model requires around 20,000 episodes to converge, taking
around 108 hours on a desktop with an Intel i9-9900k CPU and two NVIDIA
RTX 2080 SUPER GPUs.

5 Experiments

5.1 Experimental Setup

We extend TARE [2]’s TSP-based local planner to multi-robot settings, and refer
to it as mtsp based. Specifically, the resulting mtsp based planner samples
the frontiers into viewpoints and connects them through solving a mTSP (in
practice we use ORtools). Note that this exploration planner is distinct from the
multi-robot planner used in MUI-TARE [27] and MTARE [1]: MUI-TARE [27]
specifically aims at enhancing the quality of map merging during the explo-
ration process, while MTARE [1] focuses on exploration under communication
constraints in large-scale environments. Therefore, we adopted mtsp based as
our baseline, as a better alternative to fairly represent conventional algorithms.

In mtsp based, each robot shares its own belief map with other robots,
forming a global belief map with positions (

⋃n
i=1M

t
i , p

t
1:n). On the other hand,

for a fair comparison of the long-term exploration capabilities, we proposed a
variant of our model: global map, which also has access to shared belief maps.
That is, its observation is (

⋃n
i=1M

t
i , ψ

1:t
i , pt1:n, µ

t
1:n) instead of the original ob-

servation (M t
i , ψ

1:t
i , pt1:n, µ

t
1:n).

In our experiments, robots communicate through learned messages at every
time step t, where each message packet is a 1x64-dimensional float32 tensor (i.e.,
64×4 bytes). Our competing baselines communicate using belief map messages,
where each message packet is a H×W int8 tensor (i.e., Ht×W t×1 bytes), and
H and W is the height and width of the map message respectively.
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Table 1. Comparisons with baselines (θ = 0.95).The criteria for evaluation in-
cludes the average and standard deviation of travel distance (abbreviated as D), upload
data volume (abbreviated as UV), download data volume (abbreviated as DV) and to-
tal planning time (abbreviated as T). Lower values for these metrics are preferable (↓).
When collecting statistics, we report the performance of the worst-performing robot
within each scenario.

Nums of robot mtsp based global map ours
4 8 4 8 4 8

D(m)↓ 200.8(±44.0) 182.2(±41.7) 182.2(±35.6) 150.1(±47.5) 205.7(±64.6) 168.9(±84.45)

UV(MB)↓ 656.2(±206.8) 554.7(±191.4) 679.2(±174.1) 516.6(±230.9) 5.7(±1.8) 4.5(±2.2)

DV(MB)↓ 1791.1(±566.0) 3303.1(±1146.9) 2037.7(±522.5) 3616.4(±1616.8) 17.2(±5.5) 32.0(±15.7)

5.2 Comparisons Analysis

Fig. 5. examples maps from our test-
ing set.

As shown in Figure 5, we construct
100 dungeon maps (100m × 100m) for
benchmark testing which have never
been seen by the agents during train-
ing. We first investigate the perfor-
mance of the agents’ learned messages
µt
i for information sharing. As illus-

trated in Table 1, when the team size
N = 4, our model saves 99.2% com-
munication volume and surpasses mtsp based by 2.4% in terms of travel
distance. These results indicate that learned messages can help robots reason
about the global knowledge/state to generate high-quality, distributed explo-
ration paths, without explicitly sharing detailed maps.

We further train a version of our DRL-based model, where robots are allowed
to both share learned messages and explicit partial map. Even when sharing
full belief maps, our variant global map still surpasses mtsp based by 9.2%
in terms of travel distance. This demonstrates that our approach also exhibits
exploration efficiency in high-bandwidth scenarios, where sharing maps among
robots is possible.

Finally, we note that the scalability of our approach to larger team sizes is an
important criterion for a distributed multi-robot system. Without retraining, we
double the team size N from 4 to 8. As demonstrated in Table 1, our approach
once again outperforms mtsp based by 7.2% in terms of travel distance. Fur-
thermore, the travel distance margin between global map and our approach
still remains similar, even with this larger team size (only 11.1% higher than
global map when N = 8). We believe that these result demonstrate the robust
scalability of our approach.

6 Conclusion

In this work, we propose a DRL-based multi-robot exploration framework that
achieves a significant reduction in bandwidth consumption, while maintaining



12 Yixiao Ma et al.

high exploration efficiency. Our approach leverages communication learning to
embed the most salient information from individual beliefs (partial map) of the
environment into fixed-sized messages that are shared with other robots. Robots
then reason about their own belief as well as received messages to form an im-
plicit, global context of the environment (and overall state of the exploration
task) and generate distributed exploration paths. To these ends, our approach
leverages privileged learning based on learned attention mechanisms, to endow
the critic network with ground truth map knowledge and better guide the policy
network during training. Compared to our baselines, we demonstrate 99.2% com-
munication bandwidth savings while only sacrificing a marginal 2.4% in travel
distance. These results highlight the capability of our robots to understand and
reason about the current global state of the exploration task, without explicitly
relying on other robots’ detailed belief map.

Future works will focus on further reducing the volume of communication
within the team, to minimize bandwidth by reducing the frequency of commu-
nication autonomously or shrinking message sizes. We will also further enhance
the performance of our model with more efficient communication, and consider
cases with intermittent communications. Finally, we hope to conduct real-world
experiments to validate the feasibility of our method in the future.
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