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Abstract—Simulation has become a powerful tool in robotics,
enabling safe and rapid testing of robots prior to deployment.
It also holds great potential to aid in real-time decision-making
by emulating the surroundings on-the-fly using onboard per-
ception modules. In this work, we introduce a simulation-based
decision-making framework for the safe autonomous landing
of a multirotor unmanned aerial vehicle (UAV) over difficult
terrains. Our framework consists of first obtaining a terrain
model using onboard sensors. It then assesses a range of possible
landing configurations using a digital twin of the UAV in a high-
fidelity physics-based simulation with PX4 firmware running
in-the-loop. Finally, it identifies the safest simulated landing
configuration and uses this to perform the landing in the real
world. We validate our framework over complex, previously
unseen terrains with a real multirotor. Our framework matches
human-level judgment on how best to land on multiple instances
of complex terrain and perform safe landings in real-world
tests. This can be seen at https://youtu.be/G3nzaBFDHBY. These
results show the potential of our approach for aerial robotics
applications involving physical interaction.

I. INTRODUCTION

Physics-based simulators have long been a useful tool for
roboticists in testing or training robotics systems prior to
deployment [1]. More recently, these simulators have also
been explored as a means of enhancing robot interaction with
the environment during deployment.

There are many instances of this in the literature. For robot
manipulation tasks in [2]–[4], actions are tested in simulation
prior to real-world execution. This provides a prediction of the
physical consequences of these actions on the environment,
which is used to adjust the parameters of the control sequence.

Similar techniques using real-time physics-based simula-
tion have also been applied to mobile robotics. In [5], a sim-
ulated digital twin is run in parallel with a real quadrupedal
robot to detect terrain anomalies. Furthermore, for unmanned
aerial vehicles (UAVs), a digital twin is utilized for mission
guidance in [6] and to improve landing accuracy in [7].

In the field of simulation-based decision-making, a method
of particular interest to us is robot imagination [8]–[10]. It
uses physics-based simulation as a fully explainable method
for enabling robots to interact with previously unseen house-
hold items. This approach involves experimenting with a
virtual model of an object, to determine whether the object’s
affordances [11] can be leveraged to satisfy a desired task.

Inspired by robot imagination, we introduce a framework
for decision-making during contact-based UAV applications.
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Fig. 1. Safest landing identified in simulations (left), performed in the real
world (right).

We validate the framework by applying it to the safe au-
tonomous landing of a multirotor on difficult terrain. This task
is an unavoidable and often challenging form of interaction
with the environment. Various approaches have been proposed
to address this challenge, including mechanical [12], [13],
and software-based [14] solutions. Belonging to the latter,
our framework involves four steps:

1) obtain a terrain model using onboard sensors,
2) test a range of landing configurations with a digital twin

in high-fidelity software-in-the-loop (SITL) simulations,
3) identify the safest landing configuration,
4) perform the safest landing in the real world (Fig. 1).

We test the framework’s components in isolation, keeping the
real-time implementation as future work.

In the remainder of this paper, Section II defines the safe
landing problem, Section III describes the proposed frame-
work and Section IV discusses the testing of its components.
Finally, key conclusions are drawn in Section V.

II. PROBLEM STATEMENT

Position control of multirotor UAVs is typically achieved
by commanding desired position set-points in three axes: x,
y, z, and a heading (yaw) set-point, ψ. These are relative to
a local reference frame and are denoted as:

p = [x, y, z, ψ]T . (1)

To hover above a landing point (xlp, ylp), a UAV is first
commanded with [xlp, ylp, zlp + ∆z]T , incorporating a safety
offset in z-axis. Then, one needs to find a safe orientation
(ψsafe) to land based on terrain characteristics. Once a
favorable ψ value is determined, the UAV is commanded with:

pland = [xlp, ylp, zlp +∆z, ψsafe]
T , (2)

followed by removing the safety offset, ∆z, in the z-axis to
perform the safe landing. Our specific problem in this work is
to determine ψsafe based on terrain characteristics observed
through onboard perception. We assume that the values of
xlp, ylp, zlp have already been set.

https://youtu.be/G3nzaBFDHBY


III. METHOD

The general robot imagination [8]–[10] framework begins
with model acquisition of relevant objects in the environment.
Next, candidate actions are performed on the object in simu-
lation. Based on the interactions observed, one can perform
classification to determine how suitable the object and the
candidate actions are for the given task. Finally, the robot
acts according to the classification results. Figure 2 depicts
these components in the context of UAV landing.

In this work, we apply the framework to a DJI F450 quad-
rotor with a modified rectangular landing gear. The UAV
has a Pixhawk 4 flight controller running open-source PX4
firmware [15]. We use OptiTrack motion capture system for
localization during flight. In the following subsections, we
describe our implementation of the framework’s components.

A. Model Acquisition

To obtain the terrain model, we mount an Intel Realsense
D435 depth camera to the UAV, which produces point cloud
data (PCD). We record the PCD with an onboard computer
and convert it to a stereolithography (STL) file on an external
computer. This conversion accounts for the pose of the camera
relative to the UAV’s center of mass and filters out any nearby
data points unrelated to the terrain. The STL file is used by a
spatial data file (SDF) to define the terrain’s appearance and
collision properties in simulation.

B. Simulation

We assess the interaction during landing using physics-
based simulation of the obtained terrain model and a digital
twin of the UAV. The twin has near-identical dimensions and
physical properties to the real UAV. We also use SITL to
emulate the UAV’s flight control.

We implemented the simulation in Gazebo. The Robot
Operating System (ROS) is used to enable communication
between the PX4 firmware and Gazebo (via the MAVROS
package [16]) and coordinate the simulation procedure.

C. Classification

We select ψsafe from a set of headings evenly distributed
across the possible range. Note that the range need not always
be 0-360° for symmetrical airframes. For every simulated
landing, once the UAV has settled on the ground, we measure
the nutation angle, N (i.e., the angle between the local z-axis
and the UAV body z-axis). Zero nutation angle corresponds
to a perfectly level landing. To account for stochasticity in
high-fidelity simulations, we run m simulations for every yaw
angle candidate and record the nutation angle as:

N(ψact(j), i) = cos−1(cosϕicosθi), (3)

where
I = {i : i ∈ Z, 0 < i ≤ m},
J = {j : j ∈ Z, 0 < j ≤ n}.

(4)

The terms ϕi and θi refer to the roll and pitch angles at
each simulation once the UAV has settled on the ground. The

Fig. 2. The decision-making process for landing a UAV on complex,
previously unseen terrain. The process is categorized into the stages defined
by the robot imagination framework [8]–[10].

heading angle candidate, ψact(j) is selected from n evenly
spaced yaw angle candidates between 0 and the largest test
angle, ψmax, at each simulation batch as:

ψact(j) =
jψmax

n
. (5)

We then calculate a final safety score (S) for every yaw
angle as:

S(ψact(j)) = max(N(ψact(j), i)). (6)

Finally, we determine the most favorable landing orienta-
tion among the candidates, ψ∗ = ψact(j

∗), using:

j∗ = argmin
j

S(ψact(j)). (7)

S(ψact(j∗)) is compared to a threshold to determine if the
chosen landing is safe. If it is, the corresponding yaw angle
qualifies as the safe heading, ψsafe. Here, we define the
threshold by taking the smaller value from two tests. Firstly,
we determine the maximum nutation angle that would tip the
UAV back on its landing gear on a level surface. Secondly,
we take the nutation angle that results in collision between
the propeller and level ground when pivoting about a leg.

IV. EXPERIMENTS

We test the framework’s components on multiple real-world
landing scenarios, as described in the following subsections.

A. Dataset

We assess the framework over three terrains, as shown in
Fig. 3. The landing point (xlp, ylp) is set at the origin of the
x- and y-axes shown in the figure, zlp is set at the top-most
surface of the terrain, and a safety offset (∆z) of 0.8 m is
used. For a point of comparison, one of our lab’s drone pilots
exercised their judgment on how they would intuitively land
the UAV on such terrain. In the case of Terrain 2, the pilot
would not attempt to land. However, for Terrain 1 and Terrain
3, the pilot could visually identify landing orientations that
would allow for contact of all four legs on the top layer of
the terrain, forming a level base. This occurs at approximately
135° and 125°, for Terrain 1 and Terrain 3, respectively.



(a) Terrain 1.

(b) Terrain 2.

(c) Terrain 3.

Fig. 3. Real-world images of the terrains (two columns on the left) and their
simulated versions (right column) obtained through the real point cloud. The
UAV is commanded to hover at 0.8m above the top-most surface, in line
with the z-axis indicated in the images.

Figure 3 shows the models in Gazebo following the con-
version to STL. For the most part, the accuracy of the models
is satisfactory for our purposes, as the topmost surfaces with
which the initial interaction occurs are accurately recreated.

B. Running the Simulations

The simulation hyper-parameters for all terrains are shown
in Table I. Given the UAV body’s symmetry, we consider half
the possible range of yaw angles (i.e., ψmax = 180°).

The results of each set of simulations are shown in Fig. 4.
For Terrain 1, the safest heading was 135°, which yielded a
safety score of 0.035 rad. This simulated landing is shown in
Fig. 5a. All other headings resulted in tipping of the UAV,
with almost all cases resembling that shown in Fig. 5b. This
result perfectly matches the pilot’s ideal landing orientation.

As expected, for Terrain 2, no safe landing orientations
were identified. The best safety score was 1.37 rad at a
heading of 63° which is above the threshold. All cases resulted
in the UAV tipping, often to the extent shown in Fig. 5c.

Simulations on Terrain 3 yielded the safest landing orienta-
tion at a heading of 126°, which is only 0.8% larger than our
estimate. The error is likely due to the discretization of the
full range of possible angles. The simulated landing is shown
in Fig. 5d, which yielded a safety score of 0.033 rad.

C. Real-World UAV Landing

To test the framework’s act component, we perform real-
world landings of the UAV on Terrain 1 and Terrain 3, for
which simulations yielded safe landing orientations. The UAV
is commanded to autonomously land using the obtained value
of ψsafe. These landings are shown in Fig. 6. In both cases,
the UAV lands safely at an almost level orientation.

TABLE I
SIMULATION HYPER-PARAMETERS. THESE ARE KEPT CONSTANT FOR

EXPERIMENTS WITH ALL THREE TERRAIN MODELS.

Hyper-parameter Value
Number of yaw angles, n 20
Maximum yaw angle, ψmax 180°
Number of iterations, m 8
Safe landing threshold π
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(a) Final nutation angles on Terrain 1. The lowest maximum
nutation angle occurred at 135°. Therefore, this is the safest ψact.
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(b) Final nutation angles on Terrain 2. The lowest maximum
nutation angle occurred at 63°. Therefore, this is the safest ψact.
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(c) Final nutation angles on Terrain 3. The lowest maximum
nutation angle occurred at 126°. Therefore, this is the safest ψact.

Fig. 4. Final nutation angles for landings on the terrain models with various
heading choices.

D. Limitations

Despite safe outcomes in all test cases, our framework still
faces limitations. Firstly, the depth camera does not provide
a complete terrain model. Physical characteristics such as
compliance and friction are not included, and the terrain’s
geometry can be incomplete. The latter is evident from the
models of Terrain 1 and Terrain 3 in Fig. 3 but could be
improved by stitching together PCD from multiple angles.

The next limitations concern the landing classification from
Section III-C. For testing on Terrain 2, we noted outliers
where the UAV tipped over during landing but rolled into a
level final position. This was incorrectly classified as safe as
we only consider the UAV’s final state. This presents a need
for an improved safety metric using factors like the offset
from [xlp, ylp, zlp]T in the final resting position or changes
in UAV pitch and roll over time. Furthermore, our landing
definition limits us to the exploration of a single variable,



(a) Safest landing on Terrain 1
(ψact = 135°, i = 3).

(b) Unsafe landing on Terrain 1
(ψact = 9°, i = 6).

(c) Unsafe landing on Terrain 2
(ψact = 0°, i = 0).

(d) Safest landing on Terrain 3
(ψact = 126°, i = 0).

Fig. 5. Key snapshots from the simulations.

(a) Successful landing on Terrain 1 with ψact = 135°.

(b) Successful landing on Terrain 3 with ψact = 126°.

Fig. 6. Successful real-world UAV landings.

ψact. To increase the chances of finding a safe landing, we
can explore various values for xlp, ylp or for speed of descent.

Finally, the set of simulations for each terrain took ap-
proximately one hour, which is not suitable for real-time
implementation. We will optimize the simulation procedure
by running Gazebo simulations headless with a real-time
factor above 1.0 or using simulation software like Nvidia’s
ISAAC that can run on GPU.

V. CONCLUSION

In this work, we applied a robot imagination [8]–[10]
inspired framework to UAV landings on complex, previously
unseen terrain. This involved obtaining a terrain model using
onboard sensors, simulating repeated landings to determine
the best landing orientation, and using this information to
land the UAV in the real world. These components were tested
independently and yielded results that matched human pilot
judgment. This shows the potential for applying the frame-
work to more complex aerial physical interaction scenarios.

Future work will be on improving our safety metric and
simulation run-time. Furthermore, we will apply the frame-
work to more complex UAV systems involving interaction,
such as UAVs equipped with grippers.
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