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ARTICLE INFO ABSTRACT

Keywords: Unmanned aerial vehicles (UAVs) are widely used in reconnaissance missions due to their autonomy and
Multi-UAV flexibility. Efficient mission planning for multiple UAVs is crucial for tasks such as traffic monitoring and data
Deep reinforcement learning collection. However, existing approaches to multi-UAV reconnaissance mission planning problem (MURMPP)

Allocation and routing

. ; often struggle with high computational demands, leading to suboptimal solutions. To overcome this challenge,
Simulated annealing

we introduce a divide-and-conquer framework that splits the problem into two phases: target allocation
and UAV routing, effectively reducing computational complexity. Specifically, we propose a hybrid method,
SA-NNO-DRL, which combines the nearest neighbor optima-based deep reinforcement learning (NNO-DRL)
approach with simulated annealing (SA). In the UAV routing phase, NNO-DRL constructs routes for each UAV,
while SA reassigns uncovered targets during the target allocation phase. The two phases alternate until the
termination condition is met. Experimental results show that our method outperforms exact solvers, heuristics,
and learning-based approaches, finding the most solutions deemed best in 8 out of 12 instance groups within
0.5 s. Our method particularly excels in larger problems and adapts well to varying target sizes, hub locations,
and UAV numbers.

1. Introduction In this paper, we study the multi-UAV reconnaissance mission plan-
ning problem (MURMPP) [5] in the context of traffic monitoring, i.e., a

With the rapid urbanization and surge in vehicle usage in recent cooperative combinatorial optimization problem in essence, which is
years, the transportation industry is posing increasingly high demands hard to solve. The problem involves dispatching multiple UAVs to
in information collection about traffic state and road condition [1]. monitor specific targets (nodes) in a given area. Each target can only be
As a modern and efficient alternative to traffic monitoring, unmanned covered by one UAV at most. However, UAVs face constraints, such as
aerial vehicles (UAVs) exhibit unique advantages due to the desired limited battery capacity, which restricts their flying range. This limits
accuracy, flexibility, and relatively low cost in information capture how far each UAV can travel to monitor distant targets. Additionally,
and transmission [2,3]. Typically, UAVs collect image or video data the number of UAVs is often insufficient to cover all the targets in
at some key road junctions and then transmit them to traffic man- the area, meaning some targets may remain unmonitored. Each target

is assigned a profit value, reflecting its priority or the importance of
monitoring it in the traffic monitoring system. For instance, in the
case of traffic congestion, profits can be determined based on histor-
ical or real-time traffic data, allowing UAVs to prioritize monitoring
congested areas and gathering more valuable information for traffic
management [6]. Accordingly, MURMPP aims to maximize the total
profits w.r.t the resulting solution by properly planning the mission for
the given group of UAVs. Note that studying MURMPP also benefits
practical applications of other domains, such as disaster rescue [7]

agement centers for further processing, based on which the respective
agency could detect traffic accidents, identify traffic jams, check traffic
infrastructures, etc. Besides, UAVs are preferable also in that they can
travel freely over an urban area with scattered obstacles [4], which
move much faster than ground vehicles. Compared to an individual,
multiple UAVs could significantly expand monitoring areas and fulfill
more challenging missions by performing numerous tasks concurrently
and cooperatively, the performance of which is usually contingent on
the underlying mission planning.
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and customer selection in less-than-truckload transportation [8], where
efficient and effective mission planning is crucial.

MURMPP can be viewed as a team orienteering problem (TOP) and
prior works mainly tackle it as a whole. Several exact approaches [9-
11] have been developed for TOP but can only handle up to 100
nodes (targets) due to the curse of dimensionality. Classic heuristic
(or meta-heuristic) algorithms could attain satisfactory solutions in an
acceptable time, such as ant colony optimization (ACO) [12], tabu
search (TS) [13,14], particle swarm optimization (PSO) [15] and sim-
ulated annealing (SA) [16]. Nevertheless, the performance of heuristic
algorithms considerably hinges on the designed operators or rules, and
the high computation complexity prevents them from being applied
to large-scale problems [17]. On the other hand, exploiting deep re-
inforcement learning (DRL) for combinatorial optimization problems
has been receiving growing attention recently, like vehicle routing
problem [18-22], knapsack problem [23] and job shop scheduling
problem [24,25]. However, rare attempts have been made for MURMPP
given two foreseeable challenges if DRL is directly used to tackle the
whole MURMPP, i.e., (1) the search space increases exponentially with
the number of UAVs or targets; (2) the cooperative relationship among
UAVs is so complex that the globally optimal reward (i.e., the total
profits) is hard to achieve.

To mitigate the computational overhead, we split the MURMPP
into two phases with the divide-and-conquer principle, i.e., allocating
targets for the given group of UAVs and routing for the respective UAV.
Inspired by the competitive performance and broad success achieved by
hybrid models that combine machine learning and operation research
(OR) algorithms [17,26,27], we propose to leverage DRL and meta-
heuristic to handle the two phases for solving MURMPP, respectively.
Given the initially allocated targets, we present a DRL algorithm to
construct a route for each UAV and reassign the uncovered targets
using a well-designed SA algorithm. We tackle the two subproblems
alternately and cooperatively rather than solving them independently
without interaction. This method leverages the respective strength of
machine learning and OR, where DRL can tackle the routing problem
for an individual UAV quickly and meta-heuristic can induce high total
profits in a global view.

Specifically, we first evenly divide targets into several groups, with
each for a UAV. Then, we exploit the nearest neighbor optima-based
DRL model (NNO-DRL) to construct the path for each UAV, which
is expected to pass through the group of the assigned target (nodes)
for the monitoring task. However, the maximum flight range typically
restricts UAVs, and some UAVs may not be able to monitor all targets
assigned to them. In this case, we employ the SA algorithm to per-
form a directed shift operation, feeding the uncovered targets back to
the target allocation phase and reassigning them to other UAVs. We
perform the above target allocation and UAV routing iteratively until
the predefined termination condition is met. Notably, the proposed
two-phase framework can be readily generalized to MURMPPs with
different numbers of UAVs and targets since we decompose the routing
for multi-UAV into individual ones and coordinate them through the
target allocation. In doing so, we also save the overhead of training
separate DRL models and accelerate the inference by routing all UAVs
parallel in each iteration. Furthermore, our method using the DRL
model follows the offline learning paradigm and can solve a class of
MURMPP instances once the training is done. Accordingly, the main
contributions of this paper are outlined as follows,

1. We propose an iterative two-phase framework, ie., SA-NNO-
DRL, which decomposes the MURMPP into a target allocation
subproblem and a UAV routing subproblem. It effectively re-
duces the problem’s complexity and generalizes well to different
numbers of targets and/or UAVs without re-training.

2. We introduce an NNO-DRL model to solve routing subprob-
lems for UAVs, which samples multiple trajectories with first
targets specified as the k-nearest neighbors of the UAV hub.
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Additionally, we propose a joint training method that combines a
contrastive learning (CL) strategy and the REINFORCE algorithm
to effectively train our NNO-DRL model. We also design a SA
algorithm with a directed shift operation in the local search,
which is specialized for target reallocation.

3. We conduct extensive experiments to evaluate our method, con-
firming its superiority to other baselines in terms of solution
quality and generalization performance.

The remainder of the paper is organized as follows. We review the
related works in Section 2. We present the mathematical formulation of
MURMPP in Section 3. We elaborate the proposed method in Section 4.
Our experiments and analysis are presented in Section 5, and finally,
we conclude the paper in Section 6.

2. Related work

As a cooperative combinatorial optimization problem in nature,
MURMPP aims to achieve globally optimal profits by coordinating
the respective agents (UAVs). Existing methods for MURMPPs mainly
encompass two categories, i.e., solving it wholly with a single optimiza-
tion approach or decomposing it into subproblems in a hierarchical
manner.

2.1. Existing methods for MURMPPs

On the one hand, MURMPP is usually formulated as a mixed-integer
linear program (MILP) or Markov decision process (MDP) in a multi-
agent system. Forsmo et al. [28] proposed a MILP model to plan a joint
search mission for multiple UAVs. However, yielding a complete solu-
tion for all UAVs in each iteration is inefficient. Cui et al. [29] proposed
a multi-agent reinforcement learning method to realize the autonomous
resource allocation for multiple UAVs. Sankaran et al. [30] proposed
a graph attention model for multiple agents (GAMMA) to address a
multi-agent reconnaissance mission planning problem. However, the
spaces of both state and action exponentially increase with the number
of agents in multi-agent learning [31], which limits such methods
to only small-sized problems. In contrast, hierarchical approaches are
less explored. Yao et al. [32] proposed a distributed mission plan-
ning framework with separate modules for task assignment and path
planning. Liu et al. [33] divided multi-UAV scheduling into target
allocation and individual UAV scheduling subproblems. Mao et al. [34]
similarly decomposed the multi-UAV scheduling problem, applying a
double-layer DRL method to address the subproblems. While efficient,
this approach struggles to generalize to varying numbers of UAVs.
MURMPP generally comprises two primary combinatorial optimization
subproblems, i.e., target allocation and UAV routing. Due to their NP-
hardness, achieving efficient and effective solutions for both remains
challenging. To address this, we propose an NNO-DRL method for fast
UAV routing and an SA algorithm for global task reallocation.

2.2. Meta-heuristics for task allocation

Exact and heuristic algorithms are two primary types of methods
for tackling the task allocation problem. While exact algorithms such
as dynamic programming [35], and branch and bound [36] have the
potential to attain the optimal solution, they suffer from intractable
computation for large-scale problems. In contrast, heuristics are more
commonly used as they usually attain good approximate solutions in
a reasonable time. Li et al. [37] adopted an ACO method to handle
the task allocation, in which multiple UAVs are scheduled to attack
the ground targets given the constraint of flight range. Tian et al. [38]
proposed a genetic algorithm (GA) to perform multiple reconnaissance
tasks for UAVs with specialized crossover and mutation operators. Bai
et al. [39] combined the GA with tabu search (TS) to improve the
efficiency of task allocation for multiple vehicles. In addition, a self-
organizing map (SOM) based method was proposed to deal with a
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multi-task planning problem, the efficiency of which decreases as the
problem scale grows [40]. Wu et al. [41] proposed a hybrid genetic
and simulated annealing algorithm for task allocation in multiple UAV
formations. Xu et al. [42] introduced a lazy-based review consensus
algorithm for multi-vehicle task assignment, enabling each vehicle to
compute its allocation independently while resolving conflicts through
a consensus strategy. They further developed a lazy auction strategy
to accelerate convergence [43]. Unlike previous works focused on
local or population-based strategies, our SA algorithm is designed to
efficiently handle task reallocation in MURMPPs, iteratively refining
task assignments to balance solution quality with computational cost.

2.3. DRL for routing

DRL models can learn useful patterns from extensive data without
relying on complex heuristics or domain-specific knowledge, which can
generalize to unseen instances [44]. Furthermore, trained DRL models
are very efficient during inference. Upon these advantages, there has
been a surge of research to apply DRL for solving routing problems,
such as the classic traveling salesman problem (TSP) and capacitated
vehicle routing problem (CVRP) in recent years. According to the solu-
tion generation scheme, the DRL-based routing methods are generally
classified into two different fashions, i.e., improvement [19,22,45-49]
and construction [18,20,21,50-54]. The constructive DRL-based routing
methods generally have a faster inference time than the improvement
ones [55], which is exactly what we seek for solving MURMPP. In
specific, Bello et al. [50] first proposed one of the earliest DRL-based
routing methods for TSP by training a pointer network (PtrNet) [56]
with an actor-critic algorithm. Since positional information was not
meaningful for routing problems, Nazari et al. [51] replaced the long
short-term memory (LSTM) encoder in PtrNet with element-wise pro-
jection for solving CVRP. Then, Kool et al. [18] proposed an attention
model(AM) to generate higher-quality solutions, where a Transformer-
based architecture [57] replaced PrtNet. Xin et al. [21] extended AM
by explicitly removing the visited nodes in each node selection step.
The multi-decoder AM (MDAM) [20] utilized a Transformer for node
encoding and multiple attention decoders with separate parameters
to sample diverse trajectories. These constructive DRL-based routing
methods mainly employ a START token, i.e., trainable parameters, as
the input to the decoder to decide the first node (target) in a route.
However, such parameters are inherently difficult to train, potentially
resulting in a suboptimal search space for subsequent actions due to
symmetries in the routing problem solutions. The policy optimiza-
tion for multiple optimal (POMO) [52] leveraged parallel solution
trajectories and employed data augmentation techniques to account
for the symmetrical nature of routing solutions, achieving significantly
improved performance compared to AM. Building upon POMO, Kim
et al. [53] further exploited problem symmetry to enhance its per-
formance. Recent studies have also explored alternative approaches
to solving VRPs, such as learning heuristics for ACO [58,59] and the
divide-and-conquer method [60-62]. Building on these approaches, our
NNO-DRL method explores a projection multi-layer perception(MLP)
and CL for advanced problem representation, and a multi-start decoder
with a k-nearest neighbors strategy to explore the solution space.

Note that a rare attempt has been made to leverage DRL and
meta-heuristics for MURMPP cooperatively. In this paper, we present
an iterative two-phase framework that integrates DRL and SA, where
assigning targets is fulfilled by SA in high-level while DRL is exploited
for respective UAV routing in low-level.

3. Problem definition and formulation

The goal of MURMPP is to find paths for a given group of UAVs that
maximize the total profits collected by them for monitoring targets.
In MURMPP, each UAV departs from the same hub and returns to it
after the monitoring task. Note that successful monitoring here refers to
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visiting or passing through a target (node) by the respective UAV. The
profits attached to targets are predefined by an underlying distribution,
and the UAV collects the profit only after successfully monitoring
a target. In addition, some of the targets might not be covered by
UAVs due to the flight range constrained by the battery. The MURMPP
is essentially a complex combinatorial optimization problem with a
discrete solution space, and its intractability grows exponentially as the
number of targets rises.

Without the loss of generality, we assume that there are m UAVs
and n targets, where the UAV hub is denoted by 0, the UAV set is
represented as M = {1,2,...,m} and the target set is represented as N =
{1,2,...,n}. Anode set I = {0,1,...,n} includes all nodes (i.e., targets
and the UAV hub), in which each node i is attached with a profit p; and
po = 0. In particular, x; ; , = 1 denotes that node ; is visited after node i
by UAV b, otherwise x; ; , = 0; y; , = 1 represents that node i is visited by
UAV b, otherwise y; , = 0; z; , is a auxiliary real-value variable used for
subtour elimination; 4, ; denotes the distance between node i and node
J; Ly denotes the maximum flight range. Accordingly, the MURMPP
could be formulated as a MILP as follows,

max Z Z Z PiXijb (€]

i€l jeN beM
st. Y yy<LVieN, )
beM
Z Yop = M, @)
beM
N xijp= X Xp=0Ni€l,bEM 4
Jjel JEI
Z Xijp=YVimVi€EL,bEM ®
iel
Y xip=VipVi€L,bEM, (6)
JEl
3 % < Ly Vb € M, @)
iel jel
Zib— zj,b + Lmaxxi,j,b < Lmax - di,j’ (8)
Vie N,je Nbe M,i+#j,
2, 20Viel,be M, 9
Zpy S Lygy —dio. Vi€ I,be M, (10)
xjp=1{0.1}.Viel,jel,be M,i#j. 1)

The above MILP aims to maximize the total profits collected by
UAVs, which is described by the objective function in an expression (1).
Inequality (2) guarantees that each target is monitored (or visited) by
one UAV at most. Eq. (3) ensures that all UAVs start from and return to
the same UAV hub. Egs. (4), (5) and (6) ensure that the node i visited
by UAV b has exactly one preceding node and one succeeding node.
Inequality (7) constrains that the total distance traveled by a UAV is
within its maximum flight range. Constraints (8), (9) and (10) are used
for subtour elimination. Finally, Eq. (11) specifies the domain of the

binary variable x; ; ,.

4. SA-NNO-DRL method

To solve the MURMPP, we present an iterative two-phase frame-
work, i.e, SA-NNO-DRL, where the target allocation and UAV routing
are alternately executed and mutually interacted. In particular, we first
introduce the NNO-DRL routing method for individual UAVs and then
elaborate the SA method specifically designed for the target allocation.
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Fig. 1. The whole NNO-DRL structure consists of an attention encoder, a projection MLP, and a multi-start decoder.

4.1. NNO-DRL routing method for individual UAV

The routing solution usually consists of a sequence of nodes, which
can be achieved by considering it as a sequential decision-making
problem. In our method, we formulate the routing for each UAV as a
Markov decision process with discrete time steps. Specifically, a UAV
agent observes the environment state (e.g., the target information and
the remaining flight range) and then decides the next action to perform
(i.e., which target node to visit) according to its policy. Then the state
is updated and the agent gathers the reward (profit) associated with
the taken action. NNO-DRL aims to learn a policy p, for the agent to
construct the route r that maximizes the total reward (i.e., the total
profits) while respecting the constraints as described in Section 3. The
probability of producing a route 7 given an instance s can be expressed
by the chain rule as follows,

T

po (1) = [ [ po (wils.71:01) - 12)
1=1

where 7 = 7. = (7}, ...,7p) and T is the maximum number of states

in the route construction process.

NNO-DRL consists of an adapted attention model, based on [18],
and a projection MLP, as illustrated in Fig. 1. The adapted attention
model, composed of an attention encoder and a multi-start decoder,
is employed to estimate the policy p,(r|s). The key innovations in
NNO-DRL include the integration of a projection MLP and CL for
sophisticated problem representation and a multi-start decoder with a
k-nearest neighbors strategy for improved solution space exploration.
Specifically, the routing problem is framed as a graph with rotational
invariance, where the original instance and its rotated augmentations
share the same representation after processing through the attention
encoder. To achieve this, we use a projection MLP and CL to maximize
cosine similarity between node embeddings of the original instance
and its augmentations, resulting in a more robust representation. Since
generating multiple trajectories increases the likelihood of finding an
optimal solution [52] and selecting distant nodes early in the route may
lead to suboptimal solutions due to UAV battery constraints, we employ
the multi-start decoder with a k-nearest neighbors strategy, which sets
the first nodes as the k-nearest neighbors of the UAV hub, sampling k
trajectories during both training and testing.

Given an instance s, NNO-DRL applies instance augmentation to
obtain augmented instances. The attention encoder then extracts node
and graph embeddings, which serve as inputs to the projection MLP and
multi-start decoder. The multi-start decoder constructs routes step by
step, while a joint training method combining CL and the REINFORCE
algorithm is used to update the adapted attention model and projection
MLP. The following sections detail the instance augmentation, atten-
tion encoder, projection MLP, multi-start decoder, and joint training
algorithm.

4.1.1. Instance augmentation

Instance augmentation allows us to transform an instance s into
multiple augmentations while reserving the same optimal solution,
achieved by rotating or flipping all locations of target nodes in instance
s. We exploit instance augmentation during both the training and
inference stages. In training, we enhance the representation capability
of the attention encoder by maximizing agreement among different
augmentations of an instance [63]. During inference, we take advan-
tage of the diverse solutions generated through various augmentations,
effectively improving the probability of finding optimal solutions. Fol-
lowing [53,64], we rotate all node locations in instance s to obtain an
augmentation s’. Specifically, we view all node locations as a graph,
and rotate the graph at a random angle about its center as follows,

/ f— . —_— f— . 1
Iocxl _ (loc, —o,) c959 (locy, —0,) - sin 0 + o, 0el0.27) (13)
loc,, (locy —o,) - sinf + (loc, — 0,) - cos 0 + 0,

where (locy., locy) and (0, 0,) are the node locations and the center of
the graph, respectively, and (loc,’.loc,’) is the node locations of the
augmented instance s’. In this paper, we generate a set of augmented
instances S = (s', ..., s™) for a given instance s, where M is the number

of augmentations and s' is the original view of instance s, i.e., s' = s.

4.1.2. Attention encoder

For each UAV, the attention encoder takes the target information as
the input, i.e., 2-dim geographic location (loc’, loc;) and 1-dim profit p;,
and outputs node embeddings and a graph embedding. In particular, it
first transforms the 3-dimensional information of targets (loc;, loc;, Pi)s
i € {0,1,...,n} into d,-dim(d;, = 128) initial embeddings h? through a
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linear projection as follows,
h? =W, (loci,loci,p,-) + by. as

Then, the initial embeddings are advanced through L multi-head
attention (MHA) layers to yield the advanced node embeddings hl, hlL,
...,hL. The Ith MHA layer is structured by an MHA sublayer and
a feed-forward (FF) sublayer, with their outputs processed by the
skip-connection and batch normalization (BN) as follows,

n=BN (K~ + MHA" (W), ie(1,....,n) 1s)
n=8N (n+FF (1)) 16)

Finally, the encoder outputs node embeddings hi’“ and their average,
i.e., the graph embedding 4 as follows,

h:mean(hé,hf,...,hf). a7

We set M;,(M,=8) heads for all MHA sublayers such that each target
will potentially receive messages from others. Regarding the /th MHA
sublayer, we compute the queries, keys, and values via separate linear
projections for each target as follows,

q, =W h ™k = Wlh™ o= Wh, 18)

1
where Wq’ Wk’ and WU’ are trainable parameters in the /th layer. Then,

we aggregate the messages received by target i with head y(y €
{1,.... M, }) as follows,

.
a) kK

U= — 19)
V%

=Y <Ly (20)

S W

where d;, = d;,/M;, = 16 is the dimension of keys. The final attention
value of node i is calculated as follows,

a£=W0Cat(a[.’1,--- ’aﬁ,M;,)’ @D

1

where W, is the trainable parameter and Car means concatenation
operator.

4.1.3. Projection MLP

The projection MLP (f) consists of two fully connected (FC) layers
with instance normalization (IN) and GELU activation function [65]
applied to the first layer. The input/output/hidden dimensions of the
projection MLP are equal to that of the attention encoder (i.e., 128).
The projection MLP takes the node embeddings A(s) and h(s") (obtained
from the attention encoder for instances s and s’, respectively) as inputs
and calculates their hidden representations f(h(s)) and f(h(s")) using
the following equation (Eq. (22)).

S (h(s)) = W (GELUUN(W,, h(s)))) (22)

where W, and W), are trainable parameters. The output of the projec-
tion MLP is used to calculate cosine similarity between the instance
s and its augmented instances s’ during the training process while
projection MLP is excluded at the inference stage.

4.1.4. Multi-start decoder

Given the yielded node embeddings A’ and graph embedding h
from the encoder, we propose a multi-start decoder that samples mul-
tiple trajectories simultaneously [52] and specify their first nodes as
the k-nearest neighbors around the UAV hub, for better exploring
near-optimal solutions.

Given the first targets for k trajectories, ie., 7!,72,...,7%, we con-
struct the whole trajectories in parallel. Specifically, we utilize the
current node embedding 4,_; and the remaining flight range L, of the
UAV to represent the context &, at the current time step . Then, &, is
added with the graph context h,, i.e., the linear transformation of graph
embedding A, to attain the query g, for the decoding step as follows,

h, =W, [h_;L,| . hy = Wh, gz = h, + hy, (23)
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ALGORITHM 1: Joint training method for NNO-DRL
Input: Training dataset D, number of epochs E, steps per epoch
T, batch size B.
Output: The trained model.
1 Initialize the parameter 6,,. of encoder, parameter 6
projection MLP, parameter 6,,. of decoder;
2 for epoch = 1, 2, -, E do

of

mlp

3 for step =1, 2, ---, T do
4 s, < Sample from dataset (D), Vb € {1, -+, B};
5 {Sé,si, ,SEAI} « Augment(s,), Vi € {1,---, B};
6 f(h(s;)) « Projection
MLP(Encoder(sg)),Vi ef{l,.-,M},vbe {1,:,B};
7 {a],a},-.a\}, < k-nearest neighbor (s}),
vie(l, - ,M},Vbe {l,-,B);
8 r[j , < Sample trajectories (a{ 8+ Oones 9,1“),
vje{l, ., k},Vie{l, - M} ,Vbe {l,.-,B};
9 % Update 6,,, and 6,,,
Oenc Om k — .
10 Lo = — g T Titt' DU (hsp). £ (s
1 Opne < Adam(,,., vLr Y,
12 Opr < Adam(emp/,vﬁacfzcﬁ"””);
13 % Update 6,,. and 6,,,
OencOdgec _ _1 B M k j
14 VL = WMB Lt Zimi Zj:l(R(Tib) -
L vM ok j j
M Zi=1 Zj:l R(Tib))vg log py (Til,b);
15 Oene < Adam(B,,, 7L 04,
16 Ogec < Adam(adec,vﬁfgz“ed“);
17 end
18 end

where W, and W, refer to the trainable parameters, and [; ] means the
horizontal concatenation operator. Furthermore, the decoder projects
the node embeddings (i.e., hL,hlL, ..., hL) into keys K¢ and values V¢
by a liner transformation layer. Then, the query g,, keys K¢ and values
V¢ are processed by the MHA layer for message passing as follows,

ff :V”softmax(?), 24)

dy

f8 = chm(ffsff» ,f;‘f/lh)’ (25)

where W} is the trainable parameter. Finally, the output probability
over targets is computed using single-head attention (M,=1 so d, = d})
with a masked softmax, which masks the nodes (targets) that have been
visited or cannot be visited within the remaining flight range,

q=W,f% k; = WihE, (26)
Tk_
uf = C - tanh 4% s 27)
V dk
u¢
p=—, (28)
el

where C is the clipping range (C = 10). The decoder will be ap-
plied multiple times until it reaches the final state in which the UAV
comes back to the hub. We would like to note that during the train-
ing, we sample targets for trajectories in parallel following their poli-
cies, ie., probability distributions over targets. However, we greedily
choose the targets with the highest probabilities for all trajectories
during inference, so that the trained network only needs the feed-
forward computation once to arrive at the next targets in all trajectories
simultaneously.
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4.1.5. Joint training method

The entire framework of the proposed NNO-DRL is detailed in the
preceding sections. A joint training method is proposed to learn the
model, consisting of a REINFORCE algorithm and a CL strategy. To
make a clear introduction to them, we assume that the parameter
related to the attention encoder, the multi-start decoder, and the projec-
tion MLP is denoted by ,,,, 0, and 6,,,,, respectively. In the following,
we introduce how to optimize these parameters.

Contrastive loss. In most learning-based methods, the same node
embeddings extracted by the encoder are used to construct the whole
solution. Consequently, the representation capability of the encoder
plays a crucial role in obtaining high-quality solutions. CL, as a re-
cent unsupervised learning method, has achieved significant success in
computer vision and natural language processing [66-68] by extracting
crucial features from unlabeled data for diverse tasks. In this paper, we
leverage CL to enhance the quality of node embeddings extracted by
the attention encoder. The attention encoder takes the augmentations
(s', ..., sM) of instance s as the input and outputs their node embeddings
(h(sY), ..., h(s™)). Then, the projection MLP f(-) maps the node embed-
dings (h(s"), ..., h(s)) to the space where contrastive loss is applied,
resulting the latent representations (f(h(s")), ..., f(h(s™))). Let cosine
similarity between the instance and its augmentation evaluate their
agreement as follows,

j f(h(s")) fhisy)
D(f (h(sY)), f(h(s)))) = . | 2,...,M}, (29
(f (h(s")), f(h(s"))) GO, 1R, VASH } (29)
where ||-|| is Z,-norm. Then the contrastive loss function is defined as,
M-1
Eézc gm[p — (M 1+1))) (30)

where k¢ (kcp = 0.1) is the coefficient of contrastive loss. Based on the
contrastive loss £} "7 the parameter 6,,, of the attention encoder
and 6,,, of the projection MLP are updated using Adam optimizer [69].

REINFORCE loss. NNO-DRL uses the adapted attention model to
construct the solution. We exploit the REINFORCE algorithm, which
is a classic policy gradient method, to train the attention model after
a complete solution is constructed. The REINFORCE loss is defined as
follows,

Gencve ec
Lhaetiec = —By (B, s [R@], (31)

where R(r) denotes the total reward of the route r. The REINFORCE
loss Ei”f’e"” is optimized by the gradient descent, and the gradient for
minimizing the REINFORCE loss is obtained as,

vefomelic = B, (B, o0 R@ = RG$I9pp(zls)], (32)

where R(s’) denotes the baseline for reducing the variance of the sam-
pled gradients. We use Monte Carlo sampling to approximate v[iifg‘ D
In specific, given an instance s with its augmentation set S and k
sampled routes, we calculate the approximate gradient as below,

v’ enc Bec _L Z Z(R(T ) — R(s5))v, log py (r |s' ) (33)

11]1

where R(s) = m ;“El Zle R(rij ). Also, the parameter 6,,. of the
attention encoder and 6,,, of the multi-start decoder are updated based
on the REINFORCE loss £f§2”‘9""" using Adam optimizer.

Algorithm 1 presents the pseudocode for the joint training method
of NNO-DRL. The model parameters are initialized, and the model
undergoes training for E epochs, each consisting of T steps. During
each step, a batch of instances {s,,...,sp} is randomly sampled from
the training dataset D, and an augmentation set {s},s,... ,s;M]} is
generated for each instance s, € {s, ..., sp }. Consequently, the model
concurrently handles M - B instances and generates k routes for each
instance s;; following the policy pg(’f;.l; bls;))' Finally, the model parame-
ters are collaboratively updated using the CL strategy and REINFORCE

algorithm.
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Fig. 3. The target allocation scheme in which the targets of the same color are
allocated to the same UAV.

4.2. SA for target allocation

We outline the pseudocode of the SA-NNO-DRL in Algorithm 2.
Given the UAV hub at the center of the area, we evenly divide all targets
in the area into m groups (i.e., m is also the number of UAVs) in terms
of the angles between the target nodes and the horizontal axis starting
from the hub(line 1), which is defined as

loc! — loc;)
angle; = arctanm, (34
where (loc loc) refer to the coordinates of target i; (loc loco) refer
to the coordmates of the hub. Accordingly, each group of targets is
initially assigned to the respective UAV(line 2).

After the targets are assigned to UAVs, the trained DRL model will
perform the routing for all individual UAVs in parallel. Due to the
maximum flight range restriction, a UAV might be unable to monitor all
targets assigned to it. However, it is possible that others could monitor
the uncovered targets through reallocation and rerouting. To this end,
we exploit a SA algorithm to reallocate the target allocation scheme.
The uncovered targets in the preceding routing phase would be fed back
to the target allocation phase for reassignment(line 7). With specifically
designed shift operations between different UAVs, the target allocation
is adjusted and the DRL model also accordingly amends the routing
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ALGORITHM 2: SA-NNO-DRL
Input: Initial temperature T, the lowest temperature 7,
Markov chain length L, decreasing rate o.
Output: The final scheme X,,,.
1 Generate an initial target allocation scheme X ( X1 )(m);
2 Record uncovered target set T (51, ,5,,,), and obtain the value
of objective function
fit « {DRL_model ()(1) ,+, DRL_model (;{m)};
3 Xbest =X, fitbe.vt = fit;
4 Initialize I = 1,T, =T;
5 while T, > T, do

6 for/=1:Ldo
7 Generate a new target allocation scheme X’ by shifting
the uncovered targets & between UAVs, where
i€ (1,2, ,m);
8 Record uncovered target set T’ (&, -+, &,’), and obtain
the value of objective function
fit' — {DRL_model (y,') -+, DRL_model (4,')};
9 Af = fit' — fit;
10 if Af > 0 then
1 X =X, fit = fit';
12 if fit > fit,,, then
13 ‘ Xbesr =X, fitbesr = fit;
14 end
15 end
ar
16 else if e%o > ¢€,e « uniform(0,1) then
17 X=X/
18 end
19 end
20 T, =0T,
21 end

for all UAVs(line 8). The reallocation scheme is evaluated using the SA
criterion: if the new allocation yields higher profits, it is accepted(lines
10-15); otherwise, it may still be accepted with a small probability
which is determined by the difference in profits between the new
and old schemes and the current annealing temperature(lines 16-18).
The above reallocation and rerouting are iterated until the terminal
condition is satisfied as displayed in Fig. 2, and details of the shift
operation are described below.

Shift operation. In the initial target allocation, we define the angle
of each target node as angle; and determine the angular bisector of
the subarea for each UAV. Based on the angles and angular bisectors,
we exploit a shift operator, which passes partially uncovered targets
of a UAV to its neighbor UAV for rerouting in the next iteration.
With the uncovered targets in the left and right part of the angular
bisector, we define the shift operator with an adjustable pass direction
as follows, (1) the pass direction is clockwise at even iterations and the
uncovered targets in the right part for each UAV are passed to its right
neighbor; (2) the pass direction is counterclockwise at odd iterations
and the uncovered targets in left part for each UAV are passed to its
left neighbor. An illustration of the shift operation with four UAVs is
depicted in Fig. 3, where UAV1 cannot cover target i and target j in the
current iteration. If the number of the next iteration is even, target j
will be passed to UAV4, and target i will remain unassigned; otherwise,
target i will be passed to UAV2, and target j will remain unassigned.

Since more than one UAV might be routed in each routing phase,
and each UAV might be assigned with different numbers of targets, we
append dummy UAV hubs (in terms of the features such as the location
and profit) to the end of corresponding input sequences to make them
have the same length for better parallel computation. Note that the
extra dummy UAV hub is masked so as not to be selected during the
k-nearest neighbors selection and decoding process.
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Table 1

Hyperparameters in SA-NNO-DRL algorithm.
Parameters Phase Value
The number of epochs E DRL 10
The size of training dataset |D| DRL 1280000
The size of validation dataset |D,| DRL 10000
The batch size B DRL 64
The number of encoder layers L DRL 6
The decaying rate & DRL 0.995
The Markov chain length L SA 4
The initial temperature T SA 80
The lowest temperature 7, SA 60
The temperature decreasing rate o SA 0.9

5. Experiments

Our experimental evaluation consists of multiple steps. Firstly, we
evaluate the performance of our SA-NNO-DRL approach in solving
MURMPPs, considering varying sizes and profit types of monitoring
targets. Subsequently, we demonstrate the generalization ability of SA-
NNO-DRL by applying it to MURMPP instances with different numbers
of targets and UAVs, as well as varying hub locations. Additionally,
we conduct an ablation study to analyze the contribution of each
component in the SA-NNO-DRL approach. Lastly, we evaluate the
effectiveness of the proposed NNO-DRL routing method for individual
UAVs by comparing it against several state-of-the-art routing methods.

5.1. Experimental settings

We describe the data generation and hyperparameters for training
the SA-NNO-DRL model and then demonstrate the training curves.

Data generation. For MURMPP instances, the coordinates of targets
are generated by uniform sampling from a unit square [0, 1]?> following
the conventions [18,52] and the UAV hub is located at the center
(i.e., [0.5,0.5]). However, our method can handle instances with differ-
ent locations of UAV hubs well, which we will verify in the subsequent
experiments. We assume that all UAVs are homogeneous, and their
maximum flight range is set to 2. To comprehensively evaluate the
performance of our SA-NNO-DRL, we consider two types of profits
for MURMPPs, (1) constant profits with each target bearing the same
value 1; (2) uniform profits with each target bearing a value uniformly
sampled from [0, 1]. In both cases, the profit of the UAV hub is set
to 0. While MURMPPs with constant profits tend to monitor as many
targets as possible, the uniform ones encourage the UAV to focus more
on targets with higher profits. For each type of profits, we assess our
SA-NNO-DRL on different problem sizes, i.e., 40 targets with 2 UAVs,
60 targets with 3 UAVs, 80 targets with 4 UAVs, 100 targets with 5
UAVs, 150 targets with 5 UAVs, and 200 targets with 5 UAVs, and
term them as T40U2, T60U3, T80U4, T100U5, T150U5, and T200U5,
respectively. Taking T40U2 with constant and uniform profits as an
example, we further term them as T40U2C and T40U2U, respectively,
for simplification.

Hyperparameters. The hyperparameters of SA-NNO-DRL are shared
to train DRL policies for all problem sizes. Similar to [18], the training
instances are generated on the fly in each epoch. Since the NNO-DRL
model is trained to route for each UAV, we first generate multiple
MURMPP instances and allocate targets to UAVs in each instance by
the target allocation method introduced in Section 4.2. The allocated
targets for each UAV in all instances are gathered as a training dataset.
Since the target allocation method assigns each UAV the same number
of targets, the number of targets are 20, 20, 20, 20, 30, and 40 for
T40U2, T60U3, T80U4, T100U5, T150U5, and T200US5, respectively.
We optimize the NNO-DRL model with Adam [69]. During the training
and testing, the number of augmentations for each instance (i.e., M)
is set to 4. We set the initial learning rate /r to 10™* and define
the number of trajectories with specified start nodes as a quarter of
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Table 2
Results on MURMPP instances with different problem sizes and profit types.
Instance group Gurobi OR-Tools GAMMA (Greedy) GAMMA(1280) AM(Greedy) AM(1280) SA-NNO-DRL
Obj. Gap Time Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time
T40U2C  30.87 0.00% 1083 s 28.67 7.13% 005s 2853 7.56% 0025 29.80 3.46% 156s 2890 6.37% 003 s 2927 517% 033s 3037 1.62% 0225
T60USC 51.30 247% 1800 s 5093 3.17% 0.16s 50.03 4.88% 003 s 51.87 1.39% 0.65s 4773 9.25% 003 s 4920 6.46% 048 s 52.60 0.00% 025 s
Constant profits T80UAC 7377 273% 1800 s 7340 3.21% 0345 7307 365% 0045 7520 084% 0765 6793 1042% 0045 6997 7.74% 0675 7583 0.00% 025 s
P T100USC  94.50 3.90% 1800 s 98.33 0.00% 0.65 s 94.57 3.83% 0.06 s 97.23 1.12% 1.49 s 89.27 9.22% 0.05 s 92.50 5.93% 0.41 s 98.07 0.27% 0.24 s
T150U5C 115.10 16.17% 1800 s 131.20 4.44% 1.88 s 117.83 14.18% 0.09 s 128.57 6.36% 1.33 s 105.47 23.19% 0.08 s 11473 16.44% 0.51 s 137.30 0.00% 0.34 s
T200USC 128.73 23.90% 1800 s 158.93 6.05% 3.60 s 144.53 14.56% 0.17 s 154.47 8.69% 1.83 s 128.67 23.94% 0.10 s 137.43 18.76% 0.69 s 169.17 0.00% 0.44 s
T40U2U 1653 0.00% 1337 s 1560 559% 005s 1544 654% 002s 1605 290% 077 s 1505 893% 002s 1558 570% 018 s 1595 3.50% 022 s
T60USU 2832 0.00% 1800 s 27.83 172% 0155 2679 541% 004 s 27.81 178% 091s 2569 930% 003 s 2644 662% 034s 2813 0.66% 025 s
Uniform orofits  TEOUAU 3840 1.86% 1800 s 3865 121% 0335 37.96 297% 004s 3867 116% 1165 3554 9.17% 0045 3649 673% 0455 3913 0.00% 024 s
P TIOOUSU 50.02 0.95% 1800 s 5023 0.53% 056s 4874 3.49% 007 s 50.00 0.97% 1355 46.67 7.58% 005s 4807 481% 06ls 50.50 0.00% 025 s
TIS0USU 60.57 15.29% 1800 s 70.06 2.02% 249 s 6256 1250% 0.07 s 67.27 592% 171s 5880 17.76% 0.08 s 6353 1115% 050 s 71.50 0.00% 0.33 s
T200USU 70.79 21.88% 1800 s 8670 4.32% 4.38's 7770 1426% 0.10s 8321 8.18% 218s 7206 20.49% 0.10s 77.63 14.33% 0565 90.62 0.00% 0.44 s
The bold means the best objective value and gap in each row, throughout the paper.
the problem size (i.e., k = int(size/4)). The learning curves of our
method with different /r and k values on T100U5C are shown in
. . s 1 _ 301
Fig. 4(a) and 4(b), respectively. Results indicate that /r = 10 4 and
k = int(size/4) achieve the best performance. For clarity, other SA-
NNO-DRL hyperparameters are listed in Table 1. We would like to 25
note that the runtime of our methods is primarily affected by two
. . wn
key factors: the number of iterations of the SA and the number of £
augmentations used. Increasing either of these factors generally leads 5201
to a longer runtime, requiring a careful balance between computational 2 W’MWWW
) . . . . 2
time and potential performance gains. Our method is implemented with @
. . . . 15 A
Pytorch and runs on a workstation with an i9-9900K CPU and a single [ Mwﬁwww
GTX3090 GPU. Our implementation code is publicly available'
Training curves. At first glance, we plot the training curves in 10 4
terms of rewards (i.e., the total profits collected by a UAV) for our DRL
del in all probl - Traini inst ith tant — T40U2C —— T100USC
model in all problem sizes. Training curves on instances with constan Te0USC T150UsC
profits and uniform profits are shown in Fig. 5 and Fig. 6, respectively. 51 —— T80UAC ~—— T200U5C

In general, the NNO-DRL model increases the total profits stably along
epochs for different problem sizes and profit types. While the number of
targets in training datasets of T40U2, T60U3, T80U4, and T100U5 are
all 20, the total profits collected by a UAV increase with the problem
scale. The reason might be that the density of targets across the same
area increases as the problem scale grows, so a UAV restricted by
the same maximum flight range could visit more targets. Regarding
T100U5, T150U5, and T200US5, the rewards increase with the problem
scale mainly because the number of targets assigned to each UAV
increases. Overall, the training curves indicate that our experimental
settings work fairly well. In the following subsection, we use the trained
models to solve respective instances with different problem sizes for
comparison with baselines.

5.2. Comparison analysis
To evaluate the effectiveness of the proposed SA-NNO-DRL method,

we adopt various baselines as follows:

1 https://github.com/mingfan321/SA-NNO-DRL

0 1 2 3 4 5 6 7 8 9 10
The training epochs

Fig. 5. Training curves with constant profits.

1. Gurobi: The well known commercial solver Gurobi [70] is used

to solve the MILP formulated in Section 3. We set the maximum
runtime of the solver to 30 min for each instance, to avoid a
prohibitively long time for computing all instances in the whole
testing set.

. OR-Tools: The state-of-the-art heuristic based solver, OR-Tools

[71], is widely applied for various routing problems. In the
implementation for solving MURMPP, we replace the capacity
constraint in OR-Tools with the constraint of the maximum flight
range.

. GAMMA: The state-of-the-art learning-based method [30] for

solving multi-agent reconnaissance mission planning problems
with multiple depots. We adapt GAMMA for solving MURMPP
by setting the depot of each agent as the same one. We train
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Table 3
The number of solutions found by each solver as the best solution.
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Instance group

Gurobi OR-Tools GAMMA(Greedy) GAMMA(1280) AM(Greedy) AM(1280) SA-NNO-DRL

T40U2C 28 3 3 10 4 5 16
T60USC 10 3 1 1 0 X 1
Constant profits T8ou4C 9 7 1 8 0 0 17
T100USC 1 20 0 10 0 0 s
T150U5C 0 1 0 0 0 0 50
T200U5C O 2 0 0 0 0 28
T40U2U 24 1 1 1 0 0 p
T60USU 15 7 0 1 0 0 s
Uniform profits T80U4U 5 7 0 4 0 0 14
T100USU 5 9 0 2 0 0 14
T150U5U O 6 0 0 0 0 24
T200U5U O 1 0 0 0 0 29

The bold means the most number of best solutions in each row.
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Fig. 6. Training curves with uniform profits.

GAMMA models for all problem sizes with original hyperparam-
eters in [30] except for the batch size, which we set to 512
on T40U2C/U, T60U3C/U, T80U4C,/U, T100U5C/U and 256 on
T150U5C/U and T200U5C/U given the memory limit.

4. AM: We use AM model in [18] as another learning-based base-
line. The original AM model can only solve a single-agent routing
problem. Hence, for each MURMPP instance, we iteratively route
each UAV by the AM and remove the selected targets, until all
UAVs have been routed. The profits collected by all UAVs are
the objective value of the original MURMPP. The AM model
is trained on 20, 50, and 100 targets with two profit types
(i.e., constant and uniform profit), respectively.

All baselines are implemented in Python and executed on the same
workstation as SA-NNO-DRL. Regarding the pure learning-based meth-
ods, i.e., GAMMA and AM, we apply two types of decoding strategies
during testing: (1) Greedy, in which the UAV always chooses the action
(i.e., the next target to visit) with the maximum probability at each
decoding step; (2) Sampling, which engenders N solutions by sampling
targets at each step according to the probability distribution, and then
returns the one with the best objective value. In our experiments, we
set N to 1280, and term GAMMA and AM with the 1280 samples
as GAMMA(1280) and AM(1280), respectively. Since the exact solver
(i.e., Gurobi) consumes a very long time to solve a MURMPP instance,
we only generate 30 instances with each profit type for each problem
size in testing. These instances are shared by our SA-NNO-DRL method
and the other baselines. We record the performance of our method
and baselines on MURMPP instances with different sizes and profit

types in Table 2, where the average objective value (Obj.), gap, and
computation time are computed across the testing instances. The gap
for a single instance is calculated by comparing the objective value of
a method with the best one found among all methods. Furthermore,
we present the number of solutions found by each solver as the best
solution in Table 3. Notably, we use AM model trained for 20 targets
(nodes) to test instances of T40U2, T60U3, T80U4, and T100US5. In
addition, AM model trained for 50 targets (nodes) is used to test
instances of T150U5 and T200U5.

Analysis of results with constant profits. For MURMPP instances
with constant profits, Gurobi delivers the most number of best so-
lutions on the smallest problem size, ie., T40U2C. However, given
the predefined computation time, its performance degenerates as the
problem size grows. Note that most instances in T40U2C are solved
optimally by Gurobi within the predefined runtime so that the average
time is less than 1800s in Table 2. Comparing the learning-based
methods GAMMA and AM, we observe that the Sampling decoding
strategy achieves larger objective values and smaller gaps than the
Greedy one, with a slightly longer computation time. GAMMA(1280)
attains significantly better performance than AM(1280) on all problem
sizes. On the other hand, the classic heuristic solver OR-Tools outstrips
AM(Greedy), AM(1280), and GAMMA(Greedy) on all problem sizes
(except for T40U2C). It also outperforms GAMMA(1280) on large prob-
lem sizes (i.e., TLOOU5C, T150U5C, and T200U5C). It indicates that
learning-based methods and OR-Tools might have the potential to com-
plement each other across different problem sizes. Our hybrid method,
i.e., SA-NNO-DRL, verifies this point by surpassing ORTools and all
learning-based methods on T40U2C, T60U3C, T80U4C, T150U5C, and
T200U5C. Meanwhile, the gap of SA-NNO-DRL is only 0.27% in the
T100U5C, with the objective values very close to that of the best
method, i.e., 98.07 (SA-NNO-DRL) vs. 98.33 (OR-Tools). As for running
efficiency, SA-NNO-DRL can solve problems of all sizes within 0.5 s. In
summary, our SA-NNO-DRL method, which mixes heuristic with DRL,
generally achieves the best results on MURMPP with constant profits
with a very short computation time.

Analysis of results with uniform profits. As shown in the lower
part of Table 2 and Table 3, the results for MURMPP with uniform
profits share a similar pattern to the results with constant profits.
Gurobi performs well on small problem instances (i.e., T40U2U and
T60U3U) in terms of objective values, but it has a long computation
time. In contrast, our SA-NNO-DRL outperforms Gurobi on larger
instances (T80U4U to T200U5U) in both solution quality and com-
putation efficiency. Additionally, SA-NNO-DRL surpasses OR-Tools,
GAMMA(Greedy), GAMMA(1280), AM(Greedy) and AM(1280) across
all instance groups except T40U2U, where it falls short of GAMMA
(1280).

Considering the results presented in Table 2 and Table 3, our
comprehensive analysis reveals that the hybrid SA-NNO-DRL method
exhibits the best overall performance compared to other methods, with
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Table 4
Generalization on large problem sizes.
Instance group Gurobi OR-Tools GAMMA (Greedy) GAMMA(1280) AM(Greedy) AM(1280) SA-NNO-DRL
Obj. Gap Time Obj. Gap Time Obj. Gap Time  Obj. Gap Time Obj. Gap Time  Obj. Gap Time
T300USC  134.93 38.53% 1800 s 199.70 9.02% 5.64 s 180.97 17.56% 0.15 s 190.30 13.30% 13.23 s 140.00 36.22% 0.15 s 152.13 30.69% 9.80 s 219.50 0.00% 0.79 s
T400USC  121.53 53.33% 1800 s 238.00 8.60% 9.35 s 205.03 21.26% 0.18 s 208.90 19.78% 14.46 s 170.07 34.69% 0.20 s 178.83 31.32% 11.85s 260.40 0.00% 1.08 s
TS00USC  98.83  66.26% 1800 s 269.43 8.01% 14.39 s 22273 23.96% 0.22 s 212.30 27.52% 16.20 s 196.33 32.97% 0.27 s 202.77 30.77% 13.86 s 292.90 0.00% 1.50 s
Constant profits T600USC  93.93  70.63% 1800 s 296.47 7.30% 20.77 s 241.73 24.41% 0.27 s 209.97 34.34% 17.57 s 220.37 31.09% 0.34 s 218.60 31.64% 15.64 s 319.80 0.00% 1.97 s
P T700USC  79.50 77.04% 1800 s 321.63 7.11% 28.56 s 254.23 26.57% 0.32 s 197.50 42.96% 17.88 s 241.03 30.38% 0.42 s 231.07 33.26% 18.04 s 346.23 0.00% 2.63 s
T800USC - - - 348.30 5.86% 37.21 s 267.57 27.68% 0.37 s 194.43 47.45% 1856 s 261.53 29.31% 0.52 s 240.50 34.99% 20.16 s 369.97 0.00% 3.39 s
T900USC - - - 369.43 4.91% 49.48 s 279.17 28.14% 0.41 s 19413 50.03% 19.71 s 283.57 27.01% 0.62 s 248.53 36.03% 22.52 s 388.50 0.00% 4.46 s
T1000USC - - - 391.07 3.73% 56.28 s 290.43 28.50% 0.47 s 195.87 51.78% 19.23 s 298.83 26.43% 0.73 s 251.10 38.18% 2490 s 406.20 0.00% 6.04 s
T300USU 75.03 37.83% 1800 s 110.22 8.67% 5.35s 99.05 17.93% 0.18 s 106.77 11.53% 1272 s 8531 29.31% 0.15s 93.13 22.83% 9.87 s 120.68 0.00% 0.83 s
T400USU  86.22 40.18% 1800 s 129.08 10.43% 9.60 s 117.23 18.65% 0.17 s 123.94 14.00% 14.73 s 101.81 29.36% 0.20 s 107.31 25.54% 11.18 s 144.11 0.00% 1.09 s
TS00USU  46.29 71.71% 1800 s 145.77 10.90% 12.68 s 132.95 18.74% 0.22 s 135.94 16.91% 16.28 s 115.27 29.54% 0.30 s 118.75 27.42% 12.66 s 163.61 0.00% 1.43 s
Uniform profits T600USU  54.63 69.32% 1800 s 159.59 10.38% 17.42 s 143.15 19.61% 0.25 s 144.88 18.65% 17.76 s 126.21 29.13% 0.34 s 126.70 28.85% 14.45s 178.08 0.00% 1.91 s
P! T700USU  51.45 73.36% 1800 s 172.44 10.72% 27.16 s 156.89 18.78% 0.30 s 154.49 20.01% 18.58 s 137.19 28.97% 0.46 s 134.28 30.48% 20.04 s 193.15 0.00% 2.33 s
T800USU 56.90 72.52% 1800 s 183.55 11.37% 29.56 s 165.85 19.92% 0.34 s 162.27 21.65% 20.10 s 144.46 30.25% 0.57 s 139.41 32.68% 18.28 s 207.09 0.00% 3.33 s
T900USU  38.77 82.17% 1800 s 194.35 10.64% 37.04 s 176.83 18.69% 0.39 s 169.42 22.11% 21.42 s 152.40 29.93% 0.63 s 143.86 33.85% 20.55s 217.49 0.00% 4.41 s
T1000USU - - - 204.16 9.50% 43.90 s 181.84 19.39% 0.44 s 174.05 22.85% 22.55 s 159.10 29.47% 0.75 s 147.75 34.51% 2298 s 225.59 0.00% 5.38s
Table 5
Generalization on varying number sof UAVs.
Instance group Gurobi OR-Tools GAMMA(Greedy) GAMMA(1280) AM(Greedy) AM(1280) SA-NNO-DRL
Obj. Gap Time Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time  Obj. Gap Time
T200U2C 74.77 4.31% 1800 s 69.87 10.58% 0.71 s 68.70 12.07% 0.10 s 76.10 2.60% 0.86 s 62.90 19.50% 0.05 s 68.43 12.41% 1.66 s 78.13 0.00% 1.05 s
T200U3C 101.77 10.78% 1800 s 101.00 11.46% 1.11 s 96.73 15.20% 0.07 s 106.77 6.40% 1.01 s 87.50 23.29% 0.07 s 95.37 16.39% 2.20 s 114.07 0.00% 0.71 s
Constant profits T200U4C 125.5 13.90% 1800 s 131.83 9.56% 1.84 s 12253 15.94% 0.09 s 132.67 8.99% 1.19 s 109.63 24.79% 0.09 s 118.03 19.03% 2.36 s 145.77 0.00% 0.53 s
P T200U6C  130.90 29.96% 1800 s 181.00 3.16% 2.81 s 161.93 13.36% 0.11 s 171.87 8.04% 1.44 s 14273 23.63% 0.11 s 15450 17.34% 2.63 s 186.90 0.00% 0.36 s
T200U7C 129.83 34.18% 1800 s 196.67 0.30% 3.18 s 174.10 11.74% 0.12 s 184.40 6.52% 1.58 s 155.30 21.27% 0.12's 168.17 14.75% 3.69 s 197.27 0.00% 0.31 s
T200U8C 124.87 37.57% 1800 s 200.00 0.00% 2.81 s 183.63 8.18% 0.13 s 19230 3.85% 1.68 s 165.73 17.13% 0.13 s 178.67 10.67% 4.01 s 199.57 0.22% 0.27 s
T200U2U 42.72 4.54% 1800 s 39.03 12.78% 0.50 s 37.58 16.03% 0.05s 43.09 3.71% 0.82s 36.04 19.45% 0.05s 39.14 1252% 127 s 4475 0.00% 1.13 s
T200U3U 57.83 9.03% 1800 s 57.04 10.27% 1.09 s 53.51 15.83% 0.07 s 59.08 7.05% 0.94 s 50.33 20.82% 0.07 s 5426 14.65% 198 s 63.57 0.00% 0.72 s
Uniform profits T200U4U  69.37 13.41% 1800 s 73.25 8.57% 1.72 s 66.12 17.47% 0.08 s 72.62 9.36% 1.09 s 62.05 22.55% 0.08 s 67.13 16.21% 2.46 s 80.12 0.00% 0.53 s
P T200U6U 71.73 26.51% 1800 s 95.83 1.82% 3.32 s 8461 13.31% 0.10 s 90.70 7.07% 1.41 s 79.89 18.15% 0.11 s 86.05 11.84% 3.49 s 97.60 0.00% 0.38 s
T200U7U 72.22 28.09% 1800 s 100.24 0.20% 3.25 s 90.74 9.65% 0.11 s 95.48 4.94% 1.40 s 86.03 14.34% 0.12 s 91.79 8.61% 3.89 s 100.44 0.00% 0.33 s
T200U8U  72.86 27.91% 1800 s 100.74 0.31% 254 s 94.15 6.84% 0.12's 98.13 2.90% 239 s 91.21 9.75% 0.13 s 96.20 4.81% 4.39 s 101.06 0.00% 0.29 s

the smallest gaps in 8 out of 12 instance groups. Additionally, SA-NNO-
DRL demonstrates efficient computation, with a runtime of fewer than
0.5 s, while consistently delivering high-quality solutions.

5.3. Generalization analysis

The trained deep learning model is expected to generalize to dif-
ferent problem instances, which means it can be applied to various
scenarios. To comprehensively verify the generalization performance of
the proposed SA-NNO-DRL method, we conduct three types of experi-
ments: (1) we evaluate the model learned for a fixed number of targets
to solve instances with more targets; (2) we evaluate the model learned
for a fixed number of UAVs to solve instances with different numbers
of UAVs (i.e., with smaller and larger fleet sizes); (3) we evaluate the
model learned for a fixed location of UAV hub, to solve instances with
different hub locations.

5.3.1. Generalization on larger problem sizes

We generate 30 instances with different numbers of targets and
keep the number of UAVs the same, i.e., T300U5, T400U5, T500U5,
T600US5, T700U5, T8O0US, T900US5, and T100US5, respectively. We also
consider the constant and uniform profits for each problem size. In
our comparison with all baselines, we exclude the results by Gurobi
on T800U5C, T900U5C, T100US5C, and T1000U5U, as Gurobi fails
to produce feasible solutions within the predefined runtime for these
instances. We apply SA-NNO-DRL and GAMMA models learned for
T200U5C/U to MURMPP instances with larger problem sizes. For a fair
comparison, we apply the AM model learned for 100 targets (nodes) on
larger problem sizes.

The experiment results are displayed in Table 4. Regarding the
constant profits, our SA-NNO-DRL method consistently outperforms all
other solvers across all group instances. Notably, OR-Tools achieves
the second-best solutions but requires significantly longer computation
time compared to SA-NNO-DRL. While GAMMA (Greedy) and AM
(Greedy) demonstrate efficient solution computation, we observe that
their performance gaps widen as the problem size increases, indicating
their significant inferiority to SA-NNO-DRL and OR-Tools. On the other
hand, we observe that the advantage of the Sampling decoding strategy
for AM and GAMMA disappears as the problem scales up, which
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indicates that sampling 1280 solutions cannot find a better solution
than Greedy given a prohibitive computation complex.

Regarding the uniform profits, SA-NNO-DRL also delivers the best
results in all instance groups. One key observation from Table 4 is
that the superiority of SA-NNO-DRL over OR-Tools is more pronounced
in instances with uniform profits compared to those with constant
profits. Additionally, the performance gaps between the pure learning-
based methods (GAMMA and AM) and OR-Tools are relatively smaller
in instances with uniform profits compared to instances with con-
stant profits. In other words, all DRL-based methods perform better
on MURMPP with uniform profits. It indicates that the deep neural
network could effectively extract the features of the uniform profits,
and the DRL agent could learn policies to choose targets wisely for
maximizing the total profit.

Overall, the SA-NNO-DRL can efficiently attain desirable solutions
in all large-scale problems even with 1,000 targets and reveals a good
trade-off between solution quality and computation efficiency, which
suggests a fairly favorable generalization. Notably, the NNO-DRL model
in the hybrid SA-NNO-DRL method is only trained with 40 targets
(nodes). Therefore, our method might deliver better solutions given the
NNO-DRL model trained with a larger problem size. Our method also
has the potential to solve instances with more than 1,000 targets.

5.3.2. Generalization to different team sizes of UAVs

We further evaluate SA-NNO-DRL and all baselines on MURMPP
instances with different team sizes of UAVs. We generate 30 instances
with different numbers of UAVs, i.e., 200 targets with 2 UAVs, 3 UAVs,
4 UAVs, 6 UAVs, 7 UAVs, and 8 UAVs, termed as T200U2, T200U3,
T200U4, T200U6, T200U7 and T200U8, respectively. We still consider
constant and uniform profits under different numbers of UAVs. We
evaluate SA-NNO-DRL and GAMMA models learned for T200U5C/U on
each instance group. Meanwhile, the AM models learned for 50 targets
under two profit types are evaluated on the same instance groups. The
results are summarized in Table 5.

In all instance groups except for T200U8C, SA-NNO-DRL achieves
the highest objective values, indicating its favorable generalization
ability across different numbers of UAVs. While OR-Tools provides the
best solutions for T200U8C, it is worth noting that the gap between
SA-NNO-DRL and OR-Tools in this particular instance is only 0.22%. In



M. Fan et al. Swarm and Evolutionary Computation 93 (2025) 101858
Total profits:167.0 Total profits:158.0 Total profits:151.0
1.0 1.0 - 1.0
0.8 ,
0.6
0.41
0.21 °
0.0
0.0 0.2 0.4 0.6 0.8 1.0
(a)
Total profits:157.0 10 Total profits:149.0 10 Total profits:146.0
Fig. 7. The visualization of solutions by (a) SA-NNO-DRL and (b) OR-Tools for instances with different locations of UAV hubs.
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Fig. 8. Ablation study on hybrid models with constant profits.

terms of computational efficiency, SA-NNO-DRL is much more efficient
than Gurobi and surpasses GAMMA(1280), AM(1280), and OR-Tools
on instances with a higher number of UAVs, such as T200U3C/U to
T200U8C/U.

5.3.3. Generalization on varying locations of UAV hubs

Since the UAV hub is deterministically located at the center in
training instances, here we evaluate the generalization of SA-NNO-DRL
on instances with different locations of UAV hubs. We compare SA-
NNO-DRL with OR-Tools in several MURMPP instances on T200U5C
with varying locations of the UAV hub. Their solutions are plotted
in Fig. 7(a) and Fig. 7(b), respectively, where blue circles represent
targets and the black square means the UAV hub. We draw lines with
different colors to represent different UAV routes. We observe from
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Fig. 9. Ablation study on hybrid models with uniform profits.

the figures that SA-NNO-DRL still attains higher profits than OR-Tools
despite the fact that the locations of UAV hubs differ from those in the
training dataset. It indicates the favorable robustness of SA-NNO-DRL
for different locations of UAV hubs.

5.4. Ablation study

To examine the influence of key components in the proposed NNO-
DRL routing method, including the CL strategy and multi-start decoder,
we conduct ablation experiments. Firstly, we remove the CL strat-
egy from SA-NNO-DRL, resulting in a modified model referred to as
SA-NNO-DRL w/o CL. Next, we replace the multi-start decoder in SA-
NNO-DRL w/o CL with the original decoder from AM, creating a variant
model denoted as SA-DRL. Additionally, we assess the influence of the
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Table 6

Comparison results for solving individual UAV routing instances of different sizes and profit types.
Method T20C T50C T20U T50U

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Gurobi 10.58 0.00% 23.70 s 29.92 0.00% 6days 5.84 0.00% 47.04 s 16.54 0.00% 8days
Gurobi(1s) 10.52 0.65% 17.28 s 13.69 54.25% 1.03 m 5.74 1.55% 26.74 s 6.12 62.99% 1.06 m
Gurobi(10s) 10.58 0.01% 23.74 s 29.16 2.55% 5.00 m 5.83 0.01% 48.10 s 15.92 3.75% 7.07 m
Tsili 8.36 21.04% 1.67 s 21.99 26.51% 1.79 s 4.66 20.07% 1.71 s 12.12 26.75% 1.75s
GA 9.75 7.84% 1.53 s 18.49 38.21% 5.89 m 5.51 5.54% 57.86 s 10.77 34.92% 10.36 m
Compass 10.58 0.09% 2.03s 29.71 0.71% 18.62 s 5.82 0.23% 2.66 s 16.45 0.55% 23.09 s
AM 10.31 2.57% 0.38 s 28.44 4.96% 0.42s 5.59 4.16% 0.37 s 15.63 5.53% 0.41 s
MADM 10.24 3.24% 0.64 s 28.14 5.95% 1.11s 5.66 3.04% 0.64 s 15.81 4.45% 1.09 s
POMO 10.45 1.24% 0.47 s 29.10 2.75% 0.69 s 5.71 2.22% 0.51s 15.94 3.62% 0.67 s
NNO-DRL(M=1) 10.52 0.59% 0.42s 29.61 1.03% 0.77 s 5.75 1.42% 0.42s 16.26 1.67% 0.75 s
NNO-DRL(M=4) 10.56 0.27% 0.60 s 29.75 0.58% 1.95s 5.80 0.69% 0.69 s 16.39 0.94% 1.91s

SA-based target reallocation by adjusting SA-NNO-DRL to only utilize
the initial target allocation and UAV routing phase. This modified
model is termed NNO-DRL. We compare the original one with SA-
NNO-DRL w/o CL, SA-DRL and NNO-DRL on T40U2C/U, T60U3C/U,
T80U4C/U, T100U5C/U, T150U5C/U and T200U5C/U. The hyperpa-
rameters of the DRL model in SA-DRL remain the same as the one in
SA-NNO-DRL except for the learning rate on T100U5C and T200U5C,
which we set to 0.00003 for better convergence in the training.

The results on instances with constant profits and uniform profits
are plotted in Fig. 8 and Fig. 9, respectively. As shown, SA-NNO-DRL
consistently outperforms SA-NNO-DRL w/o CL in all cases, indicating
the effectiveness of the CL strategy. Additionally, SA-NNO-DRL w/o CL
demonstrates superior performance compared to SA-DRL in all cases,
emphasizing the contribution of the multi-start decoder. Furthermore,
we observe that SA-NNO-DRL outperforms NNO-DRL in all instances,
underscoring the significance of the SA-based target reallocation. In
addition, we observe that the runtime of SA-NNO-DRL w/o CL and SA-
DRL is almost the same as that of SA-NNO-DRL in Table 2. However,
the runtime of NNO-DRL is very close to that of AM(Greedy) in Table 2
since NNO-DRL only performs the target allocation and UAV routing
phases once without the iterative reallocation process.

5.5. Comparison analysis on NNO-DRL routing method

To evaluate the performance of our proposed NNO-DRL method on
individual UAV routing problem (i.e., orienteering problem, termed as
OP), we compare our method with an exact solver (i.e., Gurobi), three
heuristic algorithms (i.e., Tsili, GA, and Compass) and three state-of-
the-art DRL-based routing methods (i.e., AM, MDAM, and POMO):

1. Gurobi: We use Gurobi with different time limits including
no limit, 1 s, and 10 s, denoted as Gurobi, Gurobi(ls), and
Gurobi(10s) respectively.

2. Tsili [72]: A constructive heuristic for solving OP with a manu-
ally engineered function to define the node probabilities.

3. GA: A genetic algorithm for solving OP, which has also been used
as a comparison algorithm in past work [18].

4. Compass [73]: The recent state-of-the-art evolutionary algorithm
for solving OP incorporates the maintenance and exploration of
infeasible solutions.

5. AM [18]: This method uses a Transformer-based attention model
and greedy decoding strategy to generate solutions.

6. MDAM [20]: This approach extends AM by employing multi-
ple decoders and maximizing the KL diversity between them,
resulting in more diverse solutions.

7. POMO [52]: This model leverages multiple solution trajectories
in parallel to achieve high-quality solutions.

We train all DRL-based solvers on problem instances with n=20 and
50 nodes (i.e., targets) for all profit types, using their original settings.
We train an independent model for problems of each size and profit
type, and the size of the instances generated in the training process
is fixed (e.g., when learning the model for solving problems with n=20
and constant profits, the size and profit type of all instances used in the
training process are fixed to 20 and be constant, respectively). Then, we
test all DRL-based solvers on the problem with the same configuration
as the training instances. Regarding the heuristic algorithms, we run
them with their default parameters. For each problem configuration,
we generate 1,000 problem instances. Taking problem size n=20 with
constant profits and uniform profits as an example, we term them as
T20C and T20U, respectively. During testing, all DRL-based solvers
adopt the Greedy decoding strategy. We consider two versions of our
NNO-DRL method, namely NNO-DRL (M = 1) and NNO-DRL (M = 4),
where NNO-DRL (M = 1) does not utilize instance augmentation, hence
M = 1. The performance of our NNO-DRL method and the other
baselines are recorded in Table 6. Note that we report the time required
to solve 1,000 instances, with DRL-based methods measured on a single
GPU (GTX3090) and Gurobi/heuristic algorithms evaluated for solving
16 instances in parallel on a 16-virtual CPU system (i9-9900K).

NNO-DRL (M = 1) demonstrates superior performance compared to
Tsili, GA, and DRL-based baselines(i.e., AM, MDAM, and POMO), while
NNO-DRL (M = 4) shows further improvement at the expense of slightly
longer inference time. Regarding the performance against the exact
solver Gurobi, our NNO-DRL in the M = 1 and M = 4 settings achieve
gaps of less than 2% and 1%, respectively. Notably, NNO-DRL(M = 4)
achieves the best objective value among all baselines except Gurobi on
T50C instances. Although the Compass outperforms NNO-DRL(M = 4)
in terms of objective value on T20C, T20U, and T50U, NNO-DRL(M =
4) exhibits faster inference speed, with an optimality gap between them
of less than 0.5%. Overall, NNO-DRL delivers high-quality solutions
within a short inference time.

6. Conclusion

This paper proposes a DRL method with SA to solve MURMPPs
in an iterative two-phase framework. Specifically, it decomposes the
MURMPP into the target allocation and individual UAV routing phases.
In the former, we leverage SA with a well-designed shift operation to
assign targets to UAVs. In the latter, we exploit an NNO-DRL model
to route all UAVs in parallel. The above two processes are alternated
until termination. Our method is an early attempt to handle large-scale
MURMPP by solving a series of subproblems with a hybrid of DRL
and meta-heuristics, drastically reducing the problem’s complexity. Be-
sides, our method provides natural scalability to the number of targets
and UAVs. Results show that our method achieves good performance
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in terms of solution quality and computational efficiency. Also, our
method generalizes well to instances with varying numbers of targets
and UAVs, and different locations of UAV hubs.

However, there are three key limitations that should be addressed
in future work to further improve the performance and applicability of
our SA-NNO-DRL method:

1. Out-of-distribution performance. In our current work, we
train and test SA-NNO-DRL using instances from a uniform
distribution. However, achieving good performance on out-of-
distribution instances remains a challenge for DRL algorithms.
As a result, our SA-NNO-DRL method may be less effective when
applied to out-of-distribution instances. In the future, we will
boost the robustness of SA-NNO-DRL via robust DRL technolo-
gies (e.g., few-shot learning [74] and meta-learning [75]).

2. Static instance assumption. Our SA-NNO-DRL method cur-
rently provides target allocation schemes and UAV routes based
on a defined instance without considering dynamic situations.
In practice, targets may be canceled or new targets may appear,
and UAVs may encounter failures or breakdowns. Therefore, it is
important to adapt SA-NNO-DRL to dynamic multi-UAV mission
planning scenarios. Future work will focus on incorporating
dynamic elements into the planning process.

3. Extension to additional side constraints. Currently, our SA-
NNO-DRL simplifies the MURMPP model by disregarding certain
complex side constraints that are often encountered in real-
life problems. For instance, there may be multiple UAV hubs,
causing UAVs to start from different locations. Additionally,
reconnaissance missions may have time limits, with targets as-
signed to specific time windows that UAVs must operate within.
In our future work, we will explicitly consider these real-life
constraints to enhance the applicability of SA-NNO-DRL.

In conclusion, our method is an early attempt to solve large-scale
MURMPP using a hybrid of DRL and meta-heuristics, effectively ad-
dressing both computational complexity and scalability challenges. Our
experimental results demonstrate that SA-NNO-DRL achieves favorable
performance compared to existing methods, making it a promising
solution for real-world multi-UAV mission planning scenarios.

CRediT authorship contribution statement

Mingfeng Fan: Writing — original draft, Validation, Methodology.
Huan Liu: Writing — review & editing, Visualization. Guohua Wu:
Writing — review & editing, Conceptualization. Aldy Gunawan: Writing
- review & editing, Data curation. Guillaume Sartoretti: Writing —
review & editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Sensitivity analysis

We conducted a sensitivity analysis on the SA algorithm’s hyperpa-
rameters to understand their impacts on solution quality and compu-
tational efficiency, aiming to identify an optimal balance between the
two. Specifically, we searched for the best hyperparameter combination
across the following sets: initial temperature T € [70, 80, 90], the lowest
temperature 7, € [55,60,65], Markov chain length L € [2,4,6], and
decaying rate ¢ € [0.85,0.9,0.95]. The most representative combinations
and their experimental results on the T200U5U problem are shown in
Table A.7. The bolded entries indicate the parameter combination and
results used in this study.
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Table A.7

Results of different SA hyperparameters on T200U5U.
T, L T, o Obj. Time
70 4 60 0.9 90.30 0.30
80 4 55 0.9 90.66 0.62
80 2 60 0.9 90.35 0.25
80 4 65 0.9 90.41 0.31
80 6 60 0.9 90.58 0.66
80 4 60 0.85 90.28 0.32
80 4 60 0.95 90.71 0.94
90 4 60 0.9 90.65 0.58
80 4 60 0.9 90.62 0.44

Although this particular combination does not yield the highest
objective value, it provides the best trade-off by achieving high solution
quality within a manageable computation time. This balance makes it
well-suited for our application, effectively meeting both accuracy and
efficiency requirements.

Appendix B. Statistical test

We conducted a Wilcoxon test on our method and the baselines us-
ing the experimental data on T40U2C-T200U5C and T40U2U-T200U5U
to evaluate the statistical significance of performance differences. The
heatmaps of p-values under the constant profit and uniform profit sce-
narios are shown in Figs. B.10(a) and B.10(b). This analysis highlights
the robustness of our approach, showing that as problem size increases,
the performance gap between our method and the baseline becomes
more significant.

Appendix C. Benchmark study

We conducted a benchmark study using a publicly available TOP
benchmark dataset, ‘Set_33_234’ (https://www.mech.kuleuven.be/en/
cib/op#autotoc-item-autotoc-13), in which each instance contains 33
nodes. Notably, the TOP benchmark differs slightly from the MURMPP
defined in this paper: in the former, agents start from a starting node
and end at a different ending node, whereas, in our problem MURMPP,
the UAVs both start and return to the same node. To align with our
problem setup, we removed the final node (ending node) in this dataset,
resulting in modified instances with 32 nodes, with the first node desig-
nated as the UAV hub. We select 10 instances from ‘Set_33_234’, each
involving two UAVs, to evaluate our method and the baselines. The
experimental results, presented in Table C.8, show that Gurobi performs
best, with our method performing comparably to OR-Tools and outper-
forming other learning-based methods (AM and GAMMA). It is worth
noting that the distribution of the benchmark instances differs signifi-
cantly from that of our training data, which can affect our method’s
performance. The degradation in performance on out-of-distribution
data is a common limitation of deep learning methods.

Data availability

Data will be made available on request.
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Fig. B.10. Wilcoxon test on MURMPP instances with different problem sizes and profit types.

Table C.8

Results on TOP benchmark instances.
Instance Gurobi OR-Tools GAMMA (Greedy) GAMMA (1280) AM (Greedy) AM(1280) SA-NNO-DRL
p3.2.j 500 500 410 470 420 490 500
p3.2.1 590 570 500 580 530 580 570
p3.2m 610 590 500 610 560 580 600
p3.2.n 650 610 510 630 510 610 630
p3.2.0 680 630 580 640 530 670 660
p3.2.p 710 700 610 690 680 680 690
p3.2.q 750 750 610 710 710 710 720
p3.2.r 780 770 640 750 680 740 770
p3.2.s 800 780 720 760 750 750 770
p3.2.t 800 800 730 780 750 750 800
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