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Abstract— Autonomous robot exploration requires a robot to
efficiently explore and map unknown environments. Compared
to conventional methods that can only optimize paths based
on the current robot belief, learning-based methods show
the potential to achieve improved performance by drawing
on past experiences to reason about unknown areas. In this
paper, we propose DARE, a novel generative approach that
leverages diffusion models trained on expert demonstrations,
which can explicitly generate an exploration path through
one-time inference. We build DARE upon an attention-based
encoder and a diffusion model, and introduce ground truth
optimal demonstrations for training to learn better patterns
for exploration. The trained planner can reason about the
partial belief to recognize the potential structure in unknown
areas and consider these areas during path planning. Our
experiments demonstrate that DARE achieves on-par perfor-
mance with both conventional and learning-based state-of-the-
art exploration planners, as well as good generalizability in
both simulations and real-life scenarios. Our code is available
at github.com/marmotlab/DARE.

I. INTRODUCTION

In autonomous robotic exploration, a mobile robot is
tasked with fully mapping all accessible parts of an unknown
environment as fast as possible. Typically, the robot is
equipped with sensors, such as a 360-degree LiDAR, to
gather geometric information, allowing it to incrementally
construct a more complete belief (e.g., a 2D occupancy
map) of the environment. Frontiers are cells on the boundary
between free and unknown areas in the robot belief, and are
widely used to represent the information in exploration and
drive the planning [1, 2, 3, 4, 5]. In this work, we study
innovative frontier-driven exploration methods that consider
localization and mapping to be nearly perfect thanks to the
recent advancements in LiDAR odometry [6, 7].

State-of-the-art conventional robot exploration planners
rely on well-designed optimization algorithms that aim to
find the shortest path to observe the most unexplored areas.
To find such a path, an exploration planner needs to reason
about the full robot belief for decision-making. Additionally,
since the robot belief will be updated frequently during the
exploration, the planner must be computational-efficient to
reactively handle the belief changes as well. Such require-
ments highlight the importance of balancing the trade-off
between optimization quality and computing time in explo-
ration planning. Most recent advanced exploration planners
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Fig. 1. An example planned path from DARE. Based on the robot
belief (the occupancy grid map), a robot (the axes) constructs an informative
graph where brighter nodes indicate higher utility. The graph is passed to
an attention encoder network and a diffusion policy network to output a
planned exploration path (in orange). The robot executes the planned path
in the receding horizon manner until it fully explores the environment. Note
DARE can reason about the partial belief to recognize the potential structure
in some unknown areas and consider these areas during path planning.

were developed on sampling-based strategies [2, 3, 4, 8] for
their outstanding efficiency in exploration path planning.

Since exploration tasks challenge planners to rapidly rea-
son about the long-term efficiency of planned paths, some
recent works have looked to deep reinforcement learning
(DRL) to tackle exploration due to its ability to make
reactive decisions and estimate long-term returns. Notably,
our previous works [5, 9] built upon attention-based net-
works [10] achieves on-par or even better performance than
the state-of-the-art conventional planners, as well as robust
generalizability to real-life developments. We believe that
the exciting performance of DRL planners comes from their
implicit predictions of the future robot belief. Similarly to
humans, learning-based planners can draw on past experi-
ences to reason about what might lie in unexplored areas.
However, most DRL-based planners typically only generate
the next waypoint, lacking visible and explainable long-term
planning. In more challenging exploration scenarios, envi-
ronments may contain long corridors and deadends resulting
in sparsity in reward signals that makes training difficult.

To advance learning-based robot exploration and broaden
the community’s research horizon, we propose DARE (Dif-
fusion Policy for Autonomous Robot Exploration), a novel
generative approach that leverages diffusion models trained
on expert demonstrations. DARE not only generates explicit
long-term paths (Figure 1) but also outperforms state-of-
the-art DRL-based planners in challenging exploration sce-
narios. Although DARE is trained using supervised learn-



ing/behavior cloning, which is usually less effective than
deep reinforcement learning in policy training, we address
this disadvantage by introducing a ground truth optimal
demonstration planner. Specifically, we build upon the ob-
servation that exploration can be solved optimally in known
environments by planning a complete coverage, and give our
expert planner access to the ground truth map and build
training datasets with optimal exploration paths. As a result,
our trained planner can reason about the partial belief to
recognize the potential structure in some unknown areas and
consider these areas during path planning. Instead of directly
encoding the robot belief, we construct an informative graph
from the robot belief and encode it as the input of diffu-
sion networks, providing better exploration performance and
generalizability. To validate DARE, we conduct comparison
experiments with a wide range of learning and conventional
baseline methods, as well as demonstrations in a Gazebo
simulation and a real-world deployment.

II. RELATED WORKS

A. Conventional Exploration Planners

We refer to methods that select one of the frontiers as
the navigation target for exploration as frontier-based meth-
ods. Frontier-based exploration methods have been widely
studied for decades and a range of greedy strategies were
developed to improve the exploration performance in the
relatively simple exploration scenarios [1, 11, 12, 13]. For
these frontier-based methods, the selection of the target
frontier could be based on cost (i.e., the distance to a
frontier), utility (i.e., observable information at a frontier),
or their combinations [13, 12, 14, 15, 16]. More recent
works [2, 3, 4, 8, 17] significantly improve the exploration
efficiency by planning non-myopic exploration paths that
consider covering more frontiers. These methods typically
rely on well-designed sampling strategies to balance the
trade-off between planning quality and computation time to
generate long-term exploration paths and execute them in a
receding-horizon manner.

B. Learning-based Exploration Planners

Recently, deep reinforcement learning-based exploration
methods have been introduced to tackle exploration problems
by training a policy to maximize long-term returns. A range
of DRL planners [18, 19, 20, 21] based on convolutional
neural networks (CNNs) were proposed and validated in the
small-scale robot exploration tasks. However, CNN-based
exploration planners are limited to small-scale environments
due to the predefined size of network input. Meanwhile,
the performance of trained CNN-based policies is typically
poorer than advanced conventional methods [5]. On the other
hand, our previous works [5, 9] proposed to construct a graph
representation of the robot belief as the input to attention-
based graph neural networks. Leveraging the ability of the
attention mechanism [10] to capture long-term dependencies,
attention-based DRL planners show on-par or even better
performance than advanced conventional planners and good
generalizability to real-life applications.

C. Diffusion Model in Robotics

Diffusion models [22, 23] are originally developed for
image generation tasks and have demonstrated state-of-the-
art results in many generative tasks. Diffusion models aim
to model the process of gradually adding Gaussian noise to
data, and train neural networks to reverse this process to gen-
erate new data. To leverage the strength of diffusion models
to boost robot learning, recent works [24, 25, 26, 27, 28]
have applied diffusion models to robotic tasks such as motion
planning for robotic manipulators, visual navigation and col-
lision avoidance. These diffusion-based planners rely on the
state of the robot to generate appropriate action sequences.
This state can be represented either by raw data, such as
pose information, or by encoded observations. Typically,
RGB images are processed through visual encoders, such
as ResNets [29], to obtain state representations in a latent
feature space. Using the robot’s state, these diffusion models
then sample a sequence of actions from Gaussian noise and
iteratively denoise it to produce a noise-free sequence of
actions. To train diffusion models for robotic tasks, existing
works rely on offline reinforcement learning [24] or behavior
cloning [25, 26]. There, the high-dimensional output space of
diffusion models allows them to generate a sequence of fu-
ture actions rather than individual actions in succession. This
promotes temporally consistent actions, allowing the robot
to understand and model how its current actions will affect
its future actions. Notably, diffusion policy [25, 26] models
the conditional action distribution instead of the joint state-
action distribution [24], which eliminates the need to include
the observation in every denoising iteration. This allows for
end-to-end training of the diffusion model and observation
encoder (for conditioning of the diffusion process) while also
significantly improving inference speeds, allowing real time
deployment, a key requirement for autonomous exploration.

III. PROBLEM STATEMENT

Given an environment E represented by a 2D occupancy
grid map M , where M consists of free space Mf and
occupied space Mo, such that M =Mf∪Mo. A robot within
this environment maintains a 2D occupancy grid map B,
representing the robot’s belief about E . The map B consists
of unknown space Bu, free space Bf , and occupied space
Bo, where B = Bu ∪Bf ∪Bo. The autonomous exploration
problem begins with no prior knowledge of the environment,
meaning B = Bu. As the robot explores E using a sensor, the
area of the environment perceived at each step is determined
by the sensor’s measurements and is denoted as Ms, where
Ms ⊂M . The robot’s belief map B is then updated with the
newly explored regions Ms. The exploration is considered
complete when Bf = Mf , which in practice is equivalent
to the close of occupied space Mo. The goal of autonomous
exploration is to complete the exploration with the shortest
possible collision-free trajectory ψ∗ given by:

ψ∗ = argmin
ψ∈Ψ

C(ψ), s.t. Bf =Mf (1)

where C : ψ → R+ maps a trajectory to its length.



Fig. 2. Diffusion-based exploration planner. At each step, DARE maintains a graph-based belief representation and encodes it with self-attention layers
to capture a robot belief feature. Conditioned on a sequence of robot belief features, the diffusion policy generates future action sequences through iterative
denoising. Note that planned paths can extend to unknown areas.

IV. METHODOLOGY

To tackle the autonomous exploration problem, we pro-
pose DARE, a diffusion-model-based exploration planner,
and train it to plan efficient exploration paths. Our method,
as shown in Figure 2, builds upon our previous works [5, 9],
which formulate exploration as a path planning problem on
a graph and encode the robot belief with attention-based
networks. In particular, we first construct an informative
collision-free graph from the partial map B to represent the
robot belief. This graph is then encoded using an attention-
based encoder as a robot belief feature in latent space.
Conditioned on this encoded belief feature, we utilize a
diffusion policy network to generate a multi-step trajectory
and execute it in a receding horizon manner. Notably, we
further propose a ground truth optimal exploration path
planner to provide demonstrations for training our diffusion
policy. Since this planner is only used to collect training
data, we allow it to access the ground truth map instead of
the partial belief map only. Consequently, it is easy for this
sampling-based planner to find the optimal (or at least near-
optimal) coverage path, which is approximately equivalent
to the optimal exploration path. By doing so, our diffusion-
based planner is targeted to reproduce such near-optimal
exploration paths while providing generalizability.

A. Graph-based Exploration

Graph representations of environments have been widely
used for exploration planning as they efficiently discretize the
action space and explicitly represent collision-free connec-
tions between nodes through edges [3, 4, 5]. At each decision
step t, we construct a collision-free graph with uniformly
distributed nodes, Vt = {v0, v1, . . . },∀ vi = (xi, yi) ∈ Bf}
in the currently observed free space Bf , each at a distance
of dn meters (node resolution). Each node is connected to
up to 5 × 5 nearest neighboring nodes around itself, where
connections are made only if a collision-free straight-line

path exists between them. Consequently, we have a collision-
free graph Gt = (Vt, Et), where Vt is the set of uniformly
distributed nodes in the free space, and Et is the set of edges
representing collision-free paths between nodes. These nodes
serve as candidate viewpoints/waypoints for the robot, where
one of them vt is at the robot’s current position. To get
collision-free paths, we only allow the robot to move on
valid edges (i.e., to one of neighboring nodes). Thus, the
planned exploration path is a sequence of future locations
ψt+1:t+n = [ψt+1, ψt+2, ..., ψt+n], where ∀ψi ∈ V and n
denotes the length of the planned trajectory. We let the robot
execute the planned path in the receding horizon manner,
where the robot executes the first Ta-step of the planned
trajectory and then replans the exploration path.

B. Observation Encoder

To enable the diffusion policy to accurately perceive the
current state, it is conditioned on a learned high-dimensional
feature, typically encoded features from images through a
visual encoder as mentioned in Section II-C. In the context
of our exploration problem, since the robot maintains a 2D
occupancy map, training a diffusion policy conditioned on
the map images naturally comes to our mind. However,
we note that there are some critical drawbacks of learning
diffusion policy from images. First, visual encoders can not
process images with larger sizes than the training ones, but
an unknown environment could be in any size and shape,
resulting in a poor generalizability of the trained policy.
Second, CNN-based encoders are not good at capturing long-
term dependencies within the exploration space, which has
been experimentally validated in our previous work [5]. Last
but not least, in real-life applications, the occupancy map
could be cluttered and noisy, making it drastically different
from the training maps and leading to a severe sim-to-real
gap.
Graph Observation: On the other hand, encoding graph
representations with attention-based networks has been vali-



dated in our previous works [5, 30] as an efficient approach
to learning robot belief for exploration planning, with no
constraint on the map shape/size and robust sim-to-real
generalizability [9]. Therefore, we take the attention-based
network in [5] as the backbone of the encoder for our diffu-
sion policy. Similar to [5], we construct an informative graph
G′
t = (V ′

t , Et) from the robot belief and the collision-free
graph Gt. This graph not only provides traversable trajectory
space for path planning but also contains the information
distribution (i.e., frontiers) in the robot belief. Note that G′

t

shares the same edge set Et as Gt. In addition to the node
coordinates vi = (xi, yi), each node v′i in the informative
graph includes additional information: the utility ui, which
quantifies the information gain at vi based on the number
of observable frontiers; the guidepost bi, a binary signal
indicating the path to the nearest node with non-zero utility;
and the occupancy oi, a binary signal indicating whether
the robot is present at vi. Thus, each node is represented as
v′i = (xi, yi, ui, bi, oi).
Attention Encoder: We project V ′

t to d-dimension features
and pass it to 6 stacked self-attention layers, where each
attention layer takes the output of its previous layer as input.
Each attention layer reads:

qi =WQhqi , ki =WKhk,vi , vi =WV hk,vi , uij =
qTi · kj√

d
,

wij =

{
euij∑n

j=1 e
uij , Mij = 0

0, Mij = 1
, h′i =

n∑
j=1

wijvj , 1 ≤ i ≤ m

(2)
where each hi ∈ Rd×1 is a d-dimension feature vector
associated with node v′i, superscripts q and k, v denote
the source of the query, key, and value respectively [10],
WQ,WK ,WV ∈ Rd×d are learnable matrices, and M ,
which serves as an edge mask, is a m×m adjacency matrix
(m denotes the number of nodes) built from E (Mij = 0, if
(i, j) ∈ E, else Mij = 1). This edge mask constrains hi to
access features of its neighboring nodes to model the graph
connectivity. The output of self-attention layers is a group of
node features, each h′i modeling dependencies between node
v′i and all other nodes. We term the node feature associated
with the current node vt as the current node feature. We
then pass the current node feature and all node features to
a cross-attention layer, where the structure is the same as
self-attention layers but the query source is the current node
feature only and the key-value sources are all node features.
This cross-attention layer merges all node features with the
current node feature, encapsulating the robot’s understanding
of the environment, thus we term it the robot belief feature.
This feature represents the robot belief in the latent space
and serves as an input to the diffusion policy network.

C. Diffusion Policy

Our method builds upon diffusion policy [25, 26], which
uses a supervised behavior cloning approach and consistently
outperforms previous state-of-the-art methods in robotic
manipulator behavior cloning benchmarks. To generate an
action sequence at timestep t, the diffusion policy begins with

an initial noisy action sequence AKt drawn from a Gaussian
distribution. AKt is then iteratively denoised over K iterations
by subtracting the output of a noise-prediction model εθ,
resulting in A0

t , a denoised action sequence. The denoising
process is described by:

Ak−1
t = α

(
Akt − γεθ(Ot, Akt , k) +N (0, σ2I)

)
, (3)

where Ot is the observation condition (robot belief feature),
k is the current denoising step, and N (0, σ2I) is Gaussian
noise. The parameters α, γ, and σ are functions of k
and define the noise schedule, which is analogous to the
learning rate schedule in stochastic gradient descent. At
time step t and denoising iteration k, the action sequence
Akt represents a series of action akt+i such that Akt =
[akt−To+1, . . . , a

k
t , . . . , a

k
t−To+Tp

] where To is the observation
horizon and Tp is the prediction horizon. Only actions within
the action horizon Ta, given as [akt , a

k
t+1, ..., a

k
t+Ta−1] is

executed in a receding horizon manner.
In our graph-based exploration, actions are defined as

a selection of one of the aforementioned 5x5 neighboring
nodes (including itself) represented as a one-hot encoding.
Specifically, each action akt,i is a 1D vector of 10 binary
values: the first 5 indices represent the x-index and the
next 5 represent the y-index of the selected neighboring
node. When a neighboring node is chosen, we check if
an edge exists in Gt that connects the current node to the
selected neighbor, ensuring a collision-free path. To obtain
the planned exploration path ψt+1:t+n, we first discard past
actions aki for i < t. Then, we map the remaining one-
hot encoding of the denoised action A0

t to the positional
change of the corresponding neighboring node, denoted as
A′0
t , by leveraging the uniform structure of the collision-free

graph with a node resolution (i.e., the gap between nodes) dn.
Finally, we cumulatively sum A′0

t with respect to the robot’s
current location to generate the sequence of future locations
ψt+1:t+n where n = Tp−To+1. Only Ta, the action horizon,
number of steps within the sequence of future locations will
be executed to promote reactivity to new information during
exploration. Note that we utilize the transformer-based noise-
prediction network. We train the noise-prediction network εθ
with mean squared error (MSE) loss which reads:

L = E[(εk − εθ
(
Ot, A

0
t + εk

)
)2], (4)

where εk is a sampled random noise with appropriate vari-
ance and A0

t is the noise-free action sequence from expert
demonstration. We note that the generated paths may have
collisions, thus we further implemented a simple collision
avoidance algorithm to ensure that at least the part within
the action horizon is collision-free.

D. Ground Truth Optimal Demonstration

The diffusion policy is only trained to clone the expert’s
policy, thus the trained performance of the diffusion policy
can never surpass the performance of the expert planner. As
a result, if we take any existing exploration planner as the
expert, it can be foreseen that we can only get a sub-optimal
diffusion policy for exploration. To address this issue, we let



TABLE I
COMPARISONS WITH BASELINE PLANNERS (IDENTICAL 100 SCENARIOS FOR EACH METHOD). THE TRAVEL DISTANCE LOWER THE BETTER.

Nearest Utility NBVP TARE Local ARiANDE Ours Optimal

Distance (m) 652(±76) 585(±79) 645(±109) 558(±67) 579(±82) 563(±71 ) 499(±61)

Gap to Optimal 30.6% 17.2% 29.2% 11.8% 16.0% 12.8% 0%

Algorithm 1: Ground Truth Optimal Planner
Input: Graph G∗(V ∗, E∗), robot position pt, ground

truth frontiers F
Output: Coverage path ψc
Get observable frontiers Fi for each node v∗i
Initialize priority queue Q
∀v∗i ∈ V ∗, push v∗i into Q with priority as ui = |Fi|
Cbest ← +∞, ψc ← ∅
for 1 to k do

Q′ ← Q, W ← {pt}
while Q′ ̸= ∅ and ∃uj > 0 do

Probabilistically sample v∗k ∼ Q′

Q′ ← Q′/v∗k, W ←W ∪ v∗k, F ← F/Fk
Update Fi and ui for all nodes in Q′

end
Compute the TSP path ψ over W starting from pt
if C(ψ) < Cbest then

Cbest ← C(ψ), ψc ← ψ
end

end

the expert planner have access to the ground truth map of
the environment, thus the exploration problem is simplified
to the coverage problem, and the optimal coverage path is
identical to the optimal exploration path. Even though it may
be impossible to find the optimal coverage/exploration paths
from only a partial map, we train our diffusion model to
capture useful underlying patterns by reasoning about the
dependencies between the optimal exploration path and the
partial robot belief, leading to high-quality planned paths.

In this work, we extend the constrained sampling-based
planner proposed in [4] to find the shortest path for covering
a known environment. We construct a ground truth graph
G∗(V ∗, E∗), which is a collision-free graph that covers
ground truth free area Mf . There, we consider the boundary
of unexplored free area (Mf − Bf ) as the ground truth
frontiers to be observed by the robot. Based on G∗, we
sample a set of nodes with the constraint that the robot
can cover all ground truth frontiers by visiting these nodes.
Then we find the the shortest path to visit all these nodes
by solving a Traveling Salesmen Problem (TSP) [31]. By
iterating the above sampling process k times, we select
the shortest path among the sampled paths as the expert
demonstrations. The algorithm is presented in Algorithm 1.

E. Training Details

We train DARE using simulated environments generated
by a random dungeon generator, similar to [5, 32] but with

(a) Rooms (b) Connections (c) Deadends

Fig. 3. DARE exhibits the ability to predict unknown areas. Here
we show some examples where the predictions are correct. The previous
trajectory of the robot (represented by the red dot) is in red. The planned
path by DARE is in green. The explored free areas are in white while the
unexplored free areas are in light gray.

more challenging maps. Each environment is represented as
a 250×250 grid map, corresponding to a 100m×100m area.
The sensor range is set to ds = 20m, and the node resolution
is dn = 4m. For training, we first generate a dataset of 4000
expert trajectories using our ground truth coverage planner.
DARE is trained to plan paths with planning horizon Tp = 8
based on observation horizon To = 2 and execute the action
within action horizon Ta = 1. We use the Square Cosine
Noise Scheduler [33] with K = 100 denoising steps for
the diffusion process. DARE is trained for 130 epochs, each
consisting of 1158 iterations with a batch size of 256, using
the AdamW optimizer [34] at a learning rate of 10−4. We
used 4 NVIDIA GeForce RTX 3090 GPUs for training and
the training converged after 36 hours.

V. EXPERIMENTS

A. Comparison with Baselines

We conducted comparison experiments using a test set
consisting of 100 unseen simulated dungeon environments.
We compared the travel distance of DARE to complete the
exploration with several conventional planners: Nearest [1],
Utility [11], NBVP [2], and TARE Local [4]. The Nearest
method directs the robot to the closest frontier, while the
Utility method evaluates the utility of frontier regions and
the cost to reach them, with a tunable parameter λ (0.05 in
practice) to balance utility and cost. NBVP also randomly
samples paths to determine the optimal viewpoint. TARE
Local, the local planner of TARE [4], plans the shortest
trajectory that can cover all frontiers in the current partial



Fig. 4. Trajectory analysis in the Gazebo simulation.

(a) TARE, 714m, 736s (b) DARE, 678m, 701s

Fig. 5. Exploration paths comparisons in the Gazebo simulation.

map. Besides, we compare DARE to our previous work
ARiADNE [5], a state-of-the-art graph-based DRL planner.
We also provide the results of near-optimal paths generated
by our ground truth coverage planner.

We define the exploration as completed when the occupied
space is closed. The mean and variance of the trajectory
lengths required to complete exploration are summarized in
Table I. Planning time is not reported due to our focus on
path performance, but DARE is able to achieve real-time per-
formance as shown in Section V-B. DARE outperforms other
conventional and learning baselines and achieves on-par
performance with TARE Local, the state-of-the-art planner.
To support our claim on the on-par performance with TARE,
we conduct a one-tailed paired t-test on the hypothesis that
DARE’s travel distance is significantly higher than TARE’s.
As a result, we get the p-value at 0.16, much higher than
the significance level of 0.05. Therefore the hypothesis is
rejected statistically, proving that DARE’s performance is not
significantly worse than TARE’s in this test set.

More than the numerical results, upon closer observations
on planned paths from DARE, we find DARE exhibits a
promising ability to predict unknown areas based on partial
belief. We show some examples in Figure 3 where DARE
accurately modeled the underlying structure in unknown
areas and planned efficient exploration paths. These exam-
ples demonstrate the novelty and advantage of training the
diffusion model using ground truth coverage demonstrations:
the trained planner can reason about the partial belief to
recognize the potential structure in some unknown areas and
consider these areas during path planning. Although DARE’s
predictions are not perfect and could be even wrong, we
believe DARE’s performance will draw interest in studying
the applications of diffusion models in robot exploration.

B. Gazebo Simulation

To further validate the effectiveness of DARE, we develop
DARE in ROS and conduct a high-fidelity simulation in
a 64m × 85m Gazebo environment provided by [8]. In
particular, we set the robot max speed to 1m/s, the map

(a) Mobile robot (b) Exploration path in a research lab

Fig. 6. DARE guides a robot to explore a research lab.

resolution to 0.4m, the node resolution to 2.8m, and the
sensor range to 20m. We run the simulations on an ASUS
PN53 mini PC with AMD R9-6900HX CPU (which is also
used for our test on a real robot), where per-step planning
time of DARE is on average 1.29s using a single-threading
CPU process. As shown in Figure 4 and 5, our planner
completed the exploration in 701s and 678m. In comparison,
TARE completed the exploration in 736s and 714m. Since
we map the environment using Octomap while TARE uses
point cloud, these two planners may not work in exactly the
same condition. However, considering the completeness of
our explored map in point cloud representation, we believe
it is fair to say DARE achieves better exploration efficiency
than TARE in this Gazebo environment.

C. Hardware Validation

We further run our ROS planner on an Agilex Scout mini
mobile robot equipped with a Leishen 16-line 3D LiDAR.
The experiment is conducted in a 20m × 30m research
lab with cluttered furniture. In particular, we set the robot
max speed to 0.5m/s, the map resolution to 0.2m, the node
resolution to 1.6m, and the sensor range to 10m. As shown
in Figure 6, guided by DARE, the robot completes the task
of exploring the lab. We believe our hardware experiment
validates that DARE is applicable to real-life applications.

VI. CONCLUSIONS
In this work, we propose DARE, a generative diffusion-

based approach for autonomous exploration. Given a partial
map of the environment, DARE is trained to plan an ex-
ploration path that can extend into unexplored areas. From
ground truth path demonstrations, DARE learns to reason
about unexplored areas and plan efficient exploration paths.
In doing so, we believe that planned explicit long-term paths
provide a degree of explainability for learned models. In our
tests, DARE achieves on-par performance with the state-of-
the-art planner. Through high-fidelity ROS simulations and
hardware validation, we validate DARE’s ability to operate
in real time and bridge the sim-to-real gap.

Future works will focus on accelerating the inference
speed of the diffusion policy to allow the planner to be
more reactive to high-frequency map updates. We are also
interested in further pushing the capacity of diffusion models
for robot exploration, such as training diffusion models to
explicitly predict the structure of unknown areas and leverage
them for better exploration path planning.
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