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Abstract— In multi-robot exploration, a team of mobile robot
is tasked with efficiently mapping an unknown environments.
While most exploration planners assume omnidirectional sen-
sors like LiDAR, this is impractical for small robots such
as drones, where lightweight, directional sensors like cameras
may be the only option due to payload constraints. These
sensors have a constrained field-of-view (FoV), which adds
complexity to the exploration problem, requiring not only
optimal robot positioning but also sensor orientation during
movement. In this work, we propose MARVEL, a neural frame-
work that leverages graph attention networks, together with
novel frontiers and orientation features fusion technique, to
develop a collaborative, decentralized policy using multi-agent
reinforcement learning (MARL) for robots with constrained
FoV. To handle the large action space of viewpoints planning,
we further introduce a novel information-driven action pruning
strategy. MARVEL improves multi-robot coordination and
decision-making in challenging large-scale indoor environments,
while adapting to various team sizes and sensor configurations
(i.e., FoV and sensor range) without additional training. Our
extensive evaluation shows that MARVEL’s learned policies
exhibit effective coordinated behaviors, outperforming state-of-
the-art exploration planners across multiple metrics. We experi-
mentally demonstrate MARVEL’s generalizability in large-scale
environments, of up to 90m by 90m, and validate its practical
applicability through successful deployment on a team of real
drone hardware.

I. INTRODUCTION

Robotic exploration is crucial for autonomous systems to
navigate and map unknown environments, with applications
ranging from search and rescue [1], [2] to scene reconstruc-
tion [3]. Robots rely on on-board sensors for data collection,
obstacle avoidance, and real-time decision-making to achieve
efficient coverage. Multi-robot exploration, or multi-agent
active SLAM [4], leverages multiple robots to enhance
efficiency, scalability, and robustness compared to single-
agent systems [5]. While most existing approaches use heavy
omnidirectional sensors like LiDAR, smaller robots, such as
drones, may only be able to carry lightweight, directional
sensors (constrained field-of-view (FoV)) like cameras. This
paper introduces a framework for multi-robot exploration
with constrained FoV sensors, which integrates deep multi-
agent reinforcement learning with graph-based attention
mechanisms. This framework enhances coordinated decision-
making and exploration in complex indoor environments
while accommodating diverse sensor configurations.
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Fig. 1: Illustration of multi-robot exploration. 3 drones are
collaboratively exploring an indoor environment (blue region). The
start region is indicated by the yellow star.

The goal of multi-robot exploration is to plan the short-
est trajectory to fully map/cover an unknown environment
through efficient robot coordination. Challenges include non-
myopic decision-making, i.e., the need to optimize long-
term information gain rather than immediate rewards, as well
as adapting to dynamic environments that require ongoing
coordination to effectively cover new areas. Frontier-based
approaches are widely used for both single- and multi-
agent robotic exploration [6], [7], utilizing heuristics to guide
robots toward frontiers—the boundaries between known and
unknown areas (see Fig. 1). These methods aim to balance
utility (observable frontiers) and cost (path length) [8],
but fall short in optimizing long-term exploration, often
resulting in sub-optimal trajectories and inefficiencies due
to the revisiting of previously explored regions. This occurs
because robots are always oriented towards their goal, which
can fragment frontiers into smaller parts, increasing the
likelihood of revisitation. Despite their adaptability and lack
of training requirements, frontier-based methods frequently
demand extensive, complex hyperparameter tuning, which
limits their generalization to different environments.

An alternative to frontier-based methods is using rein-
forcement learning (RL), where agents learn an exploration
policy through deep neural networks that process raw sensory
data. Once trained, these policies enable robots to perform
complex, real-time coordinated actions. However, RL-based
exploration faces several challenges: (1) Constrained FoV
sensors further complicate viewpoint planning, as restricted
visibility amplifies the already vast action space, making
decision-making more challenging. (2) Sparse rewards, typi-
cally granted when new areas are uncovered or specific goals
are achieved, heighten the learning difficulties, as sensor



constraints limit how often frontiers are detected. Without
reward shaping or intrinsic motivation, robots face ineffi-
cient learning. (3) Reward assignment is also challenging,
requiring careful attribution of reward to the viewpoints of
individual robots within the team, complicating coordination
learning and effective exploration. (4) Addressing both spa-
tial and temporal short-sightedness: robots with constrained
FoV must balance exploiting their current viewpoint with
exploring unknown regions, while factoring in the long-
term consequences of their actions on the overall exploration
process.

In this work, we present MARVEL to address multi-robot
exploration challenges with constrained FoV. MARVEL uses
an attention-based neural network, with intelligent fusion of
frontiers and orientation features, for enhanced environmen-
tal understanding, as well as ability to handle different spatial
scale. Our approach includes an attentive privileged critic
network to enhance action estimation and credit assignment.
We also introduce an novel information-driven action pruning
strategy to manage the large action space by focusing on
informative waypoint-heading pairs. Our environment model
is a collision-free graph, where nodes represent accessible
locations and potential actions guide viewpoint selection.
MARVEL, evaluated in large 2D indoor environments, out-
performs existing exploration planners and is validated with a
team of drones, showing adaptability to real robot hardware.

II. RELATED WORKS

Conventional Approaches The field of robotic explo-
ration has progressed significantly since Yamauchi’s early
work on frontier-based methods, which directed robots to-
ward the nearest unexplored areas by orienting them toward
the closest frontiers [6]. This approach was later extended to
multi-robot systems using shared global maps [9]. More ad-
vanced frontier-based techniques now incorporate gain func-
tions to balance utility and cost when selecting viewpoints
for exploration [10], [11]. However, with constrained field-
of-view (FoV) sensors, these methods struggle to efficiently
evaluate large numbers of frontiers due to limited visibility.

In response, sampling-based methods have been proposed,
leveraging algorithms such as Rapidly-exploring Random
Trees (RRT) [8], [12], Rapidly-exploring Random Graphs
[13], and Probabilistic Random Maps (PRM) [14]. These
techniques reduce computational overhead by evaluating
only sampled paths through stochastic processes rather than
exhaustively considering all possible viewpoints. However,
they perform poorly when informative paths are difficult
to sample, especially with constrained FoV. Additionally,
methods like Artificial Potential Fields (APF) have been
applied to multi-robot exploration by guiding robots toward
frontiers based on the occupancy grid and a resistance force
for each agent [15]. APF tends to make robots face nearby
frontiers, which can lead to inefficient local exploration
in constrained FoV scenarios. Voronoi-based methods [16]
assign exploration partitions to each robot to minimize
redundancy but focus on short-term planning, limiting their
ability to handle complex multi-agent interactions.

Learning-based approaches Learning-based approaches
mainly involve reinforcement learning (RL) as they offer
training flexibility and strong expressivity of the environment
[17]. Niroui et al.[18] proposed combining frontier-based
methods with deep reinforcement learning, and adaptively
tuning gain function parameters for frontier selection to
enhance exploration performance. Studies by [19], [20]
utilized convolutional neural networks (CNNs) in their deep
reinforcement learning frameworks. There are also studies
that explore incorporating spatial map memory into the
network by utilizing a differentiable spatial memory [21],
[22]. A notable work for single-agent visual exploration is
Active Neural Slam (ANS), where it combines a RL-based
global planner with a planning-based local planner [23]. ANS
has also been extended with a multi-agent planning module,
leveraging a transformer-based architecture. This approach
employs hierarchical self-attention mechanisms to capture
spatial relationships and interactions between agents [24].
However, all these studies have typically been limited in
scope, i.e., they are usually confined to small-scale environ-
ments, which lacks complex topologies.

Multi-agent reinforcement learning Multi-agent rein-
forcement learning (MARL) has shown significant promise
in complex cooperative tasks [25], with advancements such
as value decomposition [26] aiding in credit assignment
and intrinsic rewards [27], [28] addressing sparse rewards.
Curriculum learning has also been utilized to progressively
increase task complexity [29], [30]. However, optimizing
multiple policies in MARL remains challenging compared to
single-agent approaches, often requiring domain simplifica-
tions like grid worlds or particle simulations [31]. To address
these challenges, our work employs the centralized training
with decentralized execution (CTDE) paradigm and intro-
duces a multi-agent attentive critic algorithm, inspired by
[32]. This approach enhances credit assignment by evaluating
each agent’s contribution, thereby improving collaborative
policy development for multi-robot visual exploration.

III. PROBLEM FORMULATION

We consider the multi-agent indoor active SLAM problem,
where a team of n agents must collaboratively explore
an unknown indoor environment in the shortest time. The
environment is modeled as a bounded occupancy grid map E
of size x×y, divided into free areas Ef and occupied areas Eo,
such that Ef∪Eo = E and Ef∩Eo = ∅. Each agent i maintains
its own belief of the environment Bi, while their combined
belief is denoted as B, consisting of free areas Bf , occupied
areas Bo, and unknown areas Bu, where Bf ∪Bo ∪Bu = B.
The known areas are represented by Bk = Bf ∪ Bo.

Every agent is equipped with a sensor that has a con-
strained FoV, capturing observations within its line-of-sight
range. These sensors update the belief state Bi of agent
i with information from its visible environment, assuming
they are effective within a fixed sensing range and FoV. At
time t, the sensor observation ζi(t) updates the belief states
Bo, Bf , and Bu. For deriving these belief states, we use a
2D sector footprint to approximate the sensor’s constrained



Fig. 2: MARVEL’s policy and critic network architecture. We proposed a policy and critic network that leverage on graph-based
attention. In the graphs, blue circles indicates the nodes that are connected by edges, indicates as tan lines. We also extract the frontiers
(red dots) distribution of each nodes to provide more context to our neural networks.

FoV, similar to [5]. We also assume perfect communication
between agents, allowing them to exchange information and
maintain a shared map throughout the task.

A. Problem Statement

We task n agents to coordinate their trajectories Ψ =
{ψ1, ..., ψn} to complete exploration of the unknown envi-
ronment in the shortest trajectory. ψi represent the trajectory
of agent i, where ψi(t) represents the agent trajectory at
timestep t. The rate of exploration ρ in an environment
is defined as the proportion of Bf to Ef . In practice,
we considered the environment to be fully explored, when
ρ reaches a certain threshold, i.e. 0.99. While executing
ψ, each individual robot updates its belief Bi concerning
the environment using measurements ζi(t) collected by its
onboard constrained FoV sensor. The problem at hand is
to determine the optimal set of trajectories, denoted as Ψ∗,
where the objective is to minimize the cost C(ψ) (e.g., the
trajectory length L(ψ) or makespan T (ψ)) of the exploration
path, i.e., find

Ψ∗ = argmin
Ψ

∑
t

max
i

C(ψ) (1)

Note that we optimize the total maximum distance traveled
per step and assume synchronized decision-making during
training, meaning all agents must reach their viewpoints
simultaneously. This represents a worst-case scenario in
terms of coordination complexity. However, our method nat-
urally handles real-world asynchronous execution, ensuring
flexibility and efficiency in practical applications.

IV. METHOD

In this section, we formulate multi-robot exploration with
constrained FoV as a RL problem and present our proposed
attention-based policy and critic neural networks, along with
the specifics of our training approach.

A. Multi-robot exploration as a RL problem

Sequential Decision-Making: Multi-robot visual explo-
ration involves a sequential decision-making process where
agents make decisions to maximize collective information
gain and minimize redundant exploration. At each time step,
agents choose actions based on partial observations to plan
paths that cover unknown areas efficiently. Each robot’s path
is a sequence of viewpoints, denoted as ψi = (vi1, . . . , v

i
t),

where vit ∈ Ef represents the robot’s viewpoint at step t.
We start by uniformly sampling potential viewpoints Vt =

(v0, v1, . . . ), with vt = (xt, yt) ∈ Bf , and connect them with
collision-free edges Et = {(vi, vi+1) | i = 1, . . . , t − 1},
forming a graph Gt = (Vt, Et). At each timestep, agents
select and execute actions, appending new nodes to Gt when
new areas are discovered. This graph models the environ-
ment’s connectivity and navigability. During training, agents
build their trajectories ψi(t) = (vi1, . . . , v

i
t) as they reach

selected viewpoints, and during execution, new viewpoints
are computed at their planning frequency.

Observation: The observation ot = (G′
t,Ψt, Ft) includes

the informative graph G′
t and the current positions of all

agents Ψt, which together represent environmental structure
and agent distribution. We introduce Ft, a set of frontier
distributions around each node in Vt. This distribution is
captured by sampling 36 uniformly spaced FoVs around
each node and recording the normalized value of observable
frontiers within each FoV. We derive G′

t = (V ′
t , Et) from

Gt to enrich the neural network’s input. Each node v′k ∈ V ′

has the following properties (∆xik,∆yik, uk, ok, gk, hk): (1)
Relative position (∆xik,∆yik), the node’s position relative
to agent k. (2) Utility uk, the number of visible frontiers at
node vk, defined by observable frontiers within sensor range
ds and an unobstructed line of sight. (3) Agent occupancy
ok, a ternary signal indicating if vk is occupied by the current



Fig. 3: Train/Test environments. Green box: the starting region,
which is kept constant for all evaluations conducted.

agent, another robot, or no robot. (4) Guidepost signal gk, a
binary signal indicating if vk is on the A* path to the nearest
frontier. This signal has been demonstrated to significantly
improve the agent’s navigation ability, particularly when the
nearest frontier is distant [33]. (5) Informative heading hk,
the orientation which maximizes the observable frontiers
within the agent’s FoV. We normalize these node features
before inputting them into the policy network, to improve
learning dynamics.

Action space: The agent’s action space includes neighbor-
ing nodes (vj , ψi(t)) ∈ Et, with the next state ψi(t+1) = vj .
To manage the large action space, we use an action pruning
strategy based on information gain. For each neighboring
node, we identify x best headings a based on the number
of observable frontiers, forming joint action pairs (vj , aq) |
aq ∈ a1, a2, . . . , ax. We set x to 3. When no frontiers are
observable, we use the A* path from guidepost gk to sample
headings, aligning with the path if vj is on it, or pointing
to the nearest A* node otherwise. Once agents reach their
viewpoints Ψt, our graph attention networks, parameterized
by θ, generate stochastic policies πθ(ai,t|oi,t). Agents then
move to their viewpoints, update their maps, and if multiple
agents select the same viewpoint, a coordination mechanism
reroutes them to the nearest nodes. During training, a motion
model ensures smooth rotation and adjusts heading goals if
actions become dynamically unfeasible. Agents move at a
constant velocity of 1m/s with a maximum yaw rate of 35◦/s.

Reward structure: We designed a reward function to
optimize the objective in (1), defined as ri = ro + a ·
rh + rt + rf . This function incorporates: ro , the reward
based on the number of observable frontiers from the new
viewpoint; rh, the heading reward, calculated as the cosine
of the angle deviation from the A* path towards the nearest
frontier, scaled by a factor aa (set to 0.3); rt, a team-shared
reward for the total number of frontiers observed by the team,
where ro and rt are normalized by the maximum observable
frontiers within the field of view; and rf , a reward of +10
for task completion when the cumulative utility of nodes
reaches 0. This reward structure encourages agents to explore
new areas effectively and prioritize task completion while
ensuring smooth trajectory planning.

B. Network Architecture

Our policy network (Fig. 2) utilizes an encoder-decoder
architecture with stacked masked attention. The encoder
refines node features in G′

t, which, combined with the robot’s
current location features, are fed to the decoder to generate
waypoint-heading policies.

Encoder: Our encoder leverages a sequence of masked
self-attention layers to enhance the feature representations of
each node by integrating information from other nodes within
the graph. We begin by applying a feed-forward layer to
transform the node properties in V ′

t into d-dimensional node
features hn1 . We apply 1D convolutions to Ft that encodes the
frontier distribution for each node individually to get frontier
features hn2 . This vector captures the node-specific frontier
data, and extract local patterns and relationships within the
node’s frontier distribution. The resulting node features hn1
and frontier features hn2 are concatenated, then projected
back to d-dimensional space via a linear layer, to obtain
node features hn. These features are then processed through
N stacked self-attention layers (with N=6 in our implemen-
tation), where each layer’s input is the output of the previous
one (i.e., hq = hk,v = hn). We apply a graph’s mask Mt,
computed from the adjacency matrix of Et, to ensures that
each node only attends to features of its neighboring nodes
(i.e., attention weigh,t wij = 0, ∀(vi, vj) /∈ Et). Despite
restricted attention to neighboring nodes per layer, nodes
progressively aggregate non-neighbor information through
stacked self-attention. Unlike unmasked self-attention, our
structured approach refines features iteratively via local con-
nections, enhancing path-finding. This enables the encoder
to transform hn into h̃n, where node representations cap-
ture broader graph dependencies influenced by Mt and the
attention depth N .

Policy decoder: The decoder determines the final policy
using the enhanced node features h̃n. From these features,
we select the node at the robot’s current position as the
query: hq = hc = h̃nψi(t)

. The current node features hc,
along with neighboring node features from h̃ne , are input
into an attention layer. This process refines the output h̃c

by incorporating information from neighboring nodes. To
improve the decoder’s awareness of the local environment,
we compute two orientation-specific features for each vj : We
first discretize the heading space into 36 uniform bins, where
each bin represents a distinct heading. Then we compute
a binary feature vector based on the heading space for
each aq of vj , indicating whether the heading falls within
the FoV centered on aq . The second is another 36-bin
vector that tracks the previously explored headings of vj .
This data is then processed through feed-forward layers to
produce the corresponding embedding, hha and hhe . Since h̃n

pertains solely to waypoints and does not include heading
information, we replicate each neighboring node feature x
times, to generate joint action pairs. Then, we concatenate
the expanded h̃n with hha and hhe and then projected back
to d-dimensional space via a feed-forward layer to get
heading enhanced neighboring features h̃ne . We then apply
a single-head attention mechanism with h̃c and its enhanced
neighboring features h̃ne , using the resulting attention scores
directly as the final output policy πθ = (ai,t | oi,t) = wi,j .
This policy guides the agent in selecting the next viewpoint
(vj , aq). Its design removes the constraint of a fixed policy
size, allowing dynamic adaptation to varying numbers of



TABLE I: Comparison with baseline multi-robot planners. We report the average and standard deviation of the trajectory length to
complete exploration, to complete 90% exploration of the environment as well as the overlap ratio and sucess rate. All tests are conducted
with 120◦ FoV and sensor range ds = 10m. The downward and upward arrows indicate that lower and higher values are better respectively.

Agents Metrics Nearest MMPF NBVP Learnt-Greedy MARVEL

2
Trajectory Length. ↓ 637.84(±103.85) 597.91(±123.12) 533.94(±91.63) 665.36(±134.11) 505.25(±89.03)

90% Coverage ↓ 529.49(±96.97) 536.73(±115.03) 440.95(±88.20) 447.32(±106.44) 416.44(±84.62)
Overlap Ratio ↓ 0.684(±0.097) 0.023(±0.101) 0.113(±0.212) 0.081(±0.183) 0.048(±0.137)
Success rate ↑ 98 45 82 73 100

4
Trajectory Length. ↓ 417.92(±89.76) 427.30(±86.46) 416.50(±80.35) 433.03(±96.89) 357.5(±67.07)

90% Coverage ↓ 346.50(±80.11) 358.56(±83.64) 329.75(±81.73) 318.46(±95.15) 294.21(±62.45)
Overlap Ratio ↓ 0.693(±0.096) 0.075(±0.143) 0.246(±0.214) 0.191(±0.187) 0.170(±0.169)
Success rate ↑ 99 95 100 92 100

8
Trajectory Length. ↓ 319.57(±73.66) 311.21(±74.89) 318.99(±59.40) 333.73(±109.30) 279.35(±50.63)

90% Coverage ↓ 266.04(±69.99) 279.76(±65.51) 252.08(±56.19) 256.40(±67.84) 231.54(±46.40)
Overlap Ratio ↓ 0.671(±0.109) 0.172(±0.198) 0.401(±0.199) 0.306(±0.177) 0.316(±0.174)
Success rate ↑ 99 100 98 98 100

TABLE II: Adaptability to different sensor’s FoV. All tests are conducted with 4 agents and sensor range ds = 10m.
FoV Metrics Nearest MMPF NBVP Learnt-Greedy MARVEL

90◦
Trajectory Length. ↓ 414.64(±82.28) 472.92(±87.65) 455.28(±82.03) 511.77(±103.13) 378.99(±57.61)

90% Coverage ↓ 347.46(±84.07) 388.45(±80.47) 362.53(±85.70) 366.97(±102.75) 313.67(±54.57)
Overlap Ratio ↓ 0.594(±0.125) 0.059(±0.130) 0.203(±0.199) 0.180(±0.181) 0.147(±0.155)
Success rate ↑ 97 90 98 94 100

180◦
Trajectory Length. ↓ 422.80(±108.04) 389.08(±89.53) 380.55(±84.31) 424.74(±105.14) 328.36(±61.31)

90% Coverage ↓ 348.05(±95.57) 320.36(±70.86) 320.88(±83.17) 315.65(±83.23) 273.18(±59.95)
Overlap Ratio ↓ 0.807(±0.124) 0.098(±0.175) 0.321(±0.228) 0.216(±0.189) 0.207(±0.183)
Success rate ↑ 99 96 99 97 100

neighboring nodes.

Critic decoder: We developed our critic network, based
on [33], to selectively extract pertinent information for each
agent by incorporating other agents’ actions. The critic
network Qϕ, parameterized by ϕ, utilizes the same encoder
structure as the policy network πθ but features a distinct
decoder. During training, the critic receives full ground-
truth information, such as the entire map or graph (see
Fig. 2), enhancing training stability through privileged learn-
ing. Using the enhanced node features h̃n from the encoder,
we retrieve the features of other agents, h̃nψ−i(t)

, and their
corresponding features at the next timestep, h̃nψ−i(t+1), based
on their current actions at. These key-value pairs augment
the current node feature hc with other agents’ actions, aiding
credit assignment.. The enhanced current node features h̃c

are combined with enhanced neighboring features h̃ne , com-
puted in the same manner as in the policy decoder. Finally,
these concatenated features are mapped to state-action values
Qϕ(st, at) using a feed-forward layer. The networks are
trained using soft actor-critic (SAC) algorithm [34].

Training details: We use a training dataset of 5,663
randomly generated large-scale maps (see Fig. 3) and an
additional 100 unseen maps for testing. Each environment
measures 90m by 90m with 4 agents, a sensor range of
ds = 10m, and a 120◦ FoV. Training parameters include
a maximum episode length of 128 steps, a discount factor
of γ = 1, a batch size of 256, and an episode buffer size of
10,000. Training begins after 2,000 steps, with target entropy
0.01·log(k), one update per step, and Adam optimizer (10−5

LR). The target critic updates every 256 steps. Complete
code and model are available at https://github.com/
marmotlab/MARVEL.

V. EXPERIMENTS

A. Comparison Analysis

Many prior studies evaluate exploration planners in a
limited number of scenarios, often fewer than 10. However,
we observed that performance can vary significantly across
different scenarios, necessitating evaluation across a broad
range of environments. Therefore, we test our model and
baselines in 100 unseen environments. We compare MAR-
VEL with the following baselines: Nearest [9], which selects
the nearest frontier as the global goal using a merged map
of all agents; MMPF [15], which computes a potential field
based on the explored map and agent positions, guiding
agents to frontiers via steepest descent, with a resistance
force to prevent redundancy. To decrease the computation
complexity, frontiers will be gathered into multiple clusters.
In each iteration, agents will select the smallest potential
cluster as their target; NBVP [8], which samples and eval-
uates trajectories based on information gain, executing the
most optimal one; and Learnt-Greedy [35], which employs
deep reinforcement learning with graph-based attention to
select the next sampling location, adapted for multi-agent
systems with greedy headings based on observable frontiers.

We present the average and variance of trajectory length
of complete exploration (99% coverage), 90% coverage,
overlap ratio and success rate in Table I. The overlap ratio
quantifies the shared sensing area among agents per timestep,
indicating collaborative efficiency. 90% coverage refers to
the maximum distance required for agents to explore 90%
of the environment, with lower values indicating higher
efficiency. Success rate measures the percentage of tests
where agents achieve 99% coverage within 128 timesteps.
Our results show that MARVEL outperforms all baselines



TABLE III: Adaptability to different sensor ranges. All tests are
conducted with 4 agents and 120◦ FoV.

Metrics 12m 15m

Trajectory Length ↓ 299.57(±60.33) 258.35(±54.96)
90% Coverage ↓ 247.93(±58.7) 212.85(±49.5)
Overlap Ratio ↓ 0.223(±0.188) 0.208(±0.190)

in average trajectory length, surpassing the best baseline,
NBVP, by 14.2% with four agents. Additionally, MARVEL
achieved the highest success rate across all test scenarios,
attaining a perfect 100% success rate in all tests, which
highlights its robustness. MARVEL also demonstrates supe-
rior stability with the lowest variance in trajectory metrics,
highlighting its strong generalization. Computation times
are not included as the baselines were not optimized for
efficiency, focusing instead on their core implementations.

In terms of overlap ratio, MARVEL ranks second in
most tests, with MMPF emerging as the top performer.
This is expected, as MMPF’s design naturally disperses
agents using strong repulsive forces when agents are in
close proximity, encouraging them to explore independently.
Despite this, MARVEL demonstrates superior multi-agent
coordination, excelling in trajectory metrics. In contrast, the
Nearest method perform poorly, likely due to their short-
sighted strategies, which is more prominent in our large-scale
environments. Also, MMPF’s focus on local exploration
further hinders effective agent coordination. NBVP faces
challenges in larger environments due to its sampling-based
approach, and while increasing its sampling rate could im-
prove performance, it comes with high computational costs.
In comparison, MARVEL achieves consistent computation
times under 0.2s per decision across all scenarios.

Upon closer inspection, we noticed that learnt-greedy
methods delivers faster coverage of 90% of the environment
than nearest and MMPF, indicating the strong performance of
graph-based attention networks in learning spatial relation-
ship for exploration tasks. However, this method struggles
with small scattered frontiers, produced due to subopti-
mal viewpoint orientations, leading to repeated revisits and
longer trajectories for task completion. As a result, learnt-
greedy do not perform well when comparing the trajectory
length for task completion. In contrast, MARVEL’s attention-
based neural network, with intelligent fusion of frontiers
and orientation information, enhances large environmental
understanding and enabling efficient, non-myopic planning.

B. Adaptability to different sensor configurations

We extensively evaluated our models across various FoV
configurations, as detailed in Table II, to understand the
impact of sensor parameters on performance. By avoiding re-
training with different FoV settings, we isolated performance
variations to sensor differences. Our method consistently out-
performed all baselines in trajectory metrics, demonstrating
robust and efficient exploration planning under varying FoV
conditions. Additionally, we tested the model with different
sensor ranges, as shown in Table III. Originally trained
with ds = 10m, the model successfully utilized extended
ranges of ds = 12m and 15m, achieving notable performance

Fig. 4: Experimental validation on four nano drones. The grey
mat demarcates the 4m by 4m flying arena.

gains, and maintaining a 100% success rate. This adaptability
without retraining highlights the model’s resilience to sensor
changes and its ability to effectively use additional sensory
data, making it suitable for diverse environments.

C. Experimental Validation

To assess MARVEL’s potential for real-world deployment,
we conducted experiments with Crazyflie 2.1 drones in a 4m
by 4m arena (see Fig. 4). Using the swarm manager from
[36], we simulated sensor coverage based on the drones’
real-time positions, enabling live virtual mapping tests to
be conducted. These experiments confirmed that MARVEL
can be successfully implemented on physical hardware and
adapts well to the motion dynamics of the drones.

VI. CONCLUSION

In this work, we introduce a neural framework tailored
for multi-robot exploration with constrained field-of-view
(FoV) sensors in large-scale environments. Our approach
employs a graph attention network, with intelligent fusion
of frontier and orientation features, to enhance environmen-
tal understanding and allow agents to produce non-myopic
decisions. In particular, MARVEL handles the extensive
action space of viewpoint planning using an information-
driven action pruning method. Our evaluations show that
MARVEL outperforms existing state-of-the-art multi-agent
exploration planners, adapts well to different team sizes
and sensor configurations (i.e., FoV and sensor range), and
performs reliably across diverse environments. Additionally,
MARVEL has been successfully validated on real drones,
demonstrating its potential for deployment on actual robots.

While MARVEL excels in 2D indoor settings, we ac-
knowledge the added complexity of 3D environments with
intricate obstacles. To address this, we plan to extend
MARVEL to handle full 3D action spaces by integrating
height information and associated FoV changes, thereby
enhancing its application on platforms such as drones for
indoor mapping. There, to ensure efficient 3D exploration,
we plan to employ a sparse graph representation to manage
computational demands effectively.
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