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CoordLight: Learning Decentralized Coordination
for Network-Wide Traffic Signal Control
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Abstract— Adaptive traffic signal control (ATSC) is crucial
in alleviating congestion, maximizing throughput and promot-
ing sustainable mobility in ever-expanding cities. Multi-Agent
Reinforcement Learning (MARL) has recently shown significant
potential in addressing complex traffic dynamics, but the intri-
cacies of partial observability and coordination in decentralized
environments still remain key challenges in formulating scalable
and efficient control strategies. To address these challenges,
we present CoordLight, a MARL-based framework designed
to improve intra-neighborhood traffic by enhancing decision-
making at individual junctions (agents), as well as coordination
with neighboring agents, thereby scaling up to network-level traf-
fic optimization. Specifically, we introduce the Queue Dynamic
State Encoding (QDSE), a novel state representation based on
vehicle queuing models, which strengthens the agents’ capability
to analyze, predict, and respond to local traffic dynamics. We
further propose an advanced MARL algorithm, named Neighbor-
aware Policy Optimization (NAPO). It integrates an attention
mechanism that discerns the state and action dependencies
among adjacent agents, aiming to facilitate more coordinated
decision-making, and to improve policy learning updates through
robust advantage calculation. This enables agents to identify and
prioritize crucial interactions with influential neighbors, thus
enhancing the targeted coordination and collaboration among
agents. Through comprehensive evaluations against state-of-the-
art traffic signal control methods over three real-world traffic
datasets composed of up to 196 intersections, we empirically
show that CoordLight consistently exhibits superior performance
across diverse traffic networks with varying traffic flows.

Index Terms—Adaptive Traffic Signal Control, Multi-agent Re-
inforcement Learning, State Representation, Agent Coordination

I. INTRODUCTION

Rapid urbanization has resulted in increasing travel demands
in ever-expanding cities, with the resulting traffic congestion
posing a significant challenge, mainly in terms of extended
travel times, increased environmental pollution, and reduced
quality of life. As a result, adaptive traffic signal control
(ATSC) [1]–[3] has emerged as an effective approach to help
optimize urban traffic flows by dynamically updating signal
traffic phases and/or timings in response to real-time traffic
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conditions, offering significant advantages over traditional
fixed-time methods. In particular, recent multi-agent reinforce-
ment learning (MARL) techniques have shown promising
outcomes for ATSC [4]–[7]. Centralized RL methods [8]
were first proposed, in which a single decision-making entity
learns to optimize global objectives for all intersections at
once. However, faced with growing urban networks, these
methods struggle with the exponential growth of the joint state-
action space and the ensuing delay from data centralization.
More recently, the community has turned to decentralized
MARL approaches [7], [9]–[11]. These approaches adopt an
independent learning framework where each individual traffic
intersection is treated as a learning agent, relying on real-
time, local traffic data to make control decisions (often, phase
selection for a fixed duration).

However, decentralized control also comes with critical
challenges. One critical issue lies in the lack of a state
definition that can efficiently capture the dynamic behaviors
of traffic situations. In MARL, most of the widely used
state definitions are based on lane-specific feature vectors.
Numerous definitions have proven effective in describing the
traffic conditions at intersections, such as vehicle count [9],
[12], [13], pressure [10], [11], or other enhanced variants
such as Efficient Pressure (EP) [14] and Advanced Traffic
State (ATS) [15]. Nonetheless, these state definitions fail to
provide a full picture of the traffic dynamics, making it difficult
for RL agents to learn and adapt robust control strategies in
ever-changing traffic conditions. Additionally, in decentralized
settings, agents can only make decisions based on limited
traffic information due to partial observability of the global
traffic state, which leads to a surge of myopic and self-
interested behaviors that inhibit efficient network-wide coop-
eration. In response, recent research has focused on improving
agent cooperation and coordination via either advanced feature
extraction, communication mechanisms [9], [16]–[18] or the
implementation of well-designed reward structures [10], [11],
[17], [18]. Nevertheless, the intricacies of agent interactions
and dependencies further exacerbate the issue of instability and
scalability within the multi-agent environment. Such dynamic
interplays typically lead to an unstable training process and
ultimately yield sub-optimal solutions.

To tackle these challenges, we present CoordLight, a novel
decentralized MARL framework, as shown in Fig. 1, designed
to enhance network-wide traffic signal control. Our approach
introduces a new state definition, called Queue Dynamic State
Encoding (QDSE), which integrates the essential lane features
from a vehicle queueing dynamics model to capture cur-
rent traffic conditions, including counts of stopped, entering,
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Fig. 1. Overall learning framework of CoordLight, which introduces a novel state definition, Queueing Dynamic State Encoding (QDSE) for fine-grained
traffic representation, and a Neighbor-aware Policy Optimization (NAPO) algorithm to learn efficient coordination strategies among neighboring agents.

and leaving vehicles, and to estimate upcoming congestion
based on the position and count of moving vehicles. QDSE
significantly enhances the agents’ abilities to discern and
respond to current and potential congestion by analysing traffic
flow dynamics. We further propose Neighbor-aware Policy
Optimization (NAPO), an advanced MARL algorithm de-
signed to facilitate scalable and efficient coordination learning.
Specifically, we employ an attention mechanism to discern the
dynamic dependencies among adjacent agents by adaptively
identifying influential neighbors based on their state and action
information. This effectively decouples the intricate mutual in-
fluences within neighborhoods, thereby enabling more targeted
coordination and collaboration among agents. By integrating
the neighbors’ weighted influence into the value function, we
derive a modified advantage estimate that accurately assesses
the true contributions of agents’ actions towards optimizing
their regional objectives, thus enhancing policy learning and
leading to a more stable training process. To realize such
neighbor-aware learning, we design an augmented actor-critic
network with an attention-based spatio-temporal network as
the backbone, aiming to capture vital insights into neighboring
states across spatial and temporal dimensions for improved
decision-making. Additionally, we incorporate a privileged
local critic network, designed in an encoder-decoder fashion,
aiming to aggregate the state-action dynamics of adjacent
agents into the value function. These enhancements deepen the
understanding of potential impacts from neighboring agents,
thus promoting the learning of a more adaptive coordinated
strategy within our dynamic multi-agent system.

By conducting extensive simulations on a range of bench-
mark traffic networks composed of up to 196 intersections,
using the open-source CityFlow simulator [19], we show
that CoordLight consistently outperforms established state-of-
the-art learning-based ATSC baselines across diverse traffic
networks under the key evaluation metric - average travel
time. From our results, we show that accurately representing

complex traffic conditions and dynamically capturing inter-
dependencies between states and actions of neighboring agents
effectively mitigates the impacts of local observability and en-
vironmental instability, thereby leading to improved network-
wide performance. Finally, through a series of ablation studies,
we rigorously establish the effectiveness of our proposed
two enhancements - QDSE-based state representation, and
neighbor-aware policy optimization/actor-critic architecture.

In summary, the main contributions of this paper are:

(1) We present a novel state representation, named Queue
Dynamic State Encoding (QDSE), which incorporates the
vital lane features derived from a queueing dynamics
model, to enhance the agents’ abilities to analyze, predict
and respond to the impending congestion.

(2) We further introduce Neighbor-aware Policy Optimiza-
tion (NAPO), a fully decentralized MARL algorithm,
which aims to stabilize training process and enhance
coordination among agents by identifying key state-action
dependencies with influential neighboring agents.

(3) We evaluate our proposed learning framework, Coord-
Light over three real-world traffic datasets composed of
up to 196 intersections and demonstrate CoordLight con-
sistently outperforms other state-of-the-art ATSC meth-
ods in the metric of average travel time.

The remainder of this paper is organized as follows: Sec-
tion. II reviews the literature on traffic signal control. Sec-
tion. III details traffic terminology, MARL concepts, and the
RL formulation. The proposed state representation, Queueing
Dynamic State Encoding (QDSE), along with the MARL
algorithm, Neighbor-aware Policy Optimization (NAPO) and
its network architecture, are presented in Section. IV and
Section. V respectively. Simulation experiments and their
results are discussed in Section. VI. Finally, Section. VII
concludes the paper and outlines directions for future work.
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II. RELATED WORK

Conventional traffic signal control methods can be broadly
categorized into fixed-time and adaptive based on their ability
to adapt/react to real-time traffic conditions. Among fixed-
time methods, the Webster method [20] provides an ana-
lytical solution for determining the optimal cycle length at
intersections, while GreenWave [21] focuses on optimizing
timing offsets between intersections to reduce vehicle stops.
In contrast, adaptive methods tailor control to the existing
traffic conditions. The Sydney Coordinated Adaptive Traffic
System (SCATS) [1] is a widely-deployed (but closed-source),
adaptive method that selects from a set of pre-defined signal
plans according to a defined performance measure. A recent
advancement, Max-pressure control [3] aims to balance queue
lengths amongst intersections to improve throughput.

Given the successes of RL in controlling single-traffic
intersections [4], [22]–[28], researchers have now shifted their
focus towards developing methods for coordinating networks
of traffic intersections. Here, learning frameworks can be
categorized into two types: centralized and decentralized meth-
ods. Centralized methods supervise all intersections using
one decision-making entity, learning a global policy that
maps the agents’ joint states to their joint action vector [8],
[25], [29]. However, as the number of agents increases, the
combined state-action space grows exponentially. This results
in substantial challenges due to the limitations in scalabil-
ity and training complexity, making its application in large
urban networks difficult. In contrast, numerous decentralized
methods [7], [26], [30]–[34] propose to assign an independent
learning agent to each intersection which makes a decision
based on its observed local traffic conditions instead of the
global traffic state, considering other agents as part of the
environment dynamics. However, these decentralized learning
methods often encounter challenges in adapting to complex,
dynamic environments due to the lack of effective coordination
and to their inherently reactive nature, making it difficult to
exhibit the longer-term and larger-scale cooperative behaviors
needed for efficient city-wide traffic optimization.

To address the challenges in coordinated ATSC learning,
the community has proposed improved reward structures to
promote coordination. PressLight [10] and MPLight [11] in-
troduced rewards to minimize intersection pressure, improving
coordination with neighboring intersections. Liu et al. [35]
further proposed γ−Reward and γ−Attention-Reward that
uses spatio-temporal information in the replay buffer to amend
the rewards for improved coordination from a hindsight per-
spective. Complementing the focus on the reward structure,
there has been a significant interest in augmenting the ob-
servation space of agents to enhance coordination amongst
agents in partially observable settings. For instance, MA2C [7]
and NeurComm [36] focused on neighborhood-level coop-
eration, enriching an ego agent’s rewards and observations
with data from neighboring agents, facilitated by a spatial
discount factor. NC-HDQN [37] suggested optimizing strate-
gies with information weighted by the correlation degrees
between agents, calculated using empirical rules or Pearson
correlation coefficients, to enhance cooperation among agents.

Furthermore, Zhang et al. [15] introduced ”Advanced-MP,” a
technique that incorporates both moving and queuing vehicles
for signal phase decisions. Additionally, CoLight [9] utilized
Graph Attention Networks (GATs) in traffic signal control to
enhance agent communication and cooperation, followed by
STMARL [16] which improved decision-making by extracting
spatio-temporal features through a combination of Graph Neu-
ral Networks (GNNs) and Recurrent Neural Networks (RNNs).
Lin et al. [38] proposed TeDA-GCRL, which utilizes a novel
graph convolutional architecture that treats each lane as a node
to capture intersection relations, along with two temporal-
aware rewards to enhance the overall traffic performance.
In parallel to this development, Zhu et al. [34] presented
MetaVIM, a meta-learning approach that improves the pol-
icy generalizability of agents across different neighborhood
sizes by incorporating latent variables, and introduces an
intrinsic reward to stabilize the training process in dynamic
traffic environments. While these methods mainly focused on
improving coordination through advanced communication or
feature extraction mechanisms, they did not fully address the
complex behavioral interactions among traffic agents.

Recent works that rely on Centralized Training and De-
centralized Execution (CTDE) framework, such as VDN [25],
COMA [39], QMIX [40], and MAAC [41], have achieved
significant advancements in promoting cooperative and collab-
orative learning within MARL. For instance, Song et al. [42]
enhanced COMA by incorporating a scheduler module that
facilitates efficient information exchange among agents, which
improves cooperation in dynamic multi-agent environments.
Zhou et al. [43] proposed the MICDRL framework, which
advances the CTDE paradigm for cooperative ATSC by in-
troducing an incentive communication mechanism to enable
effective message exchange. Additionally, it improves spatial
and temporal traffic dynamics integration by using recurrent
neural networks for temporal patterns and mutual information-
based modeling for spatial interactions. These CTDE methods,
which often rely on information centralization during training
(e.g., centralized critics, mixing networks), contrast with the
decentralized methods with local critics that use only local
information for learning and decision-making. However, the
reliance of CTDE methods on global information for critic
training, even as actions are executed based on local observa-
tions, poses notable challenges for developing scalable control
strategies in complex, large-scale MARL environments [44].
In response, Goel et al. [13] presented a decentralized co-
operation approach, enabling agents to evaluate and opti-
mize their contributions to local traffic performance within
neighborhoods to improve global coordination. Nonetheless,
these approaches, primarily focusing on variance-reducing
mechanisms in value estimates for cooperative learning, often
tend to overlook the crucial role of neighbor awareness (i.e.,
the spatial and temporal dependencies among adjacent agents)
in the decision-making process.

III. BACKGROUND

A. Traffic Terminology
Definition 1 (Incoming and outgoing lanes): Incoming lanes
at an intersection are where traffic enters, while outgoing lanes
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Eight Traffic Signal Phases

Fig. 2. An illustration of a single intersection with eight traffic signal phases,
where the phase NS-Left is currently activated, allowing the vehicles along the
specified traffic movements (green dotted lines) to traverse the intersection.

are where traffic exits. We denote the set of incoming lanes and
outgoing lanes of an intersection as Lin and Lout respectively.
Definition 2 (Traffic movement): A traffic movement is a
distinct trajectory for vehicles to traverse the intersection, i.e.,
from an incoming lane to a connected outgoing lane. The
traffic movement between lane lin and lane lout is defined
as m(lin, lout), where lin ∈ Lin and lout ∈ Lout.
Definition 3 (Traffic signal phases): An intersection features
multiple traffic signal phases, where each signal phase P is
defined as a set of collision-free, simultaneously-authorized
traffic movements P ⊆ M, with M the set of all possible
traffic movements of an intersection.
Definition 4 (Traffic Agent and Network): A traffic agent
optimizes traffic flows at an intersection by selecting phases
and/or phase duration. A traffic network G(V, E) is structured
as a multi-agent system with vertices V representing traffic
agents and edges E signifying the inter-agent road connections.
Definition 5 (Traffic Neighborhood): For any given agent
i ∈ V , its set of direct neighbors is denoted as N (1)

i =
{j | j ∈ V ∧ dist(i, j) = 1}, where dist(i, j) represents the
shortest path measured in edges between agent i and agent
j. The local neighborhood Hi, including both the agent itself
and its direct neighbors, is defined as Hi = {i}

⋃
N (1)
i .

Fig. 2 depicts an example single intersection composed of
twelve incoming lanes and twelve outgoing lanes. Thirty-six
traffic movements are possible since each incoming lane can
be connected to multiple outgoing lanes. Given the assumption
that the right-turn lanes are never restricted, we formulate eight
distinct (collision-free) phases, as illustrated on the right-hand
side of Fig. 2 which includes NS-Straight, WE-Straight, NS-
Left, WE-Left, S-Straight and Left, W-Straight and Left, N-
Straight and Left, and E-Straight and Left. The intersection is
currently operating under the NS-Left phase, allowing vehicles
in the left-turn lanes from both North and South directions
(green dotted lines) to cross the intersection.

B. Multi Agent Reinforcement Learning

In this section, we formulate the Multi-agent Traffic Signal
Control (MATSC) problem as a Multi-Agent Reinforcement
Learning (MARL) problem, where each intersection is rep-
resented as an independent learning agent. Accordingly, this

problem can be modeled as a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) [45], which
consists of a tuple G = (N,S,A,R, T,O,Z, ρ, γ). Here N
represents the number of learning agents, S the global traffic
state space, and A = A1 × A2 × . . . × AN the joint action
space. The reward function R : S ×A × S → Rn computes
N rewards r = [r1, r2, · · · , rN ] at each time step, with each
reward corresponding to one of the N agents. The transition
function T : S ×A × S → [0, 1] determines the probability
of transitioning from state s to state s′ after executing the
joint action a = [a1, a2, . . . , aN ]. In a partially observable
setting, agents do not have access to the the global traffic
state s. Instead, each agent i draws an individual observation
zi from its observation function Oi(s) : S → Zi, where Zi
represents the observation space of agent i. Finally, ρ(s0) and
γ represent the initial state distribution and discount factor
respectively. Consider πi(ai|zi) : Zi × Ai → [0, 1] as the
stochastic policy for agent i, the joint policy for all agents is
given by π(at|zt) =

∏N
i=1 πi(a

t
i|zti). The objective is to find

an optimal joint policy π∗ that can maximize the expected
discounted return (i.e., discounted cumulative rewards) over
all agents J(π) = Eτ∼π[

∑N
i=1

∑∞
t=0 γ

t rti ], where τ denotes a
global state-action trajectory (s0,a0, s1,a1, · · · , ste ,ate) with
te representing the trajectory length.

C. RL Formulation
We review the state, action, and reward choices for traffic

signal control problems from prior work and then introduce
our definitions used in the CoordLight framework.

1) State: At each time step, agents construct a local state
of the traffic conditions at their intersections as a set of lane-
specific features, collected from digital cameras or induction
loop detectors. Prior work has used a combination of traffic
phase, queue lengths, waiting time, delay, and pressure [7],
[9]–[11], as suitable local states. In CoordLight, we introduce
a novel state called Queue Dynamics State Encoding (QDSE)
derived from the queueing dynamics model. The details of the
state representation QDSE are presented in Section. IV.

2) Action: In MATSC, the action space comprises one or
more of the following options: a) current phase duration given
minimum and maximum duration constraints [26], [46], b)
cycle-based phase ratios [27], [47], c) holding or changing
the current phase within a predefined cycle sequence [24],
[31], [33], and d) choosing the subsequent phase without
sequence to enable ATSC [9]–[11], [13], [15], [18]. In this
work, we choose the action space as a finite collection of
collision-free traffic phases. Agents will synchronously choose
a traffic phase from this set (their action), and implement it
for a predetermined duration (i.e., without a fixed cycle among
phases), allowing for maximum adaptability. Note that this
choice was made for fair comparison with prior methods; our
method can adapt flexibly to other action spaces that meet the
safety/fairness requirements of real applications.

3) Reward: Global reward objectives for MATSC optimize
the average travel delay for all vehicles operating in the
network. However, directly optimizing these global metrics
in a decentralized manner has been proven to be challeng-
ing [48]. Hence, prior work have optimized surrogate local
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reward structures such as queue length, waiting time, speed,
accumulated delay, number of stops, traffic flow intensity,
and pressure [7], [9]–[11]. Among these options, queue
length (the count of stopped vehicles) has been shown to
yield robust and improved traffic performance [48]. Thus,
we define the regional coordinated reward structure for each
traffic agent as the negative sum of queue length on both
incoming lanes and outgoing lanes, which can be written
as: R(s, a) = −

(∑
lin∈Lin

Qlin +
∑
lout∈Lout

Qlout

)
, where

Qlin and Qlout
represents the incoming queue length and

outgoing queue length, respectively. Given that the ego agent’s
outgoing lanes are the incoming lanes of neighboring agents,
this reward structure allows each agent to concurrently opti-
mize its own regional objective (queue length of its incoming
lanes) plus the objectives of its neighboring agents (queue
length of its outgoing lanes, which are the connected incoming
lanes of the neighbors) for enhanced regional cooperation.
Specifically, we believe that the impact of better local decision-
making would spread over the entire network as local traffic
transitions are highly coupled within a neighborhood.

IV. QUEUEING DYNAMIC STATE ENCODING

A. Vehicle Queueing Dynamics

Efficient state representation in traffic signal control is
crucial for RL agents to make high-quality decisions, e.g.,
to enable them to proactively anticipate how their actions
(and those of their neighboring intersections) may influence
their queue length. This predictive capability shifts agents
from merely reacting to traffic changes towards strategically
optimizing traffic flow and proactively reducing congestion.
To this end, we first study the mechanism of vehicle queueing
dynamics, and describe the evolution of the queue length as
a discrete time process, where t represents the time at which
the agent decides/enacts a given phase, and t + 1 marks the
end of that phase (i.e., the next decision step, following a pre-
determined phase duration). The resulting discrete-time queue
length dynamics for an isolated intersection reads:

Q(t+ 1) = Q(t) + ∆in(t)−∆out(t), (1)

where Q(t) denotes the time-dependent queue length vector,
and ∆in(t) and ∆out(t) are the incoming and outgoing queue
length increment vectors (number of vehicles respectively
added/removed to the queue during phase P (t)). Each vector,
expressed as Q(t) = [Ql(t) | l ∈ Lin], ∆in(t) = [∆l

in(t) |
l ∈ Lin], and ∆out(t) = [∆l

out(t) | l ∈ Lout], encompasses
the respective vectors for all incoming lanes within the in-
tersection. Note that the elements within these vectors are
ordered according to the sequence of l in Lin. Specifically,
∆l
out(t) ∈ [0, C] if the traffic light is green on that lane during

phase P (t), with C (throughput) the maximum number of
vehicles that can pass during a green phase.

However, direct inference of ∆in(t) is non-trivial, as this
vector mainly represents the projected count of moving ve-
hicles about to join the waiting queue before the subsequent
decision step (t+1). To accurately calculate/predict the count
of these vehicles, we rely on the Intelligent Driver Model
(IDM) [49], a widely acknowledged car-following framework

used to model the dynamics of individual vehicles and their
responses to surrounding traffic conditions. We denote the set
of active/moving vehicles currently on the incoming lanes
as Vr(t). We further define the distance between a vehicle
and the far end of the queue (away from the intersection) as
D(P (t), Q(t)) (a measured quantity, e.g., through cameras).
When the queue length is zero, D(P (t), Q(t)) is measured
from the stop line of the intersection. Given the instantaneous
velocity vi(t) of vehicle (a measured quantity) at the beginning
of phase t, and using the acceleration formulation v̇i(t) from
the IDM model, we can estimate the predicted distance D̃i(t)
that vehicle i will travel during phase t:

D̃i(t) =

∫ t+1

t

(
vi(t) +

∫ t+t
′

t

v̇i(t
′′
)dt

′′

)
dt

′
. (2)

Using Eq. (2), we can finally predict whether each moving
vehicle will join the queue during phase t, by comparing their
predicted travel distance D̃i(t) to their actual distance from
the end of the queue, D(t). We finally approximate ∆l

in(t) of
an incoming lane at the intersection as:

∆l
in(t) = |

{
i | i ∈ V lr (t) ∧ D̃i(t) ≥ Di(P (t), Q

l(t))
}
|.
(3)

Note that Eq. (3) technically underestimates the true value of
∆in(t), as it ignores vehicles that will join the queue, as the
queue length will increase; that is, Eq. (3) simplifies the queue
dynamic by assuming that Di(t) is constant during phase P (t),
which is at least slightly incorrect at times. However, we note
that the incurred error is small for short phases.

In the context of traffic signal control problems, ∆out(t)
predominantly associates with the model’s short-term efficacy,
actively responding/reacting to real-time traffic conditions
to alleviate congestion. In contrast, ∆in(t) is more aligned
with the model’s long-term capability, foreseeing/predicting
impending congestion through an understanding of moving
vehicle dynamics. Hence, we argue in this work that a
comprehensive and accurate depiction of queueing dynamics,
especially in relation to predicting future congestion, can
elevate the model’s comprehension of congestion formulation,
ultimately contributing to enhanced performance.

B. State Representation

Given the complex nature of the vehicle queueing dynamics,
traditional state definitions, such as vehicle count or pressure,
fail to provide a comprehensive depiction of the local traffic
conditions for RL agents to make informed decisions. There-
fore, we propose a novel traffic state definition, named Queue
Dynamic State Encoding (QDSE) that encapsulates critical
traffic feature variables inspired by queuing dynamics models
to provide an enhanced insight into forthcoming congestion at
a given intersection. Specifically, QDSE is defined as a com-
bination of six time-dependent lane-feature vectors, resulting
in the state vector S(t) ∈ R6×|Lin| for each intersection:

S(t) = [Q(t), Nin(t), Nout(t), Nr(t), Nfr(t), Dfr(t)], (4)

which includes the queue length, i.e., number of stopped
vehicles Q(t), entering vehicles Nin(t), departing vehicles
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Fig. 3. An illustration of the proposed state representation QDSE for an
incoming lane l of a single intersection, where Ql(t) = 3, N l

in(t) = 1,
N l

out(t) = 0, N l
fr(t) = 3, N l

r(t) = 6, and Dl
fr(t) = 15 in this case.

Nout(t), moving vehicles Nr(t), the distance between the end
of the halting queue and the foremost moving vehicle Dfr(t),
and the number of moving vehicles that follow the foremost
moving vehicle within a specified distance Nfr(t).

Our state representation QDSE includes queuing dynamics-
specific features such as the current queue length Q(t), which
directly corresponds to the primary variable of the vehicle
queueing dynamics equation, given in Eq. (1). The features
Nin(t), Nr(t), Nfr(t), and Dfr(t) capture the dynamics of
approaching vehicles that may join and increase the queue,
particularly those closest to the intersection, as they are
strongly related to the queue length increment term ∆in(t)
in the vehicle queueing dynamics. We believe that this may
enhance the RL agents’ ability to estimate D̃i(t), the predicted
travel distance of vehicles during the phase t, as detailed in
Eq. (2), thereby enabling more accurate representation of the
incoming queue length ∆in(t) term, as described in Eq. (3).
Meanwhile, Nout(t) represents the number of vehicles leaving
the intersection, which corresponds to ∆out(t) and can be used
by agents to identify the current phase P (t).

We believe that these specifics provide a more comprehen-
sive depiction of the traffic state, extending beyond simple
vehicle count or pressure that may allow the RL agent to
reason about the current and upcoming traffic conditions in
a more nuanced manner. When agents are equipped with a
comprehensive and predictive view of traffic dynamics, they
can synchronize their actions more effectively, thus enhancing
coordination across the network. Additionally, the integration
of multiple lane features in QDSE enhances the robustness of
the learned policies, allowing them to adapt to complex and
varying traffic flows. By focusing on specific lane features
rather than detailed speed and position for each vehicle,
QDSE strikes a balance between the complexity of state
representation (e.g., image-based methods, which offer high
accuracy but also high complexity) and accuracy (e.g., simple
vehicle counts, which reduce complexity but at the cost of pre-
cision), thereby enhancing its applicability and effectiveness
toward real-world ATSC applications. Fig. 3 offers a detailed
illustration of the proposed state definition in an example case
for an incoming lane at the intersection.

V. NEIGHBOR-AWARE POLICY LEARNING

A. Independent Policy Optimization

To solve for the decentralized MATSC problem, a simple
solution is to rely on independent learning [50], [51], where
each agent (intersection) learns to optimize its own policy
function πθi(z

t
i), parameterized by θi to maximize its cumula-

tive individual rewards. The observation of agent i at decision
time step t is denoted as zti = (sti, s

t
Ni

), which integrates

its local traffic state si with the states of neighboring agents
sNi

= {sj | j ∈ Ni} via local communications. Additionally,
each agent learns a local value function parameterized by ϕi
to estimate the expected cumulative rewards from a given state
over time, expressed as Vϕi

(zti) = Eτ [
∑te
t′=t γ

(t′−t) rti ]. Given
the advantage function as Ati(z

t
i , a

t
i) = rti + γ Vϕi(z

t+1
i ) −

Vϕi(z
t
i), the policy gradient-based methods [52] compute the

gradient for parameter updates as follows:

∇θiJ (θi) = Eτ [∇θi log πθi (ai | zi)Ai (zi, ai)] . (5)

Furthermore, parameter sharing is often applied in independent
learning to improve data efficiency and tackle non-stationarity
in the learning process within complex multi-agent environ-
ments, as demonstrated in studies such as [13], [50], [53],
[54]. Through this technique, agents synchronously update a
commonly shared policy network and value network, with the
parameters represented as θ = θi = . . . = θN for the policy
network and ϕ = ϕi = . . . = ϕN for the value network.
However, such independent learning algorithms often lead to
sub-optimal solutions because the learning agents optimize
their individual rewards in a greedy manner, treating other
agents as part of the environment dynamics. Consequently,
these methods tend to overlook the crucial interactions and
potential inter-dependencies among agents, which impedes the
learning of efficient coordination and cooperation.

B. Neighbor-aware Actor-Critic Network

Given the dynamics of a traffic network, an agent (junction)
needs to have both spatial and temporal awareness of its
surroundings to make informed decisions, e.g., to deduce the
movement status of moving vehicles without full knowledge
of their underlying dynamics/intentions. Since traffic agents
are significantly influenced by their adjacent agents, and
these impacts dynamically change over time, identifying and
analyzing the dynamics of influential neighbors is crucial for
effectively managing traffic flows and achieving enhanced col-
lective traffic optimization. Therefore, we introduce neighbor-
aware learning, wherein we propose a policy function that
learns to adaptively weight the importance of neighbors’ states
and integrate relevant historical information to enhance the
decision-making process. Moreover, we present a privileged
value function that aggregates critical historical state-driven
action awareness of neighbors, aiming to facilitate more accu-
rate value estimation to enhance policy updates and stabilize
the training process. The neighbor-aware policy function and
value function can be formally expressed as:

π̂i(t) = π̂θ(ẑ
τ(:t)
i ), V̂i(t) = V̂ϕ(ẑ

τ(:t)
i , â

τ(:t)
Ni

), (6)

ẑti = (sti, α
t
i s

t
Ni

), âtNi
= (βti a

t
Ni

), (7)

αti = Fξ(sti, stNi
), βti = Fψ(ẑti , atNi

), (8)

where ẑ
τ(:t)
i and â

τ(:t)
Ni

are the augmented observation se-
quence and action sequence of agent i, respectively, across
time. Here, (·)τ(:t) represents the operation that processes a
time sequence of input vectors from initial step to the decision
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Fig. 4. Detailed structure of our neighbor-aware actor-critic network in CoordLight: Fig. (a) shows the overall structure of our attention-based, spatio-temporal
actor network (STN). This network consists of a spatial aggregation unit and a temporal aggregation unit to process information from the agent’s neighborhood
for policy output. Fig.(b) illustrates the structure of the privileged local critic network, which includes a state encoder and a state-action decoder that captures
crucial interactions and incorporates neighbors’ state-action dependencies into the value estimation.

step t. Specifically, given the state of the ego agent and its
neighbors at each decision step t, the augmented observation
vector is calculated as: ẑti = (sti, α

t
i s
t
Ni

), where αti ∈ R|Ni|

is a learnable vector parameterized by ξ, used to evaluate the
importance of the neighbors’ joint state stNi

given the current
ego local state sti. β

t ∈ R|Ni| is another learnable vector
parameterized by ψ that learns to dynamically estimate the
impacts of neighbors’ current actions atNi

given the ego aug-
mented observation ẑti . These neighbor-aware vectors enable
agents to reason about the crucial influence caused by their
neighbors. Recognizing these influences separately, rather than
as a fused whole, ensures a clearer representation of individual
behaviors and contributions of neighboring agents.

We further design an attention-based actor-critic network to
implement neighbor-aware learning, which is detailed below.

1) Actor Network: First, we concatenate the observation
vector zi(t) = (sti, s

t
iN
, stiS , s

t
iE
, stiW ) (where iN , iS , iE , iW

represent the neighbors of i to the North, South, East and
West, respectively) with a state positional vector (a one-hot
vector that identifies agent indices) as the input vector. The
input is projected into a higher-dimensional feature vector
ean ∈ R5×d through multiple linear layers. This vector is
then fed to the spatial aggregation unit, where we utilize
a multi-head attention mechanism [55] to aggregate neigh-
bors’ state information. Specifically, for each attention head,
the feature vector is divided, and processed through three
different linear layers (with the same hidden dimension d)
to generate the Q (query), K(key), and V(value) vectors
of the attention mechanism. Here, Qan ∈ R1×d = [qi] is
a single query vector calculated from the normalized ego
feature vector. Similarly, the key and value vectors, denoted
as Kan ∈ R4×d = [kan,iN , kan,iS , kan,iE , kan,iW ] and
Van ∈ R4×d = [van,iN , van,iS , van,iE , van,iW ] respectively,
are derived from the normalized neighbor feature vector. Next,
the attention weight vector αan is computed based on the
scaled-dot product between the key vector and query vector:

αan = softmax
(
Qan ·KT

an)/
√
d
)

. Finally, we calculate the

output vector e
′

an as the weighted sum of all the value vectors,
using these learned attention weights: e

′

an ∈ R1×d = αanVan.
The resulting vectors from different heads are concatenated
and then combined with the ego feature vector using a residual
connection to yield the state-aggregated feature vector han.
We further employ a recurrent neural network (specifically, a
Gated Recurrent Unit, GRU [56]) to automatically aggregate
crucial state features temporally. Finally, we obtain a policy
by projecting this feature vector h

′

an through a linear layer
followed by a softmax activation function. In parallel, the
feature vector h

′

an is fed through an additional linear layer to
predict the queue length vector at the subsequent decision step.
This branch aims to enhance the model’s ability to represent
queue length transition dynamics via supervised learning. The
specifics of the actor network can be found in Fig. 4(a).

2) Critic Network: The privileged local critic network
comprises two components: a state encoder and a state-action
decoder. Its detailed structure is shown in the Fig. 4(b), with
descriptions for each component provided as follows:

State Encoder: The state encoder employs the same state
embedding module and spatial aggregation unit used in the
actor network, to transform the observation zi(t) with a state
positional vector into a higher dimensional feature vector. The
derived hidden feature vector hcn,s is then used as the query
vector Qcn ∈ R1×d in the state-action decoder.

State-action Decoder: We embed and transform the current
neighbors’ action vector aNi(t) = [atiN , a

t
iS
, atiE , a

t
iW

], con-
catenated with the action positional vector (a one-hot vector
used to denote the indices of four neighboring agents) into a
higher-dimensional vector ecn,a ∈ R4×d. Then, we calculate
the attention weights of neighbors’ current actions given the
ego augmented observation feature vector through the same
multi-head attention mechanism, wherein the query vector
Qcn ∈ R1×d = [qcn,i] is derived from the normalized aggre-
gated feature vector hcn,s of the state encoder. The key vector,
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Kcn ∈ R4×d = [kcn,iN , kcn,iS , kcn,iE , kcn,iW ] and value
vector, Vcn ∈ R4×d = [vcn,iN , vcn,iS , vcn,iE , vcn,iW ], are ob-
tained after normalizing the action feature vector ecn,a. Thus,
the attention weights for each head, using the scaled-dot prod-
uct, can be calculated as: βcn = softmax

(
(Qcn ·KT

cn)/
√
d
)

.
We further calculate the output vector as the weighted sum
of the value vector using the computed attention weights:
e
′

cn,a ∈ R1×d = βcnVcn. These vectors from different
heads are concatenated and then added with the original
feature vector hcn,s from the state encoder through a residual
connection to obtain the feature vector hcn,a. Additionally,
we pass hcn,a through another GRU module to selectively
aggregate the historical augmented neighbor-aware state-action
information. Finally, the resulted feature vector h

′

cn,a is used to
output the state-value estimate and the queue length prediction
vector through two different linear layers. In cases of missing
or incomplete neighbor information, we pad the missing data
with zeros and apply a mask in the attention mechanism. This
ensures consistent input dimensions and prevents agents from
focusing on incomplete or incorrect neighbor information.

C. Neighbor-aware Policy Optimization
We enhance the independent learning algorithm, Indepen-

dent Proximal Policy Optimization (IPPO) [50], [57] with our
neighbor-aware learning to propose our fully decentralized
MARL algorithm, termed Neighbor-aware Policy Optimiza-
tion (NAPO). This algorithm aims to mitigate the agents’
myopic behaviors and promote the learning of efficient co-
ordination strategies by deepening the understanding of the
potential influence and interactions of each neighbor. Within
NAPO, we first incorporate the neighbor-aware value function
into the advantage calculation, the resulted neighbor-aware
advantage function thus can be formally expressed as:

Âti(z
t
i , a

t
i) = rti + γ V̂ t+1

i − V̂ ti
= rti + γ V̂ϕ(ẑ

τ(:t+1)
i , â

τ(:t+1)
Ni

)− V̂ϕ(ẑτ(:t)i , â
τ(:t)
Ni

).
(9)

In this advantage function, the parametric vectors αξ and βϕ
serve as two adaptive weighting factors that prioritize the im-
portance of neighboring agents’ states and actions respectively
by assigning different weights at different situations. Thereby,
this neighbor-aware advantage function can effectively capture
the dependencies between adjacent agents, i.e., focusing on
influential neighbors by assigning higher weights and ignoring
irrelevant neighbors by assigning lower weights, thus leading
to a more accurate estimation of the contribution of ego actions
to enhance coordinated policy learning. According to [39], the
baseline V̂ϕ used in the neighbor-aware advantage function is
not conditioned on the ego agent’s actions. This ensures that it
does not introduce any bias into the policy gradient estimator,
thereby guaranteeing the convergence of NAPO. Combined
with the General Advantage Estimate (GAE) method [58], the
final advantage function can be written as:

Āti = AGAE(zti , a
t
i) =

T∑
l=0

(γλ)lÂt+li , (10)

where λ controls the trade-off between bias and variance.
Thus, the policy loss of NAPO, used to update the policy

Algorithm 1 Neighbor-aware Policy Optimization
1: Initialize θ, the parameters for policy function (actor) π̂,

and ϕ, the parameter for value function (critic) V̂
2: while episode < episodemax do
3: Initialize trajectory buffer τ
4: Initialize h(0)0,π, ..., h

(0)
n,π , the hidden states for actor GRU

5: Initialize h(0)0,v, ..., h
(0)
n,v , the hidden states for critic GRU

6: // Collect trajectory data
7: for t← 1 to T do
8: for all agents i do
9: a

(t)
i , h

(t)
i,π = π̂(z

(t)
i , h

(t−1)
i,π ; θ)

10: end for
11: for all agents i do
12: Calculate neighbors’ current actions, a(t)Ni

13: V̂
(t)
i , h

(t)
i,v = V̂ (z

(t)
i , a

(t)
Ni
, h

(t−1)
i,v ;ϕ)

14: end for
15: Execute actions a(t), observe r(t), z(t+1), q(t+1)

16: Store [z(t), π(t),a(t),a
(t)
N , r(t), z(t+1),q(t+1)] in τ

17: end for
18: Compute advantage estimate Ā via GAE (Eq. (10))
19: Compute TD targets for critic network (Eq. (13))
20: // Update using PPO algorithm
21: for epoch← 1 to K do
22: Reset the hidden states for the actor GRU
23: Reset the hidden states for the critic GRU
24: for all agents i do
25: Compute new policy π̂i,new using data τ
26: Compute queue length prediction pθ,i and pϕ,i

through the actor and critic network using data τ
27: end for
28: Update θ on L(θ) via Adam with data τ (Eq. (15))
29: Update ϕ on L(ϕ) via Adam with data τ (Eq. (16))
30: end for
31: end while

function (i.e., the actor network), for a single agent i over a
given trajectory of length of T , is defined as:

L(i)(θ) = − 1

T

T∑
i=0

min
(
ŝtθ Ā

t
i, clip

(
ŝtθ, 1− ϵ, 1 + ϵ

)
Āti
)
,

(11)

where ŝtθ =
π̂θ

(
ati|ẑ

τ(:t)
i

)
π̂θold

(
ati|ẑ

τ(:t)
i

) is the importance sampling factor

which computes the discrepancy between current policy and
previous policy to prevent drastic deviations during policy
update. To enhance exploration and avoid the policy to be
too deterministic during the training phase, we integrate an
additional entropy loss, which is defined as:

L(i)
e (θ) =

1

T

T∑
t=0

∑
ai∈Ai

π̂θ(a
t
i | ẑ

τ(:t)
i ) log π̂θ(a

t
i | ẑ

τ(:t)
i ).

(12)
The critic network aims to approximate the state-value

estimates by minimizing the Mean Squared Error (MSE).
Defining the critic target as the Temporal Difference(TD) error,
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Fig. 5. Real-world traffic road networks of the CityFlow simulation environments used in our experimental results: Jinan, China map (left, 3×4 intersections),
Hangzhou, China map (center, 4× 4 intersections), and New York, USA map (right, 7× 28 intersections).

the value loss of NAPO is expressed as follows:

L(i)(ϕ) =
1

T

T∑
t=0

rti + γ V̂ t+1
i,ϕ︸ ︷︷ ︸

TD Target

−V̂ ti,ϕ


2

. (13)

Moreover, we derive two vectors, pθ and pϕ from the same
actor network and critic network respectively to predict queue
length on the incoming lanes and outgoing lanes at next
decision step. Given the ground of the truth of queue length
vector at the next step as q̂t+1

i , the prediction losses for both
actor network and critic network can be written as:

L(i)
p (θ) =

1

T

T∑
t=0

(
ptθ,i − q̂t+1

i

)2
,

L(i)
p (ϕ) =

1

T

T∑
t=0

(
ptϕ,i − q̂t+1

i

)2
.

(14)

Note that the output prediction is not employed for any
decision-making processes; rather, our objective is to enhance
the model’s capability to represent future queueing dynamics
by incorporating such auxiliary prediction loss. The final loss
functions to be minimized for updating the actor network and
critic network over all N learning agents are represented as:

L(θ) =
1

N

N∑
i=0

(L(i)(θ) + ωe L
(i)
e (θ) + ωp L

(i)
p (θ)), (15)

L(ϕ) =
1

N

N∑
i=0

(L(i)(ϕ) + ωp L
(i)
p (ϕ)), (16)

where ωe and ωp are two constant weighting coefficients
to adjust the entropy loss and prediction loss respectively.
Specifically, the neighbor-aware vectors α and β are learned
via the same RL losses in this work. It is worth noting that
these vectors are also flexible to be learned via other specific
loss functions to achieve different objectives. The details of
our NAPO algorithm are illustrated in Algorithm. V-C.

VI. EXPERIMENTS

Our experiments rely on the traffic maps and traffic demand
datasets provided by [9], [11], [24]. The road networks used

for simulations are extracted from real-world traffic maps.
Our training and testing episodes are capped at 3600 seconds,
and individual phases (decisions) are fixed to 5 seconds. At
a decision step, if an agent (intersection) selects the same
already-enacted phase, this phase is extended by 5 seconds.
On the other hand, any phase transition is always preceded
by 2 second of yellow lights (for all previously-green lights),
resulting in a shorter, 3-second new phase (totalling 5 sec-
onds). We train a homogeneous traffic policy, i.e., the same
policy weights for all intersection in each map and traffic
demand, consistent with recent works in the field. We then
evaluate CoordLight using the open-source traffic simulator
- CityFlow [19], and benchmark it against both conventional
and learning-based baselines using the average travel time as
the primary global metric (smaller is better). Specifically, the
average travel time is calculated as: 1

Nv

∑Nv

v=1(t
v
end − tvstart),

where Nv is the total number of vehicles in the traffic network,
ttstart and tvend are the time that a vehicle enters and exists the
traffic network. Note that tvend is set to 3600 if the vehicle is
unable to reach its destination before the end of simulation. We
also conduct additional ablation studies to assess the impact
of our proposed state representation - QDSE and the key
components of our MARL algorithm NAPO.

All experiments are run on an Ubuntu workstation with an
AMD Ryzen 9 5950x, 32GB RAM, and an NVIDIA GeForce
RTX 3060. For the training hyper-parameters, we establish
a batch size of 720, a learning rate of 0.0003 for the actor
network, and a learning rate of 0.0005 for the critic network.
The loss coefficients are determined as follows: value loss
at 0.5, entropy loss at 0.01, and prediction loss at 0.005.
Additionally, we set the discount factor and GAE factor both
at 0.98, a policy clip ratio of 0.2, and 6 epochs for PPO update.
We set the hidden dimensions of the linear, attention, and GRU
layers of the neural networks to 128 and adopt the Adam
optimizer [59] for gradient descent and parameter updates.
Our full training and testing code for CoordLight is available
at https://github.com/marmotlab/CoordLight.

A. Traffic Datasets
The employed real traffic dataset includes three urban

networks: Jinan, Hangzhou, and New York, key benchmarks
for evaluating extensive ATSC methods [9], [60]. The road

https://github.com/marmotlab/CoordLight
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TABLE I
TRAFFIC DATASET FOR THREE CITIES - JINAN, HANGZHOU, AND NEW

YORK, EACH WITH DIFFERENT TRAFFIC DEMANDS.
Network Type Volume (veh) Arrival Rate(veh/min)

Mean Std. Max Min

Jinan (3x4)
DJN(1) 6295 104.92 19.79 136.00 50.00
DJN(2) 4365 72.75 15.15 101.00 43.00
DJN(3) 5494 91.57 9.51 111.00 69.00

Hangzhou (4x4) DHZ(1) 2983 49.72 8.24 67.00 40.00
DHZ(2) 6984 116.40 63.72 230.00 39.00

New York (7x28) DNY(1) 10676 177.92 27.06 222.00 79.00
DNY(2) 15862 264.35 35.10 320.00 79.00

networks are extracted from real-world traffic maps and uni-
formly feature homogeneous and regular intersections. Each
intersection has four incoming roads, each comprising three
lanes. The detailed configuration of the road networks is
further illustrated in Fig. 5. The traffic flow datasets are
compiled from camera observations over various time periods,
where a single road network may contain multiple flow
datasets, each reflecting distinct traffic demand levels. The
Jinan map is composed of 12 intersections (3 × 4), Hangzhou
of 16 intersections (4 × 4), and New York consists of 196
intersections (28 × 7). The dataset comprises three traffic flow
datasets for Jinan, two for Hangzhou, and two for New York.
The volumes and arrival rates of different traffic demands of
three city networks are summarized in Table. I.

B. Baseline methods

We benchmark the policies learned by CoordLight against
diverse conventional and learning-based baseline methods.
Aligned with recent works in the field, for all learning-based
methods, we rigorously train a specific policy for each traffic
demand within every individual road network. We evaluate
the policies on 10 evaluation episodes with different seeds
after each training and report the average value of vehicle
travel time. Note that we ran most of the baselines under our
setup, but a few results could not be obtained. These results
are reported from their original paper, and indicated by a ∗.

1) Conventional Baselines:
1) FixedTime [20]: Employs fixed time intervals to each

phase based on pre-defined cycle length and phase split.
2) MaxPressure(MP) [3]: Aims to alleviate congestion

by balancing traffic flows between upstream and down-
stream roads. It adopts a greedy strategy to choose the
traffic phase that minimizes intersection pressure, which
is calculated as the total difference in vehicle counts
between incoming and connected outgoing lanes.

3) Advanced-MP [15]: An enhanced version of MP, which
controls the phase selection based on the highest vehicle
demand. It considers both moving and queueing vehicles
within an effective range (determined by the maximum
lane speed and phase duration) at intersections.

2) MARL Baselines:
1) CoLight [9] : A coordination method that employs

Graph Attention Neural Networks (GATs) for junction-
level cooperation and is trained via Deep Q-learning.

2) MPLight [11]: Integrates pressure metrics into state and
reward definitions, and employs a FRAP-based training
architecture [60] that involves phase competition to
enhance traffic control performance.

3) Advanced-CoLight, Advanced-MPLight [15]: En-
hances CoLight and MPLight by incorporating the cur-
rent phase and Advanced Traffic States (ATS), including
efficient pressure and the count of vehicles within an
effective range, into the intersection observation.

4) DenseLight [18]: Proposes an unbiased reward function
based on the ideal distance gap, paired with an enhanced
feature extraction mechanism for non-local traffic con-
ditions to achieve refined traffic signal control.

5) SocialLight [13]: Facilitates scalable cooperation among
junctions by distributedly estimating individual contribu-
tions within their local neighborhoods.

C. Comparative Analysis of Average Travel Time

First of all, we note that our experiment results in Table II
show that CoordLight outperforms all existing baselines in
reducing average travel time. On the Jinan dataset, DJN,
CoordLight is the only method with an average travel time
consistently below 200 seconds. In particular, compared to the
best-performing baseline method SocialLight, our approach
achieves a performance improvement of 6.39%, 8.57%, and
9.23% over three different demands, respectively. Furthermore,
we observe that CoordLight exhibits excellent consistency and
stability across three different traffic demands. Similar conclu-
sions can be drawn from the results of the Hangzhou dataset
DHZ, where DenseLight outperforms other baseline methods
across both traffic demands. Under the low-demand dataset
DHZ(1), CoordLight achieves a performance comparable to
DenseLight. However, in the higher-demand dataset DHZ(2),
CoordLight shows a 7.87% improvement over DenseLight.
Specifically, while other baseline methods struggle with the
high-volume demand of DHZ(2), our method remains stable,
averaging approximately 250 seconds in performance regard-
less of the varying traffic intensity.

In the New York dataset DNY, the most challenging with
its large scale of 196 intersections, our method surpasses
both graph attention-based methods, Colight and Advanced-
Colight. We believe that this highlights how CoordLight can
facilitate more efficient, targeted coordination learning by
concentrating on key interactions with crucial agents within
the neighborhood, compared with those cooperation methods
enhanced by advanced feature extraction mechanisms (e.g.,
CoLight and Advanced-CoLight). Additionally, CoordLight
exhibits significant improvements over leading methods such
as SocialLight and DenseLight, likely due to its advanced state
representation QDSE and neighbor-aware learning algorithm
NAPO that effectively enhances both local decision-making
and regional coordination, thereby substantially improving
traffic optimization across extensive network scales. We per-
formed unpaired t-tests between the results of CoordLight and
SocialLight (the second best tested method) under all seven
different simulation experiments, as shown in Table. III. All
yielded p-values are lower than 1 · 10−8; using a Bonferroni
correction for these multiple tests, we find the final signif-
icance threshold p = 1.57 · 10−4 (for a standard, original
p = 0.01), indicating that CoordLight (most likely) signifi-
cantly outperforms SocialLight in terms of average travel time.
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TABLE II
AVERAGE TRAVEL TIMES (SEC) COMPARING COORDLIGHT WITH BASELINES IN EACH CITYFLOW ENVIRONMENT/DATASET (∗ INDICATE RESULTS THAT

HAD TO BE REPORTED FROM THE ORIGINAL BASELINE PAPER).
Method DJN(1) DJN(2) DJN(3) DHZ(1) DHZ(2) DNY(1) DNY(2)

Fixed-Time 346.36 289.74 316.70 432.32 359.44 1507.12 1660.29
MaxPressure 273.96 245.38 245.81 288.54 348.98 1179.55 1535.77

Advanced-MP 253.61 238.62 235.21 279.47 318.67 1060.41 ∗ -
CoLight 276.33 ± 3.98 237.14 ± 0.73 278.16 ± 1.13 271.07 ± 2.11 297.26 ± 9.47 1221.77 ± 19.83 1476.18 ± 29.22
MPLight 300.93 ± 3.57 259.10 ± 8.90 261.45 ± 1.74 343.47 ± 2.89 282.14 ± 7.20 1168.49 ± 23.99 1597.24 ± 18.57

Advanced-CoLight 253.95 ± 0.77 234.03 ± 0.61 244.51 ± 0.66 269.62 ± 0.51 308.62 ± 4.58 1025.47 ± 34.33 -
Advanced-MPLight 250.04 ± 0.65 230.92 ± 0.36 227.72 ± 0.58 285.28 ± 0.41 296.76 ± 4.59 1304.60 ± 18.12 -

DenseLight ∗ 226.97 215.82 239.58 248.43 272.27 803.42 -
SocialLight 217.92 ± 0.40 211.75 ± 0.40 210.46 ± 0.32 254.86 ± 0.23 288.55 ± 0.65 771.92 ± 5.04 1106.69 ± 15.39

CoordLight (Ours) 199.24 ± 0.20 198.21 ± 0.11 191.05 ± 0.01 248.45 ± 0.07 250.87 ± 0.21 748.32 ± 4.60 1039.15 ± 10.05

TABLE III
UNPAIRED T-TEST RESULTS FOR COORDLIGHT AND SOCIALLIGHT (BASELINE METHOD).

Traffic Dataset DJN(1) DJN(2) DJN(3) DHZ(1) DHZ(2) DNY(1) DNY(2)
P-value 2.23e-16 9.99e-20 1.24e-21 8.63e-20 1.08e-18 5.45e-09 9.79e-09

Threshold (Bonferroni Correction) 1.57e-04
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Fig. 6. Comparative evaluation of the mean and standard deviation of the
average travel time at intersections (lower is better) against three MARL
baselines over high-demand traffic datasets DJN(1) and DHZ(2).

D. Analysis of Coordination Performance

One of the main goals of this paper is to enhance the
coordination among adjacent agents/intersections, to obtain
network-wide traffic optimization through strategic traffic flow
control within the overlapping neighborhood areas. Therefore,
to investigate the coordination performance among different
control methods, we study the average travel time at each
intersection, as it directly reflects the efficiency of traffic
flow management and the synchronization effectiveness be-
tween adjacent intersections (indicating how well agents at
adjacent intersections are coordinated in timing and operation
to manage traffic flow smoothly). Specifically, lower average
travel time at intersections signifies enhanced harmonization
in managing interdependent traffic patterns. This ensures that
traffic flows through multiple intersections with fewer stops,
ideally allowing vehicles to encounter green lights as they
progress along their route. Meanwhile, lower variance suggests
better consistency and reliability in different traffic conditions.
We calculate the mean and standard deviation of travel times
at each intersection using the high-demand traffic datasets
DJN(1) and DHZ(2) during testing. The findings, illustrated in
Fig. 6, reveal that CoordLight consistently achieves the lowest
average travel time and variance across intersections in both
datasets (yielding 61.58±2.13s for DJN(1), and 74.76±13.46s

for DHZ(2)), compared to other state-of-the-art MARL meth-
ods such as SocialLight, Advanced-CoLight and Advanced-
MPLight. This implies superior coordination performance by
CoordLight in optimizing network-wide traffic.

We performed additional experiments using the neighbor co-
operative reward defined in SocialLight [13], as optimizing this
reward requires MARL algorithms to capture key interactions
and ensure accurate credit assignment for learning efficient
coordination and cooperation (i.e., beyond cases involving
individual rewards only). Detailed results can be found here.
Our intuition about these results is that, by training with
cooperative reward, we allow RL agents to account for a larger
scale of regional traffic flow to further enhance their coor-
dination and cooperation. Our results support this intuition,
and highlight how CoordLight can be adapted to either use
“individual” (regional) or more cooperative (neighborhood)
rewards to learn effective coordination and cooperation at scale
in a wide range of complex urban traffic networks.

E. Ablation Study for State Representation

We highlight the efficacy of our proposed state definition,
QDSE, through a sequence of ablation studies comparing it
against various traffic state definitions used in literature, which
guide the decision-making of traffic agents. We train five
variants of CoordLight conditioned on different lane-feature-
based state definitions for 10000 episodes under identical
experiment settings using the DHZ(2) dataset, which include:

1) Vehicle Counts (VC) [9], [48], [60]: A commonly used
state definition which incorporates the current phase
index and vehicle counts on the incoming lanes.

2) General Pressure (GP) [10]: Defines the state as the
combination of current phase and intersection pressure.

3) Efficient Pressure (EP) [14]: Utilizes current phase and
intersection pressure within a specific effective range as
the state, where the effective range is determined by
maximum lane speed and phase duration.

4) Advanced Traffic State (ATS) [15]: Defines the state
as the current phase at intersections, incorporating both
stopped vehicle counts and pressure, with each being
calculated within the effective range.

https://www.dropbox.com/scl/fi/zus8vsyf0mm3b7ugeb1tn/Supplementary_Materials_TITS.pdf?rlkey=75ak19sltebk88l51bxrwc227&dl=0
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5) Discrete Traffic State Encoding (DTSE) [22]: A de-
tailed image-like state representation that divides the
intersection into multiple 6-meter grids. Each grid corre-
sponds to a specific lane segment, with its state defined
as 0 or 1 based on whether a vehicle is present.

6) Queue Dynamic State Encoding (QDSE, ours): A
state representation that incorporates lane features indi-
cating current traffic conditions (stopped vehicle counts,
entering vehicle counts, and leaving vehicle counts) ,
and estimating upcoming congestion (the position of
the first moving vehicle and the vehicle counts that
closely follow it). Similar to other state definitions, these
features are obtained via the cameras at intersections.

From the training curves presented in Fig. 7(a), we find
that utilizing QDSE, as compared to other lane-feature-based
state definitions, yields a notable improvement in terms of
average queue length, vehicle speed, travel time and standard
deviation of the queue length. Specifically, QDSE not only
reduces the queue length but also significantly decreases its
standard deviation. This suggests that by incorporating new
lane-specific features, QDSE can effectively encapsulate the
traffic dynamics, thereby mitigating myopic behaviors and
enhancing the agent’s predictive and responsive capabilities
towards future congestion. On the other hand, the results from
other state definitions based on efficient range, such as EP
and ATS, indicate that only considering the vehicles that can
pass the intersection within a given duration directs the agents
to focus on responding to the current traffic states, neglecting
the potential impact of future traffic conditions. In contrast,
the features within QDSE enable agents to predict and adapt
to upcoming traffic situations, rendering the control policy
more proactive rather than reactive. Comparing QDSE with
the more detailed image-like state definition, we observe that
using the more complex and accurate DTSE allows Coord-
Light to achieve smoother training curves, indicating that a
more comprehensive state representation can improve training
stability. Despite this, QDSE demonstrates performance on
par with DTSE across all four metrics, and slightly surpasses
DTSE in terms of average travel time. These results show that
QDSE strikes an effective balance between complexity and
accuracy by capturing the key traffic dynamics at intersections
in a concise form, thereby highlighting its practicality and
effectiveness toward real-world applications.

We conducted new additional experiments where we inte-
grated QDSE with other advanced RL-based baseline methods,
including IPPO [57] and SocialLight [13] on the most complex
New York datasets NNY (1) and NNY (2). By comparing the
performance of these baselines with and without QDSE, we
observe notable improvements over both IPPO and SocialLight
when QDSE is used as the state representation. The results
show that QDSE offers a more comprehensive depiction of
intersection traffic conditions, enhancing the agent’s under-
standing of dynamic environments and significantly reducing
average travel times. We believe that these findings highlight
QDSE’s effectiveness in improving traffic performance for
ATSC tasks and its potential to consistently enhance the
performance and robustness of existing RL-based TSC algo-

rithms. More detailed experimental results regarding our state
representation QDSE can be found here.

F. Impacts of Sensor Noise on QDSE

Given that QDSE data would typically be collected by
cameras at intersections in practice, it is inevitably subject
to sensor noise in real-world applications. However, all exper-
iments in this paper are conducted in simulators, where the
state information is assumed to be collected free from sensor
noise. To evaluate the real-world applicability of QDSE, we in-
vestigate its stability and robustness under varied sensor noise
conditions. We identify the measurement of the position of the
leading vehicle Dfr as the primary source of noise in QDSE.
To simulate this, we introduce a Gaussian noise of N(0, σ2) to
the leading vehicle’s position, implying a mean of 0 and a stan-
dard deviation of σ meter. Specifically, we choose σ as 10m,
20m, and 30m to study the impacts of different levels of sensor
noise on the overall control performance, respectively. We train
our models using noise-free QDSE on Jinan and Hangzhou
maps with different traffic demands and then test them with
noisy QDSE under identical settings across 10 episodes. Fig. 8
demonstrates that the proposed QDSE maintains its robustness
when subjected to various levels of sensor noise. In scenarios
with noise standard deviations of 10m, 20m, and 30m, the
performance degradation remains relatively modest, with the
highest observed increase in average travel time being just
over 2%. Notably, the increments in degradation are gradual
as the noise level increases, suggesting a consistent resilience
of QDSE against escalating noise intensities. For instance, in
the DJN(1), the degradation rises from approximately 0.95% at
10m to about 2.34% at 30m. This pattern suggests that, despite
the adverse effects of noise, our state representation method -
QDSE retains its effectiveness in environments with variable
and unpredictable sensor noise, highlighting its potential for
deployment in real-world scenarios.

G. Ablation Study for Proposed Components

We systematically examine the individual contributions of
various components of our CoordLight learning framework
using the Hangzhou dataset DHZ(2) with consistent experi-
mental settings across five model variants. We train each
variant for 10000 episodes, keeping hyperparameters constant
for fairness. Fig. 7.(b) displays training curves, highlighting
key metrics such as mean queue length, speed, travel time,
and queue length’s standard deviation over training progress.

1) CoordLight: The complete independent learning frame-
work which adopts QDSE for state representation and
utilizes NAPO as its optimization algorithm.

2) CoordLight w/o QDSE: Substitutes the QDSE state
with the Vehicle Count (VC) state, while retaining all
other components unchanged.

3) CoordLight w/o STN: Excludes the Spatio-Temporal
Network (STN) from both actor and critic network
while keeping other components. As a result, it lacks
the ability to capture the spatial and temporal state
dependencies among adjacent agents.

https://www.dropbox.com/scl/fi/zus8vsyf0mm3b7ugeb1tn/Supplementary_Materials_TITS.pdf?rlkey=75ak19sltebk88l51bxrwc227&dl=0
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(a) Training curves for ablation study of state representation
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Fig. 7. Training results of the ablation variants of CoordLight in terms of average queue length (↓), average speed (↑), average travel time (↓), and standard
deviation of queue length (↓) with respect to the DHZ(2) dataset for 10000 episodes. Here, ↓ indicates lower is better, while ↑ indicates higher is better.
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Fig. 8. Evaluation of the proposed state representation QDSE on Jinan and
Hangzhou datasets, comparing average travel time with and without sensor
noise (Gaussian noise) across various traffic demands. All variants are trained
with noise-free QDSE and tested with noisy-QDSE.

4) CoordLight w/o AD: Removes the State-action Decoder
(AD) from the critic network and retains all other
components, which means it is unable to learn the state-
driven action dependencies among neighboring agents.

5) CoordLight-Base: Utilizes a actor-critic model com-
posed solely of fully connected layers optimized by
Independent Proximal Policy Optimization (IPPO).

Firstly, we note a significant improvement across all eval-
uation metrics when transitioning the state definition from
a simple vehicle count to our proposed QDSE. Notably, a
substantial reduction in the standard deviation of the queue
length suggests that QDSE effectively amplifies the model’s
ability to comprehend, predict, and act on traffic dynamics,
thereby alleviating potential congestion. Secondly, after omit-
ting the spatio-temporal network from CoordLight, the model
rapidly converges to a sub-optimal solution, resulting in a
remarkable decline in performance. We deduce that this occurs
because the model struggles to capture key traffic dynamics
and intra-neighborhood state dependencies, even with a com-
prehensive state representation, which impedes the learning of

efficient control strategies. Thirdly, we note that integrating
action histories into value estimates appears to substantially
accelerate and stabilize training in dynamic multi-agent en-
vironments. More specifically, the state-action decoder, by
assigning varied importance to neighbors’ action trajectories,
effectively decouples intra-neighborhood impacts and captures
the dependencies among agents, thereby enhancing overall
performance. Finally, in comparison to the variant based on
simple yet scalable independent learning approach (IPPO), our
method, CoordLight, exhibits significant improvements across
all metrics. This success is most likely attributed to its ability
to learn critical state-action dependencies among neighboring
agents, which significantly reduces myopic behaviors and
improves the coordination awareness of the agents.

VII. CONCLUSION

In this paper, we present CoordLight, a MARL-based
framework designed for adaptive traffic signal control in ever-
expanding urban networks. We first introduce an innovative
state representation, Queue Dynamic State Encoding (QDSE),
derived from vehicle queueing dynamics, aimed at enhancing
the agents’ capability to interpret, predict, and act upon local
traffic dynamics. We further propose an augmented MARL al-
gorithm called Neighbor-aware Policy Optimization (NAPO),
which enhances both decision-making and policy learning by
incorporating the learning of state-action dependencies among
neighboring agents via a specialized attention-based neighbor-
aware actor-critic network. These enhancements improve both
the decentralized agents’ local decision-making and their
regional coordination, thereby boosting the overall network-
wide traffic optimization. We conduct comprehensive exper-
iments on three real traffic datasets composed of up to 196
intersections, and demonstrate that CoordLight consistently
outperforms established state-of-the-art ATSC methods across
diverse traffic networks and demand scenarios.
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In response to the increasing traffic demands in metropoli-
tan regions, advanced adaptive traffic control systems, like
CoordLight, have become indispensable to ensuring efficient
traffic flow management, reducing congestion, and enhancing
the overall urban mobility experience. While this study has
focused on traffic optimization in homogeneous networks by
selecting/sequencing fixed-duration phases, we note that our
algorithm is flexible enough to be easily adapted and extended
to different action spaces, such as determining phase duration
or deciding whether to maintain or change the current phase.
Our future work aims to extend our method to heterogeneous
networks with diverse intersection layouts, lane configurations,
and more realistic, asynchronous signal control settings. We
believe that incorporating our QDSE and NAPO into advanced
general learning frameworks can effectively enhance agent
coordination and cooperation, thus leading to improved traffic
performance across heterogeneous networks. Tackling these
more complex and realistic traffic scenarios will be key toward
achieving broader applicability in real-world environments.
Additionally, future research endeavors will focus on han-
dling imperfect sensor data, managing traffic priorities (e.g.,
emergency vehicles), and navigating scenarios such as traffic
accidents and road closures. These efforts aim to further
bolster CoordLight’s robustness, scalability, and adaptability
across a wide range of varied real-life traffic conditions.

REFERENCES

[1] P. Lowrie, “Scats, sydney co-ordinated adaptive traffic system: A traffic
responsive method of controlling urban traffic,” 1990.

[2] J. D. Little, M. D. Kelson, and N. H. Gartner, “Maxband: A versatile
program for setting signals on arteries and triangular networks,” 1981.

[3] P. Varaiya, “The max-pressure controller for arbitrary networks of
signalized intersections,” in Advances in dynamic network modeling in
complex transportation systems, pp. 27–66, Springer, 2013.

[4] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforce-
ment learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3,
pp. 247–254, 2016.

[5] D. Garg, M. Chli, and G. Vogiatzis, “Deep reinforcement learning
for autonomous traffic light control,” in 2018 3rd IEEE international
conference on intelligent transportation engineering (ICITE), pp. 214–
218, IEEE, 2018.

[6] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning
network for traffic light cycle control,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 2, pp. 1243–1253, 2019.
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I. EXPERIMENTAL RESULTS

A. Additional Results for QDSE

1) Ablation Study of QDSE Components: In our pro-
posed state representation Queueing Dynamics State Encod-
ing (QDSE), Nin(t) is the number of vehicles entering the
incoming lanes at the intersection between two decision steps
t − 1 and t, while Nout(t) is the number of vehicles leaving
the incoming lanes during the same period. Since the interval
between two decision steps is a fixed green duration (5
seconds in this work), the number of entering and leaving
vehicles ranges from 0 to C, where C (throughput) is the
maximum number of vehicles that can pass during a green
phase (i.e., Nin(t) and Nout(t) are non-negative integers, and
not just binary values). We present an example to illustrate the
importance of the components Nin and Nout in depicting the
traffic dynamics of an incoming lane at the intersection, as
shown in Fig. 1. We observe that for decision times t − 1,
t, and t + 1 in cases 1, 2, and 3, the number of moving
vehicles is consistently 6. At time t, the values of Nin and
Nout are both 0, indicating that no vehicles entered or exited
this lane since the last decision step. At time t+1, the values
of Nin and Nout are both 2, indicating that two vehicles
entered and two vehicles exited in the previous step. Without
using Nin and Nout to represent these dynamics, we believe
that agents may not accurately capture the flow of vehicles
at the intersection. This makes it difficult for the RL agent
to learn and understand the dynamic traffic environment, as
imperfect state representation means that the same state value
could actually represent different traffic conditions. The results
of our new ablation study on DNY (2), which removes the
components Nin and Nout from the state representation while
keeping other components unchanged, supports this intuition
about the importance of Nin and Nout in capturing crucial
traffic dynamics at the intersection.

Next, Nfr in QDSE indicates the number of moving vehi-
cles that follow the first moving vehicle in the incoming lanes,
calculated by counting the vehicles within a specific distance
(20 meters under the setting of maximum lane speed 11 m/s
in this work) of their leading vehicle. Due to the influence
of traffic signals, vehicles often travel in platoons, and the
dynamics of the vehicles closest to the queue often impact
future congestion at intersections the most, i.e., queue length
increment ∆in at intersections, as analyzed in the vehicle
queueing dynamics in Section IV.A. Therefore, we incorporate
Dfr, the distance of the first moving vehicle from the end of
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Fig. 1. A detailed example of QDSE over three successive decision time
steps for an incoming lane at the intersection. The counts of entering vehicles
(Nin) and leaving vehicles (Nout) are calculated based on the number of
vehicles that enter and exit between successive decision steps, respectively.

TABLE I
RESULTS OF THE ABLATION STUDY ON QDSE COMPONENTS USING THE

COMPLEX NEW YORK DATASET DNY (2) , WITH ALL QDSE VARIANTS
USING THE NAPO OPTIMIZATION ALGORITHM FROM COORDLIGHT.

Method (QDSE Variant) Average Travel Time (Standard Deviation)
QDSE 971.75 ± 22.46

QDSE without Nfr 1134.04 ± 9.75
QDSE without Nin and Nout 984.19 ± (26.8)

the waiting queue, and Nfr, the number of vehicles in the
platoon following the first vehicle. These lane features are
included in the proposed state representation to allow agents
to learn to reason about/predict potential future congestion.
The results of our new ablation study on the complex New
York dataset DNY (2), which removes the components of Nfr

from QDSE while keeping other components the same, are
shown in Table I below, and also support this intuition.

2) Comparative Results of QDSE vs. Image-like State Rep-
resentations: To comprehensively evaluate the performance
of QDSE, we compare QDSE against a more detailed CNN-
based state representation, also known as image-like state
representations, such as the Discrete Traffic State Encoding
(DTSE) used in previous work [1]–[5]. To obtain the DTSE
state representation for an intersection, we first discretize each
incoming lane into multiple grids, each 6 meters long (since
the vehicle length is set to 5 meters in the experiments). A
300-meter-long incoming lane has 50 grids, where the state
of each grid is either 0 (no vehicle) or 1 (vehicle present).
For an intersection with 12 incoming lanes, the grid state
dimension is 600. We also include a state vector for the current
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Fig. 2. Illustration of the image-like state representation - Discrete Traffic State Encoding (DTSE) for a four-road intersection.

traffic signal phase, making the total DTSE dimension 608.
A detailed illustration of the image-like state representation
DTSE for a four-road intersection is presented in Fig. 2.

We conduct experiments for CoordLight using DTSE and
compare it with other feature-based state representations such
as vehicle count, advanced vehicle count, and max pressure
under the Hangzhou dataset DHZ(2). We plot the training
curves for various traffic metrics, including average queue
length, standard deviation of queue length, average speed, and
average travel time throughout the training process. The results
show that the use of DTSE leads to faster training speed
and better optimization performance. This is because DTSE
provides a detailed snapshot of the intersection, enabling
agents to accurately understand and learn the environmen-
tal dynamics for improved performance. While image-like
state representations such as DTSE offer high accuracy in
depicting traffic states, they also come with high complex-
ity and computational cost. DTSE requires advanced image
recognition algorithms to identify roadways and all vehicle
positions from digital cameras at intersections to construct
the grid-like state representation. In contrast, lane-feature-
based state representations sacrifice some level of detail but
reduce the acquisition cost and complexity. In particular, our
proposed QDSE aims to strike an effective trade-off between
accuracy and complexity, providing better traffic dynamics
representation while significantly reducing computational cost.
We believe this makes QDSE a promising option for practical
traffic signal control (TSC) applications.

3) Integration of QDSE with Other RL-based TSC Al-
gorithms: To demonstrate the superiority of our proposed
state representation QDSE, we have integrated it with other
advanced RL-based baselines, including IPPO [6] and Social-
Light [7], while keeping all other components unchanged. We
conduct these experiments using our most complex dataset
(New York, NNY (1) and NNY (2)), which is composed of 196
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Fig. 3. Training curves for ablation study of CoordLight with various state
representations on Hangzhou dataset DHZ(2).

intersections; these new results are shown in Fig. 4 below. By
comparing the performance of these methods with and without
the inclusion of QDSE, we observe distinct improvements
over both IPPO and SocialLight when QDSE is used as the
state representation. These empirical results show that QDSE
provides a more comprehensive depiction of traffic conditions
at intersections, thereby enhancing the agent’s understanding
of the dynamic traffic environments and leading to a more
substantial reduction in average travel times. In doing so, these
findings highlight the effectiveness of QDSE in enhancing traf-
fic performance for ATSC tasks, and demonstrate its potential
to consistently improve the performance and robustness of
existing RL-based TSC algorithms.

B. Additional Results for NAPO

1) Results Using Cooperative Neighbor Rewards: In this
study, our NAPO optimizes queue lengths on both incoming
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TABLE II
AVERAGE TRAVEL TIMES (IN SECONDS) AND THEIR STANDARD DEVIATIONS COMPARING SOCIALLIGHT WITH NEIGHBOR REWARD, COORDLIGHT WITH

REGIONAL REWARD, AND COORDLIGHT WITH NEIGHBOR REWARD ON JINAN (DJN ), HANGZHOU (DHZ ), AND NEW YORK (DNY ) DATASETS.

Method DJN(1) DJN(2) DJN(3) DHZ(1) DHZ(2) DNY(1) DNY(2)
SocialLight (with neighbor reward) 217.32 ± 0.40 224.79 ± 0.40 210.56 ± 0.32 255.09 ± 0.23 288.12 ± 0.65 771.92 ± 5.04 1106.69 ± 15.39
CoordLight (with regional reward) 199.24 ± 0.2 198.21 ± 0.11 191.05 ± 0.01 248.47 ± 0.07 251.23 ± 0.21 748.32 ± 4.60 1039.15 ± 10.05
CoordLight (with neighbor reward) 201.37 ± 0.35 199.18 ± 0.14 192.39 ± 0.13 255.94 ± 0.18 255.86 ± 0.25 709.24 ± 7.26 971.75 ± 22.46
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Fig. 4. Average travel time (in seconds) for IPPO and SocialLight using
different state representations (VC and QDSE) on the complex New York
datasets NNY (1) and NNY (2) with 196 intersections.

and outgoing lanes (the latter being the neighbors’ incoming
lanes), i.e., Rreg = −

(∑
lin∈Lin

Qlin +
∑

lout∈Lout
Qlout

)
.

To further highlight the differences between our method and
algorithms like CoLight and IPPO, we conduct additional
experiments using the neighbor cooperative reward defined in
SocialLight [7], as optimizing this reward requires MARL al-
gorithms to capture key interactions and ensure accurate credit
assignment for learning efficient coordination and cooperation
(i.e., beyond cases involving individual rewards only). This co-
operative reward is calculated as the negative sum of the queue
lengths on all agents’ incoming lanes within the neighborhood
and is expressed as: Rcoop = −

∑
i∈Hi

∑
lin∈Lin,i

Qlin . Fig. 5
provides a detailed illustration of this regional reward Rreg

(used in this work, shown in Fig. 5(a)) and the coopera-
tive neighbor reward Rcoop (used in SocialLight, shown in
Fig. 5(b)). We retrain and test CoordLight with the cooperative
reward Rcoop on three CityFlow datasets. Our new results
show slightly worse performance on simpler traffic datasets
DJN and DHZ compared to using the regional reward, but
significant improvements over the larger and more complex
dataset DNY . The detailed numerical results are shown in Ta-
ble. II. Our intuition about these results is that, by training with
cooperative reward Rcoop, we allow RL agents to account for
a larger scale of regional traffic flow to further enhance their
coordination and cooperation. However, while this cooperative
neighbor reward may encourage better collaboration and im-
proved performance, our regional reward Rreg offers greater
scalability and robustness, as it relies only on the agent’s
own incoming and outgoing lanes, and may be sufficient in
many (simpler) scenarios. This makes our reward structure less
susceptible to fluctuations in neighbor rewards within complex
and dynamic traffic environments, thus leading to a more
stable training process. Our new results support this intuition,
and highlight how CoordLight can be adapted to either use

“individual” (regional) or more cooperative (neighborhood)
rewards to learn effective coordination at scale in a wide range
of complex urban traffic networks.

2) Results for the Large-Scale Grid Network with 1089
Intersections: To validate the scalability and effectiveness
of our method in more challenging traffic scenarios, we
evaluate the performance of CoordLight on larger and more
complex traffic datasets, namely the Grid33x33 − Bi dataset
from GPLight work [8]. This dataset consists of a 33 × 33
grid network with 1089 homogeneous intersections and bi-
directional traffic flow. Vehicles enter from the east, west,
north, and south, with traffic volumes of 300 vehicles per lane
per hour for the east-west direction and 90 vehicles per lane
per hour for the north-south direction. We follow the same
experimental settings as GPLight [8] and report the average
travel time results, comparing CoordLight with Fixed-time,
Max-Pressure, IntelliLight, CoLight, MPLight, and GPLight.
All baseline results are taken from the original GPLight paper
to ensure consistency. The baseline details are as follows:

• Fixed-Time [9]: Assigns fixed phase duration to each
phase based on a predefined cycle length and phase split,
without the ability to adapt to changing traffic conditions.

• Max-Pressure [10]: Aims to alleviate congestion by bal-
ancing traffic flow between upstream and downstream
roads. It adopts a greedy strategy to select the traffic phase
that minimizes intersection pressure, which is calculated
as the difference in the number of vehicles between
incoming and outgoing lanes at intersections.

• IntelliLight [4]: An independent learning method that
applies deep Q-learning algorithm for each intersection,
with each having its own distinct set of parameters.

• CoLight [11]: A coordination RL-based TSC method that
employs Graph Attention Networks (GATs) for junction-
level cooperation and is trained via deep Q-learning.

• MPLight [12]: Integrates pressure metrics into state and
reward definitions, and employs a FRAP-based training
architecture [13] that involves phase competition to en-
hance performance in large-scale traffic signal control.

• GPLight [8]: An advanced cooperative MARL method
that introduces learnable, dynamic clustering, enabling
agents within a group to share the same network pa-
rameters. This approach reduces learning complexity by
enhancing cooperation within groups while maintaining
accuracy by capturing differences between groups.

As shown in Table III, these new results indicate that Fixed-
Time and Max-Pressure methods, which struggle to adapt to
dynamic and complex traffic flows, have the highest travel
times of 2032.56 seconds and 2171.13 seconds, respectively.
Learning-based baselines, such as IntelliLight, CoLight, and
MPLight perform better with travel times of 2246.23 seconds,
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Fig. 5. Illustration of the calculation of the regional coordinated and cooperative rewards for training RL agents: Fig. (a) shows our regional coordinated
reward Rreg , calculated based on the queue lengths of incoming and outgoing lanes at local intersections, while Fig. (b) shows the cooperative neighbor
reward Rcoop, calculated using the queue lengths of the incoming lanes at all five intersections within the local neighborhoods.

TABLE III
COMPARATIVE RESULTS OF AVERAGE TRAVEL TIME FOR VARIOUS

TRAFFIC SIGNAL CONTROL METHODS ON LARGE-SCALE Grid33x33 −Bi
DATASET WITH 1089 HOMOGENEOUS INTERSECTIONS.

Method Average Travel Time (Seconds)
Fixed-Time 2032.56

Max-Pressure 2171.13
IntelliLight 2246.23

CoLight 1493.72
MPLight 1134.01
GPLight 735.51

CoordLight 573.70

1493.72 seconds, and 1134.01 seconds, respectively. Finally,
CoordLight outperforms all other baseline methods with the
lowest average travel time of 573.70 seconds, a significant
improvement over GPLight’s 735.51 seconds. These results
highlight CoordLight’s effectiveness and superiority in opti-
mizing regional traffic flows through scalable and efficient
coordination, thus leading to improved network-wide traffic
optimization in large-scale traffic networks.
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