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Abstract— Connected vehicles (CVs), enabled by vehicle-to-
everything (V2X) communication, provide more fine-grained
and real-time traffic information, offering new opportuni-
ties to enhance network-wide adaptive traffic signal control
(ATSC). However, effectively integrating heterogeneous CV
and infrastructure data, and leveraging such information for
cooperative ATSC across multiple intersections remain critical
challenges in CV-enabled traffic environments. To address this,
we propose V2XFormer, a multi-stage Transformer framework
designed to fuse features from CVs and intersections via vehicle-
level temporal encoding, lane-level interaction modeling, and
intersection-level coordination modeling, and jointly optimize
traffic prediction and MARL-based signal control for coopera-
tive control in CV-enabled environments. Specifically, at the lane
level, we design a dual-encoder Transformer that utilizes tem-
poral vehicle information to extract features from cooperative
and competitive lanes, and enhance feature aggregation via an
adaptive gated fusion mechanism guided by intersection-level
context. At the intersection level, we introduce a decoder-only
Transformer that adaptively integrates local and neighboring
intersection features to enable broader cross-intersection coor-
dination. This hierarchical design allows V2XFormer to capture
both fine-grained lane interactions and high-level intersection
dependencies, leading to more consistent and stable control
policies over time. Experimental results show that our method
consistently outperforms various baselines in network-wide
traffic optimization, with notable improvements under high-
demand and complex shared-lane scenarios, highlighting its
effectiveness for large-scale ATSC in CV-enabled environments.

I. INTRODUCTION

With the rapid progress of urbanization and the continuous
growth in the number of vehicles, traffic congestion has
become an increasingly serious problem in urban areas [1].
Adaptive Traffic Signal Control (ATSC) has been widely
recognized as an effective way to reduce delays, shorten
travel time, and improve overall driving experience [2]. In
recent years, data-driven methods, especially Reinforcement
Learning (RL) approaches, have attracted increasing atten-
tion in ATSC [3], [4], [5]. Through interaction with the
environment, RL agents can learn signal control strategies
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Fig. 1: An illustration of different ATSC frameworks in the
traditional regular vehicles (RVs) environment (left) and the
connected vehicles (CVs) environment (right).

that effectively balance long-term traffic optimization with
short-term adaptation to dynamic traffic conditions. Overall,
data-driven ATSC is becoming an important component
of Intelligent Transportation Systems (ITS), contributing to
smarter and more responsive traffic control in urban areas.

Most existing studies focus on traffic environments that
mainly consist of regular vehicles (RVs), where ATSC
systems mainly rely on roadside sensors, such as cameras
and inductive loop detectors, to collect real-time traffic data
(e.g., vehicle counts). Decisions are usually made based
on local traffic conditions at each intersection, as shown
on the left side of Fig. 1. However, these systems still
face challenges in complex real-world scenarios due to the
limited view, fixed position, and inability of roadside sensors
to capture intention-level information. For example, heavy
traffic in shared lanes often limits accurate observations due
to occlusion and the difficulty in inferring vehicle inten-
tions, while roadside sensors may also fail under adverse
weather or lighting conditions [6]. As a result, traditional
RL methods that rely solely on low-dimensional local obser-
vations often struggle to capture overall traffic conditions,
leading to suboptimal strategies. In future CV environments,
vehicles can share real-time information about their status
and driving intentions through Roadside Units (RSUs) with
V2X communication [7], [8], allowing signal control to rely
on more fine-grained and high-dimensional observations at
intersections, as shown on the right side of Fig. 1. How-
ever, integrating data from both vehicles and infrastructure,
and using fused features to enable high-quality cooperative
decision-making across multiple intersections remain a key
challenge for current RL-based ATSC methods.

To address these challenges, we propose V2XFormer, a
multi-stage Transformer framework that performs vehicle-
level temporal encoding, lane-level interaction modeling, and



intersection-level coordination modeling, to fuse heteroge-
neous traffic data from both vehicles and infrastructure, and
jointly learn prediction and control strategies for cooperative
ATSC in V2X-enabled environments. Specifically, at the
vehicle level, we first employ a GRU module to encode
the historical trajectories of CVs, effectively capturing their
dynamic motion patterns. At the lane level, we design a dual-
encoder Transformer that leverages the temporal vehicle data
to separately extract distinctive features from cooperative
(non-conflicting) and competitive (conflicting) lanes at each
intersection. To effectively fuse these lane-specific features,
we introduce an adaptive gating mechanism that learns to
weigh cooperative and competitive information, where the
gating behavior is optimized under the joint supervision of
both prediction and RL objectives, enabling more effective
task-driven feature fusion. Next, we decode the fused fea-
tures using intersection-level traffic observations, explicitly
modeling interactions between CVs and intersections to
obtain a unified representation of the overall traffic state.
At the intersection level, we further incorporate a decoder-
only Transformer that adaptively aggregates features from
both local and neighboring intersections to facilitate inter-
intersection cooperation. In contrast to traditional methods
that address prediction and control separately, V2XFormer
employs a unified model to jointly optimize future traffic
prediction and MARL-based signal control, promoting more
consistent task-aligned representation learning and enabling
forward-looking decision-making, which together improve
the robustness and effectiveness of the learned policy.

We evaluate V2XFormer on the open-source Grid 5x5
dataset [9], which includes 25 four-arm intersections with
different traffic demands (e.g., low, medium, and high)
and shared-lane complexity (i.e., Grid 5x5 V2). Experi-
mental results show that V2XFormer outperforms existing
ATSC methods in reducing traffic congestion, emissions, and
fuel consumption, especially in more challenging shared-
lane scenarios. We believe this stems from V2XFormer’s
ability to effectively integrate CV information, especially
their driving intentions, with concise intersection-level traffic
states, enabling more informed decisions in such complex
settings. Visualized CV trajectories with time also show
that our method can effectively reduce delays and stop-
and-go behaviors. These results highlight the advantage of
our framework in fusing fine-grained CV and intersection
information, and demonstrate its potential as a practical
solution for collaborative ATSC in CV-enabled environments.

II. RELATED WORK

In RV environments, traditional TSC methods typically
relied on roadside sensors to detect traffic conditions. Fixed-
time methods, such as the Webster method [10], predefined
signal plans based on historical data, and cannot adapt well to
real-time traffic variations. To improve adaptability, adaptive
systems like SCOOT [11] and SCATS [12] adjusted signal
timings using real-time sensor inputs. The max-pressure
method [13] further optimized traffic flow by adjusting signal
phases to balance pressures between upstream and down-

stream intersections. In more complex and highly dynamic
urban environments, MARL has emerged as a key approach
for ATSC [2]. For homogeneous networks, PressLight [14]
introduced the concept of “pressure” into the state and reward
definitions, guiding agents to select phases based on higher
pressure. Methods such as CoLight [3], STMARL [15],
and GPLight [5] employed graph neural networks (GNNs)
to capture spatial and temporal relationships among inter-
sections, thereby implicitly enhancing cooperation among
agents. SocialLight [4] proposed a distributed RL framework
using local counterfactual reasoning to estimate each agent’s
contribution within the neighborhood, thus improving policy
stability and scalability. CoordLight [16] introduced a novel
state representation called QDSE to improve local traffic
dynamics modeling and employed an attention mechanism
to enhance coordination among key neighbors, thereby en-
abling network-level optimization. For general ATSC meth-
ods in heterogeneous networks, FRAP [17] proposed a
phase competition mechanism to handle diverse intersec-
tions. GESA [18] extended this by introducing a scenario-
agnostic RL framework, which included a rule-based module
to unify intersection representations without manual labeling,
enabling simultaneous training across multiple scenarios.
Unicorn [19] proposed a unified state-action representation
method, leveraging cross-attention and contrastive learning
to capture both common and unique features across inter-
sections, along with a collaborative optimization strategy for
scalable and generalizable network-wide ATSC.

In CV environments, ATSC methods benefit from ad-
vanced V2X communication technologies, providing richer
and more accurate real-time traffic information compared to
roadside sensors. Non-learning-based methods often formu-
late TSC as optimization problems using data from CVs.
These methods [6], [20] usually apply mixed-integer linear
programming (MILP) or dynamic programming (DP) to opti-
mize signal phases by estimating detailed vehicle trajectories
or aggregate flow measures like queue lengths and densities.
Recent V2X-based methods have explored different ways
to improve ATSC performance using data from CVs. Early
study [21] showed that using detailed V2I data like vehicle
positions and speeds can greatly improve traffic flow and
reduce delays. CVLight [7] proposed a decentralized RL
method that combines CV and non-CV data during train-
ing, enabling stable control even with low CV penetration.
Later, UniTSA [8] introduced a universal RL framework for
V2X environments, using a unified state design and data
augmentation to adapt to different intersection types. Pang
et al. [22] proposed a two-stage RL method that predicts
traffic and refines actions using real-time V2X data for edge-
computing scenarios. Despite these efforts, there is still a lack
of effective and general solutions for fusing heterogeneous
CV and intersection data and using them to coordinate
multiple intersections in CV-enabled environments.

III. BACKGROUND
A. Traffic Terminology

We first introduce the traffic terminology used in this work.



e Roads and lanes: Incoming roads are where vehicles
enter an intersection, while outgoing roads are where
vehicles exit. Each road contains one or multiple lanes.

o Traffic movement and traffic phase: A traffic movement
refers to the vehicle flow from a incoming lane to a
specific outgoing lane. A traffic phase is a set of allowed
traffic movements that can proceed simultaneously with-
out conflict, typically controlled by traffic signals.

o Traffic agent and traffic network: A traffic agent is a
signal controller that makes decisions such as selecting
signal phases and timings for a specific intersection. A
traffic network is a connected system of intersections
and roads where multiple agents operate and interact.

o Traffic neighborhood: A traffic neighborhood refers to
an agent and all intersections/agents directly connected
to it, where the set of neighbors is denoted by N.

B. TSC as MARL

To capture the partial observability and decentralized na-
ture of the network-wide TSC problem, we formulate it as a
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [23], defined as G = (N, S, A, R, T, 0O, p,~).
In this formulation, each intersection is modeled as a learning
agent that makes decisions based on its own local observa-
tions and interacts with neighbors through the environment.
Here, N is the number of agents, S is the global state space,
and A = [Ay, Ay, ..., AN] is the joint action space. The
reward function is given by R : Sx Ax.S — R, and the state
transition function T'(s'|s,a) : Sx Ax S — [0,1] defines the
probability of transitioning to state s’ after taking action a in
state s. Since agents cannot directly observe the global state,
each agent ¢ receives a local observation z; € Z, determined
by the observation function O;(s) : S — Z. In this work,
we consider a fully CV-enabled environment, where each
agent’s observation includes both the macroscopic traffic
state of its own intersection and microscopic real-time state
information from individual CVs. Additionally, p denotes the
initial state distribution, and + is the discount factor. Given
a joint policy m, the objective is to find the optimal policy
7* that maximizes the cumulative discounted reward for all
agents: G(7) = Erer | S0, 3270 4trt|, where 7 denotes
the global state-action trajectory and 7;,, 1s the time horizon.

C. RL Agent Design

1) Observation: In a CV environment, each RL agent
(i.e., intersection) constructs its observation from two compo-
nents: vehicle-level observations obtained via V2X commu-
nication from CVs and intersection-level observations that
reflect the overall local traffic conditions. For each incoming
lane I;;,, where L;, is the set of all incoming lanes at
the intersection, the agent collects information from CVs
currently on that lane via RSUs. The set of CVs on lane
lin, 1s denoted as V), , and their observations are represented
as on = [o,, v € V], where each vehicle v is charac-
terized by 0, = (py, Sv, Gy, dy), including its lane position
Dy, speed s,, acceleration a,, and intended route d,. The
intended route d,, is encoded as a one-hot vector indicating

the vehicle’s next target intersection. By aggregating all
CV observations across incoming lanes, the agent forms a
structured vehicle-level observation: 0., = [0k, Ly, € L]
In parallel, the agent constructs an intersection-level obser-
vation 0;ny = (Sint, N2V, N3, where s;,,; is a one hot
vector indicating the current activated signal phase, n.7"
is the number of moving vehicles per incoming lane, and
nwait is the number of stopped vehicles per incoming lane.
This hybrid observation design 0 = (0¢y, 0in¢) enables each
agent to perceive both fine-grained vehicle-level dynamics
and summarized intersection-level traffic states, aiming to
facilitate more informed and context-aware decision-making.
To further broaden each agent’s field of view, it also receives
observations from neighboring intersections, allowing its pol-
icy to account for both local and adjacent traffic conditions.

2) Action: We define the action as selecting a signal phase
that remains active for a fixed period (e.g., 5 seconds) until
the next decision step. For a typical four-way intersection,
there are eight valid traffic phases, which include north-
south straight, east-west straight, north-south left turn, east-
west left turn, north straight and left turn, south straight
and left turn, east straight and left turn, and west straight
and left turn, while right turns are always permitted and not
controlled by the phases. A yellow light (e.g., 2 seconds) is
added before switching phases to ensure safety.

3) Reward: Aligning with prior work [9], [4], [16], we
adopt queue length (i.e., stopped vehicle count) as the reward
signal, where the local reward for each agent is defined as
r o= fm—lml Yo ec, M, where ny®* is the number of
stopped vehicles on lane [/;,,. To promote better coordina-
tion and cooperation among neighboring intersections and
improve overall network performance, the final reward for
each agent ¢ is computed by averaging the rewards of itself

and its neighbors N;: 7; = m Zjej\/,,u{i} T

IV. V2XFORMER

In this section, we first present the network architecture of
V2XFormer. Following this, we introduce a joint optimiza-
tion framework that combines future traffic prediction and
MARL-based control into a unified learning model, enabling
more effective ATSC with improved long-term performance.

A. Network Architecture

In V2XFormer, we process and fuse heterogeneous data
from CVs and intersections through a multi-stage network
structure composed of three levels—vehicle, lane, and in-
tersection, as illustrated in Fig. 2. For each intersection,
we first construct the vehicle-level observation represented
as 0y € RlEnIxd = [o o [, € L], as described
in Sec. III-C.1. Since the number of CVs varies across
lanes over time, we apply a padding mechanism to ensure
a fixed observation dimension d; = 210 for each lane. The
observation o, is then projected into a higher-dimensional
feature using a two-layer MLP (multilayer perceptron): h., €
RI€in|xdn — MLP (0.,), where dj, is the hidden feature
dimension. To incorporate temporal dependencies, we apply
a gated recurrent unit (GRU) module [24] that captures the
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Fig. 2: Overview of the proposed V2XFormer framework, designed with a multi-stage Transformer to fuse heterogeneous
features and jointly optimize traffic prediction and MARL-based control for cooperative ATSC in CV-enabled environments.

historical dynamics of CVs at each lane, leading to the
feature h.,: h., = GRU (h,). Modeling these historical
dynamics is crucial as it helps improve traffic estimation and
enables more adaptive and efficient signal control.

Next, we feed the temporal features h., into a dual-
encoder Transformer, consisting of two parallel self-attention
encoders [25] with different masking mechanisms to model
cooperative and competitive relationships between different
incoming lanes. This design enables the model to distinguish
between lanes that can move together and those that compete
for the same signal phase, leading to more accurate modeling
of their interactions. The cooperative encoder applies a
cooperative mask M., where lanes that conflict have attention
values of —oo, preventing information aggregation, while
non-conflicting lanes retain their original attention values.
Conversely, the competitive encoder applies a competitive
mask M,., where non-conflicting lanes are masked with —oo,
ensuring that only conflicting lanes are attended to. The self-
attention mechanism for the encoders is computed as follows:

. QKT
Attention(Q, K,V, M) = softmax [ —— + M | V, (1)

Vd
where query, key, and value matrices are derived from h.,
through linear transformations: Q = Wq h.,, K = Wi hl,,
and V = Wy h.,, with Wq, Wk, and Wy, being the re-
spective learnable weight matrices for these transformations.
The outputs of the encoders represent cooperative features

E. € Rl€inlxdn gpq competitive features F, € RICinlxdn,

E. = Encodery, (h.,,M.), E,. = Encoder,, (h.,,M,).

2
To adaptively integrate cooperative and competitive features,
we introduce an adaptive gated fusion mechanism, where a
gating value is first computed using a linear transformation
followed by a sigmoid activation: g = o (W, E. + by).
The final fused feature E € RIZIXdn s then obtained by
weighting the cooperative and competitive features: £ =
g-E.+ (1 —g)- E,.. To combine the fused lane-level
features with high-level intersection context, we use a cross-
attention decoder. We first apply a two-layer MLP to the
intersection-level observation o0;,; to get a feature hj,.:
hins € RY¥4 = MLP (04,¢). Then, we compute the query,
key, and value for the cross-attention mechanism similar to

Eq. 1, where the query is projected from h;,, and the key
and value are projected from the fused lane-level features E.
This allows the model to align lane-level dynamics with high-
level intersection features, leading to a refined and context-
aware representation: H € R'*% = Decoder;(hins, F).

To build on the current intersection representation and
further capture inter-intersection dependencies, we add a
decoder-only Transformer (shown as Cross-Attention De-
coder in Fig. 2) that aggregates critical information from
adjacent intersections using the same cross-attention mecha-
nism, resulting in an updated intersection feature denoted as
H'. Here, the query is derived from the current intersection’s
fused feature, while the keys and values are computed from
the fused features of its neighboring intersections:

H = Decoder;p, (H7 Hneighbor ) s 3)

where H,cignbor denotes the features of neighboring inter-
sections obtained through the same encoding process. This
enables the model to account for broader neighborhood
coordination and cooperation when making decisions. By
integrating vehicle-level historical modeling, cooperative-
competitive lane-level encoding, and inter-intersection de-
pendency modeling, our framework effectively captures traf-
fic interactions at multiple spatial and temporal scales, en-
abling more informed and coordinated control decisions. The
resulting intersection representation is then used for both
prediction and decision-making in the optimization process.

B. Optimization Algorithm

To unify traffic forecasting and control in CV-enabled
ATSC, we propose a joint learning paradigm that integrates
supervised prediction and MARL-based decision-making. In-
stead of directly using predicted results for decision-making,
we introduce a prediction loss as an auxiliary objective
to guide the learning of control policies. The key idea is
to use a prediction loss to guide the RL process through
shared gradients during training, enabling the policy to better
anticipate and react to future traffic changes. For the traffic
prediction process, we utilize the fused feature F, extracted
from the dual-encoder Transformer of V2XFormer, to predict
the vehicle-level observation for the next decision step. This
is achieved by passing E through a two-layer MLP, which



generates the predicted lane observation of,. The prediction
loss function is defined as the mean squared error (MSE)
between the predicted observation of, and the ground truth
observation at next step o.f': Lyeq = MSE (6%, 0Lf1).

During RL-based optimization, the final aggregated feature
H' is passed through two separate MLPs to generate the pol-
icy function and the state-action value function. At each step
t, we denote the input to the policy as: 6* = (o, m, o, myr)
where o' and m represent the observation and attention
masks of the target intersection, and oj\/, mys are the corre-
sponding observations and masks from neighboring intersec-
tions. Then, the policy and value functions, parameterized by
¢ and 0, are defined as: 79(0), Q4 (0, a, ay ), where a' is the
action taken by the target intersection and ay, are the actions
of its neighbors. To facilitate scalable learning of decentral-
ized cooperative policies, we adopt the counterfactual-based
advantage formulation introduced in SocialLight [4]. This
approach allows each agent to marginalize over the actions
of its neighbors and reason about their contributions, leading
to more effective coordination in multi-agent settings. The
one-step advantage function is defined as:

At _ ,r,t + Z 7T9(at+1 ‘ 6t+1) Q¢(5t+17at+17aj\-}-l)

at+1

=Y mola’ | 8') Qu(d",a’, aly). 4)

To further reduce variance and improve training stability, we
apply Generalized Advantage Estimation (GAE) [26]. The
final advantage is computed as a discounted sum of future
one-step advantages: A* = 371 " (Y A) AP, where 7 is
the discount factor and A is the GAE smoothing parameter.
To ensure stable policy updates, we apply the Proximal
Policy Optimization (PPO) algorithm [27], which uses a
clipped surrogate objective for calculating the policy loss:

L:(0)=-E, {min (p A, clip(p,1 —¢€,1+4¢) A)} , ()

where p is the ratio between the probabilities of the new
and old policies, given by p(6) = W’;B(‘ZL‘LT()S). The clipping
parameter e prevents the policy from cﬂdanging too much in
one update. To encourage exploration, we include an entropy
bonus that promotes a higher degree of uncertainty in the

policy distribution. The entropy loss is defined as:

Eentropy(o) = 7ET

> mo(a] 6)logmo(a | 5)] . (6)

The value function is then trained by minimizing the MSE
between the Q-value of the current action and a boot-
strapped target constructed from the immediate reward and
the next-step expected Q-value: Q' = #* + 3.\, mp(at*! |
61 Q46" al*t, alk"). The value loss is defined as:

Lo(¢) = E, {(qu(éﬁ a,aly) - Qﬂ SN

The total RL loss is computed as the weighted sum of three
components: Lry, = Lr + c1Ly — c2Leniropy, Where ¢, and
co are weights for the value and entropy losses, respectively.

X10 X6
Xge Xge X7e

Fig. 3: Illustration of the Grid 5x5 traffic network with 25
intersections and its synthetic major and minor traffic (i.e.,
CVs) flows, which are adopted from the MA2C paper [9].

Finally, the overall loss function for V2XFormer combines
the prediction loss and RL loss: £ = Lry, + c3Lpred » Where
cs is the weight factor. By jointly optimizing the prediction
and control objectives, the model can better capture the future
traffic trends and learn more forward-looking control strate-
gies, leading to more stable and adaptive system behavior.

V. EXPERIMENTS AND RESULTS
A. Experimental Settings

We conduct training and evaluation in the open-source
traffic platform SUMO [28]. As the main benchmark, we
adopt the Grid 5x5 traffic dataset from the MA2C paper [9],
which consists of 25 homogeneous intersections, as shown
in Fig. 3. In this grid network, each intersection has one
incoming and one outgoing lane in the north-south direction
and two incoming and two outgoing lanes in the east-west
direction. To simulate dynamic urban traffic conditions, four
synthetic traffic flows that change over time are designed,
as represented by the solid and dashed arrows in Fig 3.
At the start, three main flows F; follow the O-D pairs
T19 — T4, T11 — T5, T12 — Tg, While three minor flows
f1 move along x; — x7, To — xg, and x3 — xg. After 15
minutes, traffic demands in F; and f; begin to decrease,
and new flows F5 and fy with reversed O-D pairs emerge.
The high-demand scenario is set with peak traffic demands
of 1100 veh/h for major flows and 925 veh/h for minor
flows. For comparison, the low-demand scenario has traffic
demands of 220 veh/h and 185 veh/h, while the medium-
demand scenario is configured at 660 veh/h and 555 veh/h,
respectively. To further test the effectiveness of our method
in more challenging shared-lane scenarios, we create another
dataset called Grid 5x5 V2. The main difference is that each
intersection has only one incoming lane in each direction,
so vehicles turning left, going straight, or turning right all
use the same lane. All other settings are the same as in the
original Grid 5x5 dataset. All experiments were conducted
on an Ubuntu server with 32GB RAM, an Intel Core i9-
13900KF processor and an NVIDIA RTX 4090 GPU.



TABLE I: Evaluation Performance of different methods under low, medium, and high traffic demand scenarios on the Grid
5%5 network, with the best result in bold and the second-best underlined.

Metrics Queue Length| Speed? Trip Completion Ratet Trip Delayl] Fuel Consumption] ~ CO2 Emissions|  Rate of Stop-and-Gol]
(vehs) (m/s) (vehs/s) (s) (g/s) (g/s) (stops/s)
Grid 5x5 (Low Traffic Demand)

Max-Pressure [13] 0.03(0.03) 7.93(3.28) 0.22(0.22) 22.16(9.16) 40.87(29.08) 128.15(91.18) 0.94(2.09)
PressLight [14] 0.04(0.03) 7.93(3.31) 0.22(0.21) 26.22(20.17) 40.09(28.92) 125.70(90.66) 0.73(1.64)
SocialLight [4] 0.02(0.01) 8.98(3.81) 0.22(0.21) 9.90(10.04) 35.61(25.66) 111.64(80.44) 0.51(1.24)
SocialLight-CV 0.00(0.01) 10.19(4.48) 0.22(0.21) 2.18(3.24) 29.12(21.63) 91.30(67.83) 0.15(0.43)

V2XFormer(ours) 0.00(0.01) 9.92(4.24) 0.22(0.22) 2.04(2.83) 31.47(22.63) 98.66(70.95) 0.17(0.47)

Grid 5x5 (Medium Traffic Demand)

Max-Pressure [13] 0.74(0.64) 4.74(2.15) 0.62(0.42) 170.48(226.56) 243.68(163.87) 763.97(513.76) 7.52(6.40)
PressLight [14] 0.36(0.32) 5.77(2.45) 0.63(0.49) 85.33(86.78) 175.99(133.46) 551.49(418.42) 4.82(5.03)
SocialLight [4] 0.10(0.10) 7.89(3.24) 0.63(0.51) 23.12(21.85) 122.03(92.54) 382.60(290.13) 2.59(3.71)
SocialLight-CV 0.05(0.06) 8.86(3.65) 0.63(0.51) 11.83(13.01) 107.42(80.71) 336.79(253.04) 1.57(2.67)

V2XFormer(ours) 0.04(0.05) 8.97(3.68) 0.63(0.51) 9.20(16.52) 107.26(79.20) 336.30(248.30) 1.21(2.13)

Grid 5x5 (High Traffic Demand)

Max-Pressure [13] 5.80(3.89) 1.98(2.62) 0.31(0.27) 340.22(489.08) 881.76(445.23) 2764.36(1395.80) 12.48(6.07)
PressLight [14] 2.98(1.77) 3.02(2.02) 0.90(0.40) 440.12(455.96) 650.98(305.59) 2040.90(958.06) 15.33(7.55)
SocialLight [4] 1.99(1.28) 3.55(2.23) 0.92(0.42) 296.34(467.02) 529.47(244.33) 1659.96(766.00) 14.10(7.82)
SocialLight-CV 1.07(0.91) 4.84(2.20) 1.03(0.56) 154.50(208.34) 390.92(241.11) 1225.60(755.90) 10.47(8.16)

V2XFormer(ours) 0.77(0.74) 5.32(2.58) 1.03(0.61) 111.50(165.93) 335.42(224.82) 1051.59(704.85) 8.19(7.06)

TABLE II: Evaluation Performance of different methods under low, medium, and high traffic demand scenarios on the Grid
5%5 V2 network, with the best result in bold and the second-best underlined.

Metrics Queue Length| Speed?t Trip Completion Rate? Trip Delay| Fuel Consumption|  CO2 Emissions]  Rate of Stop-and-GoJ
(vehs) (m/s) (veh/s) (s) (g/s) (g/s) (stops/s)
Grid 5x5 V2 (Low Traffic Demand)
PressLight [14] 0.07(0.06) 7.79(3.29) 0.22(0.22) 30.48(21.54) 41.65(30.43) 130.58(95.42) 0.77(1.75)
SocialLight [4] 0.03(0.02) 8.99(3.80) 0.22(0.21) 10.73(10.19) 35.68(25.83) 111.88(80.97) 0.48(1.18)
SocialLight-CV 0.01(0.01) 10.08(4.44) 0.22(0.21) 2.61(3.49) 30.03(22.47) 94.16(70.44) 0.18(0.49)
V2XFormer(ours) 0.01(0.01) 9.75(4.19) 0.22(0.22) 2.46(4.54) 32.85(23.71) 102.98(74.33) 0.22(0.57)
Grid 5x5 V2 (Medium Traffic Demand)
PressLight [14] 1.41(1.11) 4.53(2.44) 0.61(0.41) 225.35(270.53) 274.23(178.96) 859.74(561.06) 6.57(5.40)
SocialLight [4] 0.21(0.22) 7.42(3.18) 0.63(0.50) 32.92(33.37) 134.95(105.66) 423.11(331.26) 3.27(4.40)
SocialLight-CV 0.09(0.10) 8.66(3.61) 0.63(0.51) 13.14(14.74) 111.28(84.20) 348.88(263.99) 1.64(2.61)
V2XFormer(ours) 0.06(0.07) 8.90(3.67) 0.63(0.51) 8.19(11.13) 108.50(80.12) 340.16(251.20) 1.29(2.21)
Grid 5x5 V2 (High Traffic Demand)
PressLight [14] 3.66(1.78) 2.71(1.37) 0.80(0.40) 383.41(476.56) 548.42(205.15) 1719.36(643.17) 11.35(4.07)
SocialLight [4] 3.84(2.40) 2.92(2.52) 0.68(0.31) 432.82(565.26) 554.18(228.86) 1737.42(717.50) 12.20(5.37)
SocialLight-CV 2.62(1.69) 4.03(2.53) 0.93(0.40) 258.98(399.98) 474.25(209.05) 1486.85(655.39) 10.12(5.57)
V2XFormer(ours) 2.14(1.46) 4.57(2.53) 0.97(0.43) 208.24(317.53) 428.86(196.41) 1344.54(615.77) 9.18(5.49)

B. Evaluation Baselines and Metrics

We compare our approach with three types of baselines:
rule-based methods, RL-based ATSC methods, and CV-
enhanced RL-based methods, presented as follows:

1) Rule-based TSC methods: Max-Pressure [13].

2) RL-based TSC methods: PressLight [14] and Social-
Light [4]. These methods adopt a parameter-sharing
scheme, where a single shared policy is trained using
trajectories collected from multiple agents to improve
scalability and adaptability across the traffic network.
CV-enabled RL-based methods: SocialLight-CV, a
variant that extends existing RL-based methods by
incorporating CV state information as additional input,
processed by simple MLPs for decision-making.

3)

To comprehensively evaluate traffic performance of traffic
performance, environmental impact, and safety across differ-
ent methods, we adopt the following traffic metrics:

1) Average queue length (veh/s): Average number of
vehicles waiting at an intersection for each step.

2) Average vehicle speed (m/s): Average speed of all
vehicles traveling within the network at each step.

3) Trip completion rate (veh/s): Rate at which vehicles
complete their trips, defined as the number of vehicles
reaching their destination per second.

4) Average trip delay (s): Average time a vehicle is
delayed during its trip compared to the ideal trip time.
It is calculated as the difference between the actual trip
time and the ideal trip time for completed trips.

Fuel consumption (mg/s): Amount of fuel used by
vehicles in the network per second. In our experi-
ments, fuel consumption, along with C'Oy emissions
(described below), is calculated using the HBEFA3/PC
G EU4 model [29]. This model simulates a gasoline-
powered Euro 4 standard passenger car and is the
default model in the SUMO simulator'.

CO, emissions (mg/s): Amount of carbon dioxide
produced by vehicles within the network per second.
CO5 emissions are influenced by multiple factors such
as speed, acceleration, and fuel consumption.

Rate of stop-and-go (stop/s): Average number of stop-
and-go events per second across all vehicles in the
traffic network. A stop-and-go event is recorded when
a vehicle’s speed falls below a fixed threshold (set to
0.1 m/s) and then increases again.

5)

6)

7)

C. Results and Analysis

To evaluate the effectiveness of our approach, we compare
V2XFormer with several advanced RL-based ATSC methods,

Thttps://sumo.dlr.de/docs/Models/Emissions.html
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Fig. 4: Spatiotemporal trajectories of CVs traveling from west to east during the first 500 seconds in the Grid 5x5 network.
Regions where vehicles stopped and queued are highlighted with red dashed boxes.

including SocialLight-CV, SocialLight, and PressLight. We
run experiments on two network setups: Grid 5x5 and Grid
5%x5 V2 (only one incoming lane per direction), under three
traffic demand levels: low, medium, and high. Table I shows
the results on the Grid 5x5 network. Under low traffic de-
mand, the scenario is simple, and congestion rarely happens.
Therefore, the performance differences between methods are
small, with average queue lengths mostly between 0.01 and
0.04 vehicles. Even so, V2XFormer achieves the best per-
formance, with the lowest average queue length and shortest
trip delay. Under medium traffic demand, performance differ-
ences become clearer. V2XFormer consistently outperforms
the other methods across all key metrics. In the most chal-
lenging high-demand scenario, the performance gap further
increases. V2XFormer achieves an average queue length of
0.77 vehicles, much lower than the other methods (all ex-
ceeding 1.0 vehicles). Additionally, V2XFormer significantly
reduces stop-and-go traffic behavior by integrating fine-
grained vehicle-level CV features with compact intersection-
level representations. Compared to traditional methods that
rely solely on roadside sensors, V2XFormer enables a more
responsive and predictive ATSC. In particular, we observed
that it enables CVs from crossing directions to naturally form
alternating platoons, thereby reducing intersection blocking
and promoting smoother traffic flow without prolonged stops.
The rule-based Max-Pressure method performs poorly in
terms of queue length and trip completion rate. This is mainly
because it makes decisions based only on the current pressure
without considering long-term performance. As a result, it
often fails to make better decisions over time, which limits
its control ability in complex traffic scenarios.

In addition, Table II presents the experimental results
on the Grid 5x5 V2 network. Under low traffic demand,
although all methods show similar trip completion rates

(approximately 0.22 veh/s), V2XFormer demonstrates bet-
ter performance with the lowest average trip delay (2.46
sec). As traffic demand increases to the medium level,
V2XFormer consistently outperforms all baselines across
all evaluation metrics, particularly excelling in improving
traffic flow and reducing environmental impact. In the more
challenging high-demand scenario, the network has fewer
lanes and higher traffic density, leading to more entangled
vehicle routes and more diverse traffic demands. This setting
provides a better test of the model’s ability to coordinate dif-
ferent traffic needs and improve overall traffic performance.
The results show that SocialLight-CV and V2XFormer, both
leveraging CV information, outperform traditional RL-based
methods. In particular, V2XFormer adopts a multi-stage
Transformer to effectively fuse multi-scale heterogeneous
information, enabling the model to better capture dynamic
interactions across levels and significantly enhance perfor-
mance in CV-enabled environments. Furthermore, through
vehicle intent sharing, V2XFormer enables agents to make
more informed and adaptive phase selection decisions, lead-
ing to smoother traffic flow across intersections.

To further show control performance, Fig.4 compares the
spatiotemporal trajectories of vehicles under four methods
(PressLight, SocialLight, SocialLight-CV, and V2XFormer).
The trajectories show vehicle movements from west to east
through the middle five intersections (highlighted in Fig.3)
during the first 500 seconds of the simulation (out of a total
of 3600 seconds). The control strategies are also shown in
red and green, where red indicates that east-west traffic is
stopped, and green means it is allowed to go. In Fig.4(a),
vehicle trajectories under PressLight show clear zigzag pat-
terns, caused by frequent stop-and-go behavior. This reflects
that relying only on roadside sensors may learn sub-optimal
policies due to limited information. In Fig. 4(b), SocialLight



generates smoother trajectories and improves traffic in some
areas, but as demand increases, vehicles start to queue at
several intersections, leading to local congestion. This sug-
gests that although SocialLight introduces inter-intersection
cooperation, the lack of detailed vehicle data limits the
accuracy of local control. Fig. 4(c) shows better results with
SocialLight-CV, where vehicle trajectories are smoother and
more evenly distributed across intersections, indicating that
fine-grained CV data enables better balance between local
control and regional coordination. Fig.4(d) shows the best
result from V2XFormer. Most vehicle trajectories are nearly
straight, with little or no waiting behavior. This shows that
V2XFormer effectively adjusts signal control strategies based
on real-time vehicle demands, ensuring smoother traffic flow
and reducing overall network congestion.

VI. CONCLUSION

In this paper, we propose V2XFormer, a multi-stage
Transformer framework for cooperative ATSC in CV-enabled
environments. V2XFormer effectively integrates real-time
information from vehicles and intersections at the vehicle,
lane, and intersection levels, enabling the joint optimiza-
tion of traffic prediction and MARL-based decision-making
through a unified model. Experimental results demonstrate
that V2XFormer achieves superior performance, especially
in challenging high-demand and shared-lane scenarios, high-
lighting its effectiveness and potential for large-scale traffic
management in V2X-enabled environments.

Our work has several limitations and future directions.
First and foremost, we only considered pure CV scenarios.
Although V2X technologies are becoming mature, widely
deploying CVs and RSUs remains challenging. Thus, ex-
tending our approach to mixed traffic environments involving
both CVs and RVs, and enabling collaborative perception
among CVs to infer the behaviors of RVs under low CV pen-
etration rates, represents an important direction for our future
work. Finally, communication delays and packet losses in
realistic V2X environments were not considered in this work.
Future work could simulate these issues to further enhance
the robustness of V2XFormer in real-world applications.
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