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Abstract— Accurate short-term traffic flow prediction plays
a pivotal role in enabling reliable and intelligent decision-
making for automated transportation systems. However, the
inherent complexity of spatiotemporal traffic patterns and the
frequent presence of missing data present critical challenges
to prediction accuracy and system resilience. In this paper,
we present a dynamic tensor-based forecasting framework
tailored for intelligent transportation scenarios. We first employ
a hierarchical clustering strategy to identify key intersections
with strong interdependencies, enhancing the modeling of
spatial correlations. Subsequently, we introduce a dynamic
“Location—X -Time” tensor structure that captures multi-scale
temporal dependencies and adapts in real-time through a
sliding window mechanism, ensuring robustness to data in-
completeness. Our approach improves the reliability of down-
stream applications such as adaptive traffic control and vehicle-
infrastructure coordination. Experimental results on large-scale
real-world datasets demonstrate that our proposed method
consistently outperforms state-of-the-art models, supporting the
advancement of secure and intelligent urban mobility systems.

I. INTRODUCTION

Accurate traffic flow prediction is a fundamental com-
ponent of intelligent transportation systems (ITS), support-
ing real-time traffic management, resource allocation, and
vehicle-infrastructure coordination [1]. With the growing
adoption of connected vehicles, roadside sensing units, and
mobile computing platforms, vast streams of spatiotemporal
traffic data are continuously generated across urban road
networks [2], [3]. Moreover, traffic flow prediction can po-
tentially support intelligent applications such as coordinated
traffic signal control [4], [5]. Vehicular Social Networks
(VSNs) have emerged as a key paradigm in this context,
enabling vehicles and infrastructure to cooperatively sense,
communicate, and share mobility information [6]. While
this collaborative environment enhances situational aware-
ness and system responsiveness, it also introduces critical
challenges for predictive modeling—particularly the high
dimensionality, dynamic variability, and frequent incomplete-
ness of traffic data.

Conventional traffic prediction methods, ranging from
temporal and spatial models [7]-[9] to matrix decomposition
[10] and tensor-based techniques [11]-[13] have demon-
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strated improved forecasting performance. However, they of-
ten struggle to model strong interdependencies between road
segments, adapt to multi-scale temporal dynamics, or main-
tain robustness under data loss conditions. More recently,
machine learning-based approaches, such as neural networks
[14], [15], support vector machines (SVM) [16], clustering
models [17], and hybrid deep learning frameworks [18]—-[20],
have pushed predictive accuracy further. Nonetheless, these
methods generally assume high-quality inputs, limiting their
practical use in complex, real-world traffic environments
where missing or noisy data is common [21], [22].

To improve adaptability and generalizability, recent works
have explored diverse learning frameworks, including adap-
tive KNN models [23], fuzzy neural networks [24], [25], and
recurrent architectures such as LSTMs [26]. Others turned
to network theory [27] or probabilistic reasoning [28] to
better capture traffic dynamics. Hybrid approaches, such as
clustering with genetic algorithms [29] or pattern mining for
ferry systems [30] have shown promise, but often overlook
the full potential of high-dimensional spatiotemporal data. In
this context, tensor decomposition techniques may be able to
model these multi-way structures more effectively [31].

Despite recent advances, key challenges remain in intel-
ligent traffic systems and vehicle-infrastructure cooperation:
(1) Limited spatial modeling — most methods overlook fine-
grained correlations between adjacent intersections, reduc-
ing regional consistency; (2) Underuse of high-dimensional
structures - simplified 1D/2D representations may miss
complex spatiotemporal interactions; (3) Poor robustness to
missing data — sensor failures and transmission issues often
cause data gaps, undermining prediction reliability.

In response, this paper proposes a dynamic tensor-based
framework for short-term traffic flow forecasting, designed
to support more robust, data-driven decision-making in smart
transportation networks. The method includes:

1) A hierarchical clustering algorithm, which identifies
spatially correlated intersections, enhancing the rele-
vance and accuracy of traffic flow prediction;

2) A tensor-based prediction model with a flexible
“Location—X-Time” structure that can capture multi-
level temporal dynamics and exploits the multidimen-
sional nature of traffic data;

3) A sliding window mechanism, which enables dynamic
tensor transformation, improving prediction robustness
and accuracy under missing data scenarios.

Our proposed framework improves spatial modeling and

robustness to missing data, enabling accurate traffic fore-
casting aligned with key ITS goals. The rest of the paper



is organized as follows: Section II reviews the background;
Section III presents our model; Section IV reports our
experimental results; Finally, Section V concludes with key
findings and future work.

II. PROBLEM FORMALIZATION
A. Related Definitions

Definition 1 (Traffic Flow Time Series). The traffic flow
time series at a given intersection ¢ is defined as v; =
{zi1, Ti2, T3, - - ., Tin }» Where x;, represents the traffic flow
at intersection ¢ during the nth short time period. The set v;
denotes the complete time series of traffic flow at intersection
1 over a continuous time span.

Definition 2 (Tensor Stream). A tensor stream is defined as
a sequence of Nth-order tensors {T1,T5, ..., T}, .. }, where
each tensor T} € RI1*12XxIn The sequence is considered
as an (N + 1)th-order tensor stream when t,,x increases
dynamically over time [9].

Definition 3 (Tensor Window). W (¢, w) € Rw*/ix-xIn —
(Ty—w+1,---,T:) is a sliding window that captures a finite
sub-sequence of the tensor stream at time ¢ with size w. The
tensor window enables localized analysis of temporal traffic
variations, facilitating robust short-term prediction.
Definition 4 ("Location-X-Time" Tensor Model). The ten-
sor representation of traffic flow data is denoted as A €
RI1>x12xIs “\where I; represents the location dimension (set
of intersections), [ represents the variable parameter X
(multi-level temporal representation), I3 represents the time
dimension (discrete time intervals).

B. Problem Formulation

We consider m intersections within a given spatial region,
each recording a time series of traffic flow {vy,va,..., v},
which forms a traffic flow matrix Vy,xn = [v1 v2 ... vp]T.
To extract meaningful correlations, a hierarchical clustering
algorithm is applied to group intersections with similar traffic
flow patterns, resulting in & high-similarity traffic clusters
{vi,ve,..., 05}, k <m.

We then construct a tensor-based prediction model using
the "Location-X-Time" framework, where X is a variable
parameter controlling multi-level temporal relationships. The
traffic tensor is defined as A € R7**12X13_To improve adapt-
ability, we introduce a sliding tensor window W (¢, w) to per-
form dynamic tensor decomposition for real-time prediction.
The predicted traffic tensor Ay is computed following:

Van

" }—>W(t,w) — A,

Our model addresses two key tasks: intersection correla-
tion analysis, and short-term traffic prediction. In this work,
we use the Euclidean distance threshold p to measure traffic
similarity. Traffic flows with distances below p are clustered
via hierarchical clustering cluster(v; | Euclidean distance <
p). Our tensor model, built on clustered traffic data, can then
integrate a sliding window A, € R1*22%Is for dynamic
tensor decomposition, enabling short-term traffic prediction.

III. PROPOSED MODEL AND ALGORITHMS

To address the above issues, we propose a short-term
traffic flow prediction method. Traffic data is modeled
as a dynamic tensor to preserve its temporal and multi-
dimensional structure. The approach consists of three stages:
(1) intersection correlation analysis based on traffic sequence
similarity; (ii) dynamic tensor modeling, and (iii) short-term
prediction using sliding window and tensor decomposition
techniques (see Fig. 1).
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A. Intersection Correlation Analysis

Traffic flows exhibit both temporal dependencies and spa-
tial correlations across intersections. To address this, we first
apply agglomerative hierarchical clustering to group intersec-
tions with similar traffic dynamics. Each intersection’s time

series v; = {X;1,%2,...,Tin} is treated as an individual
cluster. A pairwise distance matrix D,,x, is defined as:
0 dio dim
dio 0 ... dom
Dm><m = : . . . P (1)
dp1 dmo ... 0

where the Euclidean distance between time series v; and v;
is computed as:

2

The algorithm iteratively merges the most similar clusters
until the predefined number of clusters ¢ is reached. This
ensures that intersections with correlated traffic behaviors
are grouped together, strengthening spatial correlations and
enhancing the robustness of short-term traffic flow prediction.

B. Dynamic Modeling

We then propose a dynamic tensor decomposition model to
predict traffic flow, leveraging data compression and mapping
to uncover correlations and handle missing values.



1) Tensor Modeling Based On Variable Parameter: Ten-
sor modeling for traffic flow data utilizes a third-order tensor
A € RI<I2xIs a5 defined in Definition 4. The first order
(tensor dimension) represents predicted intersections, the
second order corresponds to the variable parameter X, and
the third order captures time values for predictions. The
variable parameter X accounts for temporal characteristics,
enabling analysis at daily and weekly levels. The tensor
element values C' are defined as:

Traffic flow short-term traffic flow
C =
0 others

The values of short-term traffic flows fluctuate over time.
We select 10 intersections within the target zone, with short-
term intervals set between 5 and 15 minutes. When traffic
flow data is unrecorded or missing, it is represented as 0 or
an alternative estimated value.

2) Tensor Decomposition Method: The core idea of ten-
sor decomposition is to uncover dimensional correlations
through data compression and mapping. Iterative reconstruc-
tion restores the tensor, facilitating similarity measurement
for short-term flow prediction. This paper develops a third-
order tensor model based on the "Location-X-Time" struc-
ture, formulated as:

A%£><1U1><2U2><3U37 (3)

where A is decomposed into 3 factor matrices Uy, Us, Us,
and a core tensor £. Our aim is to solve the minimization
problem min [|[A — £x1U; x2Usx3Us]|.

We apply HOSVD (Higher-Order SVD) to a 3-order traffic
flow tensor A, and we define the three matrices unfolding
operations as follows A ;) € RI1*U2ls) | 4,y € RI2x(hls),
Ay € RIsxUil2) where A(y), where A5y and A are
called the 1-, 2- and 3-mode matrix unfolding of A as shown
in Fig. 2.

Fig. 2. Each mode matrix of tensor.

Then, we apply singular value decomposition (SVD) to
each A(n), 1 < n < 3. The SVD decomposition of the 1-
mode matrix unfolding is:

A(l) =Unxn XL x0s VIZngIQIS- “4)

The characteristic matrix X is a diagonal matrix arranged
according to the singular values of matrix A(;), where a
greater singular value indicates greater importance of the
feature to the matrix A(;). The matrix Ay is usually
described by its my (m1 < min{Iy, I;I3}) most important
features. After m, is determined, we use the left singular
matrix U and the right singular matrix V7 to mine the

latent information under implicit attention, resulting in the
reconstruction matrix Ay

A(l) = Ul xmy * Sy xcms .Vglxms — W w0 yr®

R X (5)
Similarly, we can obtain A(Q) and A(g). The core tensor
based on the left singular matrix finally reads

£= Ax U u@ T u®T ©6)
We finally reconstruct the traffic flow tensor as:
A= £xUDx,UP %306, (7

The elements in A represent short-term traffic flow. By ap-
plying tensor decomposition, data compression, and mapping
procedures, we obtain an approximate tensor for prediction.
Given a dynamic traffic flow tensor window A; with rank-
group (r1, 72, 73) for location, X, time modes, and observed
entries W;):

3
. 2
IEIHZPWW [ = XiYi ®)
O
where X; € R™i*"i| Y, € R"*™; r; is the mode-n

rank, m; and n; are the respective dimensions of tensor
stream Ay, and Py, ensures projection constraints. For

simplicity, we introduce auxiliary matrices My, Ms, ..., M,
and reformulate:
3
; 2
Aid, Z Py [ Mi = XY ©))
1

Since the Frobenius norm constraints remain dependent due
to Py, (M) = Pw, (A()), we relax them:
3

2
|M; — X;Yi|| %

min g a; Py,
Ay My, XY, = D
1

+ BiPw,, | M; — XiYill% . (10)

We use block coordinate descent, where each variable
is optimized one at a time while keeping the others fixed,
gradually approaching the optimal solution

o X, MiYiT, where T denotes the pseudo-inverse.

The optimized pattern matrix retains key features. SVD
decomposition extracts essential information, and tensor
decomposition transforms multi-dimensional data, enabling
accurate short-term traffic flow prediction.

3) Missing Value Processing: In traffic datasets, missing
data occurs when no traffic information is recorded for an
intersection at a specific time. Formally, this means the tuple
(I1, I, Is) lacks a valid value. Factors such as weather, road
conditions, and equipment failures contribute to these gaps,
leading to incomplete records in the system.

If there is a non-zero value in the traffic data, it must
satisfy A = A,, + Aq, where A,, represents the set of
missing value elements, and Ag represents the set of non-
zero elements, which satisfy the following formula:

‘A B At” - 2(11]213651) (A-A4).

(1)

min
Ay
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Fig. 4. Ten intersections prediction results with variable
parameter X. (a) X = Day. (b) X = Week.

Common methods for handling missing values include set-
ting them to zero, averaging the available data, or using the
tensor decomposition method of Eq. 3 to iteratively estimate
the missing values Al A2 .... The process satisfies the
following condition:

min | (Ao + A,) — A7, (12)
where A! is the solution of the t-th iteration of the missing
value part in Af, A**! represents the (t+1)-th iteration value.
When the difference between two successive iterations sat-
isfies the convergence condition, the iteration is terminated.
The iterative values A'*! obtained at this time are close
to the tensor Ay, ,7,. Since missing values from previous
iterations are utilized in each iteration, they are gradually
optimized throughout the calculation process, ultimately en-
abling a more accurate short-term traffic flow prediction.

4) Iterative Algorithm: The input of our algorithm in-
cludes the time series matrix of traffic flow Vv, and
traffic flow data tensor A € RT1*12XIs a5 explained in
Section 3, as well as the classification threshold p, mode
rank (r1,r9,73) and parameters (o, as,as), (81, B2, 53)-
As shown in Algorithm 1, our iterative algorithm can get
the similarity traffic flow v; after clustering and prediction
results A, by tensor decomposition.

The time complexity of calculating traffic flow time series
similarity is O(n3). The time complexity of the coordinate
descent method to update parameters is O(n). When short-
term traffic flow is calculated based on tensor decomposition,
the resource cost is concentrated primarily in the process of
decomposition, and the complexity is O(ny, * nr, * nr,),
which is related to the size of the tensor. The overall time
complexity for our algorithm is O(ny, xny, *nr,) +O0(n3)+
O(n) ~ O(ny, ¥ ny, *ng,) + O(n3).

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

This section describes our experimental data, baselines,
and evaluation metrics used to assess the proposed approach.

Algorithm 1 Iterative Algorithm.

Input:

1: Traffic flow matrix at time t: Vipxn = [v1 v2 ... vm]T

2: Traffic flow tensor A € R11X72X13 with missing values

3: Parameters: p, (a1, a2, a3), (81, B2, 83), rank (r1,72,73)

Output:

4: Similar pass_port v; (intersection number)

5: Approximate tensor A

6: // Initialization

7: Initialize: t = 0, Y;, M;

8: // Calculate distances

9: Calculate d;; according to Eq. (2)

0: Calculate all pair-wise distances of v1,v2,...
less than p

11: Construct tensor and perform tensor decomposition:

12:  Matrix unfolding: A1y, A(2), A(3)

13: Calculate At = A, + Ag

14: while not reaching max-iteration do

15:  Update X; + M,Y; (Eq. 12)

16:  Update Y; + X M; (Eq. 12)

17: Perform matrix decomposition on A1y, A(2), A(3) (Eq. 4)

18: Approximate matrices A(l), A<2>,A(3) (Egs. 5-7)

19: Calculate core tensor £ (Eq. 8)

20: Reconstruct approximate tensor A¢ (Eq. 9)

21: end while

22: // Train parameters and predict

23: t+—t+1

24: repeat

25: Construct tensor A¢y1 based on A

26: Reconstruct approximate tensor A¢1

27: until convergence
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Fig. 5. Hierarchical clusterLfrclaéonof traffic flow time series.

1) Experimental Data: We utilize real-world vehi-
cle traffic data collected from multiple intersections in
Chonggqing, China. Each record includes vehicle license
plates, timestamps, vehicle locations, and other attributes.
The dataset contains millions of daily records, with key
identifiers such as plate number (license_no), timestamp
(pass_time), intersection name (port_name), intersection
number (pass_port), and geographic coordinates (Ing, lat).
A sample of the data is presented in Table. I.

We focus on 10 key intersections with high traffic flow,
recorded at 5-minute intervals from 8:00 to 19:00 each
day. Fig. 3 illustrates the fluctuations in traffic flow across
intersections. Understanding these variations is crucial for
analyzing correlation patterns and optimizing traffic predic-
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Fig. 6. Results for eight intersections with extended intervals.
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TABLE I Data sample.

license_no pass_time pass_port port_name  lat Ing
A 7:09 1.41E+1 Port 1 318.340 1172.494
B 4:39 1.41E+2 Port 2 318.341 1172.268
C 0:05 1.41E+3 Port 3 318.342 1172.288
D 9:51 1.41E+4 Port 4 318.343 1172.797

tion models.
2) Baseline Methods: To evaluate the performance of our
method, we compare it to the following baseline methods.

¢ SCDT (Similarity Clustering Dynamic Tensor): A
dynamic tensor model incorporating traffic similarity
clustering for short-term flow prediction.

o« ARIMA [32]: A linear time-series model leveraging
historical traffic data to forecast short-term traffic flow.

o SVR [33]: A regression approach mapping traffic data
to high-dimensional space for better accuracy.

o« BPNN [34]: A neural network model trained on his-
torical traffic data, adjusting weights and thresholds to
minimize prediction error.

3) Evaluation Metrics: We evaluate the predictive perfor-
mance using mean absolute error (MAE), mean absolute per-
centage error (MAPE), and root mean square error (RMSE):

1 n
MAE:EZLL}*MA,

(13)
t=1
MAPE — 1 3 o= Ml 0%, (14)
n =1 Tt
RMSE L i( M,)? (15)
= — T+ —
n t t) »

t=1

where x, represents the predicted traffic flow, M; is the actual
traffic flow, and n is the number of predictions. Lower values
indicate higher prediction accuracy.

B. Prediction Performance Analysis

We analyze performance by exploring various tensor pa-
rameter settings, clustering strategies, and handling different
data intervals and sparsity levels.

1) Comparison of Different Parameter Settings: We first
examine how the parameter X (daily vs. weekly) affects pre-
diction accuracy. The intersection dimension is set to 10, the
time dimension is 18. Then, we compare two configurations
of daily (10 days) and weekly (8 weeks) in Fig. 4.
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Fig. 7. Eight intersections prediction results with variable
parameter X. (a) X = Day, sampling interval = 5Smin. (b) X
= Week, sampling interval = Smin.

When X is set to Week, performance shows a slight im-
provement over day, suggesting that weekly patterns capture
more consistent traffic behavior.

2) Clustering Division Comparison: To further improve
accuracy, hierarchical clustering is used to group intersec-
tions with similar traffic patterns, as shown in Fig. 5.

We compare prediction performance before and after clus-
tering in Table II. To examine the impact of short time
periods on forecasting accuracy, we extend the duration of
the short time period appropriately. Specifically, we select
sampling intervals of 10 minutes and 15 minutes and predict
short-term traffic flow for the time periods 9:50-10:00 and
9:45-10:00 for the last day of the data set and calculate
the average. The experimental results are presented in Fig.
6. Clustering yields more accurate predictions, and weekly
settings again outperform daily.

TABLE II Prediction performance before & after clustering.

Similarity Clustering Parameter X MAE  MAPE RMSE
Before (10 intersections) Day 17.61  20.91% 21.12
Before (10 intersections) Week 13.45 15.40% 15.92

After (8 intersections) Day 13.49 16.41% 16.12
After (8 intersections) Week 10.01 11.81% 1149

3) Impact of Different Time Intervals: We assess predic-
tion performance across sampling intervals (5, 10, and 15
minutes), as shown in Table III. Longer intervals reduce
accuracy due to increased traffic uncertainty. Fig. 7 shows
that when focusing on eight clustered intersections, the
proposed model performs better under the weekly dimension.
Longer sampling intervals generally lead to higher error.

4) Comparison with Baseline Algorithms: Fig. 8 and
Table. IV show that the proposed method closely matches
real traffic flow and outperforms BPNN, SVR, and ARIMA
in both accuracy and robustness. Unlike baseline models
that require retraining, it delivers fast, reliable predictions
(within 0.8136s) and adapts well to weekly patterns. Per-
formance remains stable even with 10-50% missing data,
demonstrating strong resilience. Fig. 9 shows that prediction
error increases with higher ratios of missing data, but our
SCDT method maintains lower MAE and MAPE than other
models, showing strong robustness to data sparsity.

V. CONCLUSION

We propose a dynamic tensor-based framework for short-
term traffic prediction that leverages hierarchical clustering
and adaptive modeling to capture spatial-temporal patterns
and handle missing data. Experiments on real-world datasets
demonstrate superior accuracy and robustness, with future
work focusing on incorporating contextual information like
V2X to improve generalizability.
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